Impact of One-Year Dietary Education on Change in Selected Anthropometric and Biochemical Parameters in Children with Excess Body Weight
Abstract
:1. Introduction
2. Patients and Methods
2.1. Choosing the Study Population
- Inborn diseases predisposing to obesity, e.g., Down syndrome, Prader–Willi syndrome;
- Thyroid function disorders;
- Adrenal gland function disorders;
- Gonad function disorders;
- Intellectual disabilities;
- Chronic diseases, treatment of which may induce an increase in body weight, e.g., steroid therapy.
2.2. The Rules for Anthropometric Measurements, Body Fat Measurement, Fatty Liver Assessment and Blood Pressure Measurement
2.3. Biochemical Study Methods
2.4. Diet Analysis
2.5. Organisation of Dietary Education
2.6. Statistical Methods
3. Results
3.1. Study Group Characteristics
3.2. The Effect of One-Year Dietary Intervention on Anthropometric Parameters
3.3. Effect of Dietary Intervention on Lipid Profile Parameters, Fatty Liver and Blood Pressure
3.4. The Effect of One-Year Education on Chosen Parameters of Glucose Metabolism
3.5. The Effect of Dietary Education on Consumption of Energy and Macronutrients
3.6. Correlation between Changes in Macronutrient Consumption and Chosen Somatic Development Parameters and Blood Pressure in Children after Dietary Intervention
4. Discussion
5. Conclusions
- In the studied group of children, a one-year intervention contributed to a significant reduction in body weight, waist and hip circumference and adipose tissue percentage in the bodies of those children. In part, the patients’ resolution of the symptoms of fatty liver was observed. Moreover, a significant improvement in measured lipid profile parameters was observed, except for total cholesterol. There was also no effect of the dietary intervention on arterial blood pressure.
- The one-year dietary intervention also significantly changed the amount of consumed energy and macronutrients, except for dietary fibre. The biggest reduction was observed in saturated fat and simple sugars, i.e., dietary components, which when consumed in abundance are considered one of the main causes of metabolic complications of obesity.
- The reduction in consumption of protein and carbohydrates significantly affected the reduction in the adipose tissue percentage of the examined children, decreasing the risk of excess body weight complications. It seems justified to educate parents on the nutritional value of products being a source of protein, because of the presence of fats and carbohydrates in these products.
- A one-year dietary education of children with excess body weight has important clinical significance, both in body weight reduction and limiting the possible complications of overweight and obesity. It seems then justified to provide easier access to qualified healthcare personnel, i.e., not only doctors, but also dietitians.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wyka, J.; Hirschberg, L.; Żechałko-Czajkowska, A. Nutritional determination of obesity in adults from Wroclaw. Ann. Natl. Inst. Hyg. 2007, 58, 541–548. [Google Scholar]
- Global Health Observatory (GHO) Data: Prevalence of Overweight among Adults. World Health Organization. 2016. Available online: https://www.who.int/gho/ncd/risk_factors/overweight/en/ (accessed on 28 July 2019).
- Global Strategy on Diet, Physical Activity and Health: Childhood Overweight and Obesity. World Health Organization. 2016. Available online: https://www.who.int/dietphysicalactivity/childhood/en/ (accessed on 28 July 2019).
- Obesity and Overweight: Key Facts. World Health Organization. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 28 July 2019).
- Kułaga, Z.; Grajda, A.; Gurzkowska, B.; Góźdź, M.; Wojtyło, M.; Swiąder, A.; Różdżyńska-Świątkowska, A.; Litwin, M. Polish 2012 growth references for preschool children. Eur. J. Pediatr. 2013, 172, 753–761. [Google Scholar] [CrossRef]
- Kułaga, Z.; Grajda, A.; Gurzkowska, B.; Wojtyło, M.; Góźdź, M.; Litwin, M. The prevalence of overweight and obesity among Polish school- aged children and adolescents. Epidemiol. Rev. 2016, 70, 641–651. [Google Scholar]
- Domin, A.; Mazur, A.; Mazur-Tylek, M.; Mazur, A. Algorithm for the diagnosis and treatment of childhood obesity. Pediatr. Dypl. 2018, 4, 7–17. [Google Scholar]
- Jarosz, M. Nutrition Standards for the Polish Population; Institute of Food and Nutrition: Warsaw, Poland, 2017; pp. 21–39. [Google Scholar]
- Sabin, M.S.; Kao, K.T.; Juonala, M.; Baur, L.A.; Wake, M. Childhood obesity-looking back over 50 years to begin to look forward. J. Paediatr. Child Health 2015, 51, 82–86. [Google Scholar] [CrossRef]
- Stańczyk, M.; Tomczyk, D.; Grzelak, M.; Topolska-Kusiak, J.; Raczyński, P.; Tkaczyk, M. Metabolic profile and dietary fructose intake in prehypertensive and hypertensive adolescents. Pediatr. Med. Rodz 2016, 12, 428–435. [Google Scholar] [CrossRef]
- Turchiano, M.; Sweat, V.; Fierman, A.; Convit, A. Obesity, metabolic syndrome, and insulin resistance in minority urban high school students. Arch Pediatr. Adolesc. Med. 2012, 166, 1030–1036. [Google Scholar] [CrossRef]
- SosnowskaBielicz, E.; Wrótniak, J. Eating habits and obesity pre-school and early-school children. Lublin Pedagog. Yearb. 2013, 32, 147–165. [Google Scholar] [CrossRef]
- NICE. Obesity Identification, Assessment and Management of Overweight and Obesity in Children, Young People and Adults; National Institute for Health and Care Excellence: London, UK, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK264165/ (accessed on 28 July 2019).
- Pieszko, M.; Gaca, M.; Małgorzewicz, S. Nutrition education for families in the prevalence of obesity. Pediatr. Med. Rodz 2013, 9, 399–403. [Google Scholar]
- Institute of Food and Nutrition. Pyramid of Healthy Nutrition and Lifestyle of Children and Adolescents 2019. Available online: http://www.izz.waw.pl/strona-gowna/3-aktualnoci/aktualnoci/643-piramida- (accessed on 28 July 2019).
- Jarosz, M. Nutrition Standards for the Polish Population-Amendment; Institute of Food and Nutrition: Warsaw, Poland, 2012. [Google Scholar]
- Styne, D. Maturation. In General and Clinical Endocrinology; Greenspan, F.S., Gardner, D.G., Eds.; Publisher Czelej Sp.z o.o.: Lublin, Poland, 2004; pp. 585–615. [Google Scholar]
- Kułaga, Z.; Różdżyńska-Świątkowska, A.; Grajda, A.; Gurzkowska, B.; Wojtyło, M.; Góźdź, M.; Świader-Leśniak, A.; Litwin, M. Percentile charts for growth and nutritional status assessment in Polish children and adolescents from birth to 18 year of age. Stand Med. Pediatr. 2015, 12, 119–135. [Google Scholar]
- Świąder-Leśniak, A.; Kułaga, Z.; Grajda, A.; Gurzkowska, B.; Góźdź, M.; Wojtyło, M.; Różdżyńska-Świątkowska, A.; Litwin, M. References for waist and hip circumferences in Polish children and adolescents 3-18 year of age. Stand Med. Pediatr. 2015, 12, 137–150. [Google Scholar]
- Kułaga, Z.; Różdżyńska, A.; Palczewska, I.; Grajda, A.; Gurzkowska, B.; Napieralska, E.; Litwin, M. Percentile charts of height, body mass and body mass index in children and adolescents in Poland–results of the OLAF study. Stand Med. Pediatr. 2010, 7, 690–700. [Google Scholar]
- Całyniuk, B.; Łukasik, A.; Szczepańska, E.; Grochowska-Niedworok, E. Obesity and overweight complications in children and youth. Piel Zdr. Publ. 2014, 4, 201–207. [Google Scholar]
- Kułaga, Z.; Litwin, M.; Grajda, A.; Gurzkowska, B.; Świąder-Leśniak, A.; Różdżyńska-Świątkowska, A.; Góźdź, M.; Wojtyło, M. OLAF and OLA research teams. Developmental norms of height and weight, body mass index, waist circumference and blood pressure in children and adolescents aged 3-18 years. Stand Med. Pediatr. 2013, 10, 3–12. [Google Scholar]
- Kułaga, Z.; Grajda, A.; Gurzkowska, B.; Góźdź, M.; Wojtyło, M.; Świąder, A. Centile charts for blood pressure assessment in children and adolescents aged 3–18 years. Stand Med. 2013, 10, 22–30. [Google Scholar]
- Polish Diabetes Association. 2021 Guidelines on the management of patients with diabetes. Diabetol Klin. 2021, 7, 7–8. [Google Scholar]
- Stąpor, N.; Beń-Skowronek, I. Insulin resistance in children. Pediatr. Endocrino Diabetes Metab. 2014, 21, 107–115. [Google Scholar] [CrossRef]
- Kwiterovich, P.O.J. Recognition and management of dyslipidemia in children and adolescents. J. Clin. Endocrinol. Metab. 2008, 93, 4200–4209. [Google Scholar] [CrossRef]
- Shashaj, B.; Luciano, R.; Contoli, B.; Morino, G.S.; Spreghini, M.R.; Rustico, C.; Sforza, R.W.; Dallapiccola, B.; Manco, M. Reference ranges of HOMA-IR in normal-weight and obese young Caucasians. Acta Diabetol. 2016, 53, 251–260. [Google Scholar] [CrossRef]
- de Andrade, M.I.S.; Oliveira, J.S.; Sá Leal, V.; da Silva Lima, N.M.; Costa, E.C.; de Aquino, N.B.; Lira, P.I.C.D. Identification of cutoff points for homeostatic model assessment for insulin resistance index in adolescents: Systematic review. Rev. Paul. Pediatr. 2016, 34, 234–242. [Google Scholar] [CrossRef]
- Quijada, Z.; Paoli, M.; Zerpa, Y.; Camacho, N.; Cichetti, R.; Villarroel, V. The triglyceride/HDL-cholesterol ratio as a marker of cardiovascular risk in obese children; Association with traditional and emergent risk factors. Pediatr. Diabetes 2008, 9, 464–471. [Google Scholar] [CrossRef]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Album of Photographs of Food Products and Dishes; Institute of Food and Nutrition: Warsaw, Poland, 2000; ISBN 83-86060-51-4. [Google Scholar]
- How Much It Weighs. Photographic Weight Calculator. Available online: http://www.ilewazy.pl/ (accessed on 28 July 2019).
- Wajszczyk, B.; Chwojnowska, Z.; Nasiadko, D.; Rybaczu, M. Of The 5 Diet Program for Planning and Ongoing Assessment of Individual Nutrition; Institute of Food and Nutrition: Warsaw, Poland, 2015. [Google Scholar]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS guidelines for lipid disorders treatment. Kardiol. Pol. 2016, 74, 1234–1318. [Google Scholar] [CrossRef]
- Machado-Rodrigues, A.M.; Fernandes, R.A.; Silva, M.R.; Gama, A.; Mourão, I.; Nogueira, H.; Rosado-Marques, V.; Padez, C. Overweight risk and food habits in portuguese pre-school children. J. Epidemiol. Glob. Health 2018, 8, 106–109. [Google Scholar] [CrossRef]
- Sisson, S.B.; Krampe, M.; Anundson, K.; Castle, S. Obesity prevention and obesogenic behavior interventions in child care: A systematic review. Prev. Med. 2016, 87, 57–69. [Google Scholar] [CrossRef]
- Al-Khudairy, L.; Loveman, E.; Colquitt, J.L.; Mead, E.; Johnson, R.E.; Fraser, H.; Olajide, J.; Murphy, M.; Velho, R.M.; O’Malley, C.; et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese adolescents aged 12 to 17years (Review). Cochrane Database Syst. Rev. 2017, 6, CD012651. [Google Scholar] [CrossRef]
- Skouterisa, H.; McCabea, M.; Ricciardellia, L.A.; Milgromb, J.; Baurc LAAksand, N. Parent-child interactions and obesity prevention: A systematic review of the literature. Early Child Dev. Care 2012, 182, 153–174. [Google Scholar] [CrossRef]
- Pakpour, A.H.; Gellert, P.; Dombrowski, S.U.; Fridlund, B. Motivational interviewing with parents for obesity: An RCT. Pediatrics 2015, 135, 644–652. [Google Scholar] [CrossRef]
- Sacher, P.M.; Kolotourou, M.; Chadwick, P.M.; Cole, T.J.; Lawson, M.S.; Lucas, A. Randomized controlled trial of the MEND program: A family-based community intervention for childhood obesity. Obesity 2010, 18 (Suppl. 1), S62–S68. [Google Scholar] [CrossRef]
- Bryant, M.; Farrin, A.; Christie, D.; Jebb, S.A.; Cooper, A.R.; Rudolf, M. Results of a feasibility randomised controlled trial (RCT) for WATCH IT: A programme for obese children and adolescents. Clin. Trials 2011, 8, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Savoye, M.; Shaw, M.; Dziura, J.; Tamborlane, W.V.; Rose, P.; Guandalini, C.; Goldberg-Gell, R.; Burgert, T.S.; Cali, A.M.G.; Weiss, R.; et al. Effects of a weight management program on body composition and metabolic parameters in overweight children: A randomized controlled trial. JAMA 2007, 297, 2697–2704. [Google Scholar] [CrossRef]
- Ranucci, C.; Pippi, R.; Buratta, L.; Aiello, C.; Gianfredi, V.; Piana, N. Effects of an intensive lifestyle intervention to treat overweight/obese children and adolescents. Biomed. Res. Int. 2017, 2017, 8573725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocca, G.; Corpeleijn, E.; van den Heuvel, E.R.; Stolk, R.P.; Sauer, P.J. Three-year follow-up of 3-year-old to 5-year-old children after participation in a multidisciplinary or a usual-care obesity treatment program. Clin. Nutr. 2014, 33, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Knöpfli, B.H.; Radtke, T.; Lehmann, M.; Schätzle, B.; Eisenblättera, J.; Gachnanga, A. Effects of a multidisciplinary inpatient intervention on body composition, aerobic fitness, and quality of Life in severely obese girls and boys. J. Adolesc. Health 2008, 42, 119–127. [Google Scholar] [CrossRef]
- Seo, Y.G.; Lim, H.; Kim, Y.; Ju, Y.; Lee, H.J.; Jang, H.B.; Park, S.I.; Park, K.H. The effect of a multidisciplinary lifestyle intervention on obesity status, body composition, physical fitness, and cardiometabolic risk markers in children and adolescents with obesity. Nutrients 2019, 11, 137. [Google Scholar] [CrossRef]
- Starbała, A.; Bawa, S.; Wojciechowska, M.; Weker, H. The energy value of the diet and the consumption of macronutrients by obese children attending kindergarten. Bromat. Chem. Toksyko 2009, 3, 747–753. [Google Scholar]
- Del Mar Bibiloni, M.; Tur, J.A.; Morandi, A.; Tommasi, M.; Tomasselli, F.; Maffeis, C. Protein intake as a risk factor of overweight/obesity in 8-to 12-year-old children. Medicine 2015, 94, e2408. [Google Scholar] [CrossRef]
- Weker, H. Simple obesity in children. A study on the role of nutritional factors. Med. Wieku Rozwoj 2006, 10, 3–191. [Google Scholar]
- Revenga-Frauca, J.; González-Gil, E.M.; Bueno-Lozano, G.; De Miguel-Etayo, P.; Velasco-Martínez, P.; Rey-López, J.P.; Moreno, L.A. Abdominal fat and metabolic risk in obese children and adolescents. J. Physiol. Biochem. 2009, 65, 415–420. [Google Scholar] [CrossRef]
- Olza, J.; Aguilera, C.M.; Gil-Campos, M.; Leis, R.; Bueno, G.; Valle, M.; Cañete, R.; Tojo, R.; A Moreno, L.; Gil, A. Waist- to-height ratio, inflammation and CVD risk in obese children. Public Health Nutr. 2013, 17, 2378–2385. [Google Scholar] [CrossRef]
- Malik, V.S.; Pan, A.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and weight gain in children and adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013, 98, 1084–1102. [Google Scholar] [CrossRef] [PubMed]
- Gruszfeld, D.; Socha, P. Protein in the nutrition of infants and young children. Stand Med. Pediatr. 2013, 11, 10–15. [Google Scholar]
- Turek, E.; Kasznia-Kocot, J.; Kocur, E. Protein in nutrition of children in nurseries and a risk of metabolic diseases in the future. Forum. Zaburzeń Metab. 2017, 8, 18–27. [Google Scholar]
- Goluch-Koniuszy, Z.; Fugiel, J. Evaluation of nutritional manner and nutritional status of girls during the period of adolescence, including girls who apply slimming diets. Rocz PZH 2009, 60, 251–259. [Google Scholar]
- Agostoni, C.; Scaglioni, S.; Ghisleni, D.; Verduci, E.; Giovanniniego, M.; Riva, E. How much protein is safe? Int. J. Obes. 2005, 29 (Suppl. 2), 8–13. [Google Scholar] [CrossRef]
- Gately, P.J.; King, N.A.; Greatwood, H.C.; Humphrey, L.C.; Radley, D.; Cooke, C.B.; Hill, A.J. Does a high-protein diet improve weight loss in overweight and obese children? Obesity 2007, 15, 1528–1534. [Google Scholar] [CrossRef] [Green Version]
- Vasconcellos, F.; Seabra, A.; Katzmarzyk, P.T.; Kraemer-Aguiar, L.G.; Bouskela, E.; Farinatti, P. Physical activity in overweight and obese adolescents: Systematic review of the effects on physical fitness components and cardiovascular risk factors. Sports Med. 2014, 44, 1139–1152. [Google Scholar] [CrossRef]
- Zatorska-Karpuś, M.; Pac-Kożuchowska, E.; Kozłowska, M. Type of obesity in children in relation to parameters of lipid metabolism. Endokrynol. Pediatr. 2009, 2, 55–60. [Google Scholar]
- Daniels, S.R.; Greer, F.R. Lipid screening and cardiovascular health in childhood. Pediatrics 2008, 122, 198–208. [Google Scholar] [CrossRef]
- Cali, A.M.G.; De Oliveira, A.M.; Kim, H.; Chen, S.; Reyes-Mugica, M.; Escalera, S.; Dziura, J.; Taksali, S.E.; Kursawe, K.R.; Shaw, M.; et al. Glucose dysregulation and hepatic steatosis in obese adolescents: Is there a link? Hepatology 2009, 49, 1896–1903. [Google Scholar] [CrossRef]
- Ciocca, M.; Ramonet, M.; Álvarez, F. Non-alcoholic fatty liver disease: A new epidemic in children. Arch. Argent Pediatr. 2016, 114, 563–569. [Google Scholar] [PubMed]
- Di Bonito, P.; Pacifico, L.; Chiesa, C.; Valerio, G.; Miraglia Del Giudice, E.; Maffeis, C.; Morandi, A.; Invitti, C.; Licenziati, M.R.; Loche, S.; et al. Impaired fasting glucose and impaired glucose tolerance in children and adolescents with overweight/obesity. J. Endocrinol. Investig. 2017, 40, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Silva, R.D.C.; Da Silva, L.A.; Cangussu, M.C.T. Effect of actions promoting healthy eating on students’ lipid profile: A controlled trial. Rev. Nutr. 2014, 27, 183–192. [Google Scholar] [CrossRef]
- Wengle, J.G.; Hamilton, J.K.; Manlhiot, C.; Bradley, T.J.; Katzman, D.K.; Sananes, R.; Adeli, K.; Birken, C.S.; Abadilla, A.A.; McCrindle, B.W. The ‘Golden Keys’ to health–a healthy lifestyle intervention with randomized individual mentorship for overweight and obesity in adolescents. Paediatr. Child Health 2011, 16, 473–478. [Google Scholar] [CrossRef]
- Kong, A.S.; Sussman, A.L.; Yahne, C.; Skipper, B.J.; Burge, M.R.; Davis, S.M. School based health center intervention improves Body Mass Index in overweight and obese adolescents. J. Obes. 2013, 2013, 575016. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Pedersen, S.D.; Virtanen, H.; Nettel-Aguirre, A.; Huang, C. Family intervention for obese/overweight children using portion control strategy (FOCUS) for weight control: A randomized controlled trial. Glob. Pediatr. Health 2016, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Satoh, A.; Menzawa, K.; Lee, S.; Hatakeyama, A.; Sasaki, H. Dietary guidance for obese children and their families using a model nutritional balance chart. Jpn J. Nurs. Sci. 2007, 4, 95–102. [Google Scholar] [CrossRef]
- Reinehr, T.; Andler, W. Changes in the atherogenic risk factor profile according to degree of weight loss. Arch. Dis. Child. 2004, 89, 419–422. [Google Scholar] [CrossRef]
- Hunt, L.P.; Ford, A.; Sabin, M.A.; Crowne, E.C.; Shield, J.P.H. Clinical measures of adiposity and percentage fat loss: Which measure most accurately reflects fat loss and what should we aim for? Arch. Dis. Child. 2007, 92, 399–403. [Google Scholar] [CrossRef]
- Kolotourou, M.; Radley, D.; Chadwick, P.; Smith, L.; Orfanos, S.; Kapetanakis, V.; Singhal, A.; Cole, T.J.; Sacher, P.M. Is BMI alone a sufficient outcome to evaluate interventions for child obesity? Child. Obes. 2013, 9, 350–356. [Google Scholar] [CrossRef]
- Reinehr, T.; de Sousa, G.; Toschke, A.T.; Andler, W. Long-term follow-up of cardiovascular disease risk factors in children after an obesity intervention. Am. J. Clin. Nutr. 2006, 84, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Sung, R.Y.T.; Yu, C.W.; Chang, S.K.Y.; Mo, S.W.; Woo, K.S.; Lam, C.W.K. Effects of dietary intervention and strength training on blood lipid level in obese children. Arch. Dis. Child. 2002, 86, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Bray, G.A.; Carey, V.J.; Smith, S.R.; Ryan, D.H.; Anton, S.D.; McManus, K.; Champagne, C.M.; Bishop, L.M.; Laranjo, N.; et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 2009, 360, 859–873. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W.; et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
- Félix, D.R.; Costenaro, F.; Gottschall, C.B.; Coral, G.P. Non-alcoholic fatty liver disease (Nafld) in obese children—Effect of refined carbohydrates in diet. BMC Pediatr. 2016, 16, 187. [Google Scholar] [CrossRef] [PubMed]
- Banaszczak, M.; Stachowska, E. NAFLD pathogenesis in the light of recent research. Post Bioch. 2017, 63, 190–197. [Google Scholar]
- Jaworski, M.; Klimkowska, K.; Różańska, K.; Fabisiak, A. Nutritional rehabilitation in anorexia nervosa: The role and scope of dietitian’s work in a therapeutic team. Med. Og. Nauk Zdr. 2017, 23, 122–128. [Google Scholar] [CrossRef]
- Verduci, E.; Lassandro, C.; Giacchero, R.; Miniello, V.L.; Banderali, G.; Radaelli, G. Change in Metabolic Profile after 1-Year Nutritional-Behavioral Intervention in Obese Children. Nutrients 2013, 7, 10089–11099. [Google Scholar] [CrossRef] [Green Version]
- Ojeda-Rodríguez, A.; Zazpe, I.; Morell-Azanza, L.; Chueca, M.J.; Azcona-Sanjulian, M.C.; Marti, A. Improved diet quality and nutrient adequacy in children and adolescents with abdominal obesity after a lifestyle intervention. Nutrients 2018, 10, 1500. [Google Scholar] [CrossRef]
- Guideline: Sugars Intake for Adults and Children. Geneva: World Health Rganization. 2015. Available online: https://www.who.int/nutrition/publications/guidelines/sugars_intake/en/ (accessed on 28 July 2019).
- de Jongh, S.; Ose, L.; Szamosi, T.; Gagné, C.; Lambert, M.; Scott, R.; Perron, P.; Dobbelaere, D.; Saborio, M.; Tuohy, M.B.; et al. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: A randomized, double-blind, placebo-controlled trial with simvastatin. Circulation 2002, 106, 2231–2237. [Google Scholar] [CrossRef] [Green Version]
- Gutowska-Wyka, A. The therapeutic strategies in overweight reduction in children and adolescents. Endokrynol. Pediatr. 2008, 4, 55–64. [Google Scholar]
- Wolnicka, K.; Gregorowicz, N. Factors influencing food preferences in children. Żyw Człow 2013, 40, 109–115. [Google Scholar]
Measured Parameter | Finished | Did Not Finish | n Finished | n Did Not Finish | p-Value |
---|---|---|---|---|---|
± SD | ± SD | ||||
Age | 11.35 ± 3.63 | 11.43 ± 4.16 | 68 | 26 | 0.97 |
Weight SDS | 3.47 ± 1.57 | 3.84 ± 1.95 | 68 | 26 | 0.27 |
Height SDS | 0.87 ± 1.11 | 0.48 ± 0.95 | 68 | 26 | 0.058 |
BMI SDS | 3.70 ± 1.68 | 4.36 ± 2.00 | 68 | 26 | 0.13 |
Waist circumference SDS | 4.27 ± 1.79 | 4.85 ± 2.23 | 68 | 25 | 0.27 |
Hip circumference SDS | 2.85 ± 1.37 | 3.52 ± 1.73 | 68 | 25 | 0.09 |
WHtR | 0.60 ± 0.06 | 0.62 ± 0.08 | 68 | 25 | 0.15 |
Measured Parameter | n | Before | After | Difference in Measured Parameters | p-Value |
---|---|---|---|---|---|
± SD | ± SD | ± SD | |||
Weight SDS | 68 | 3.47 ± 1.57 | 2.83 ± 1.62 | −0.64 ± 0.82 | <0.001 |
BMI SDS | 68 | 3.70 ± 1.68 | 2.90 ± 1.70 | −0.80 ± 0.96 | <0.001 |
Waist circumference SDS | 68 | 4.27 ± 1.79 | 3.50 ± 1.92 | −0.77 ± 1.23 | <0.001 |
Hip circumference SDS | 68 | 2.85 ± 1.37 | 2.07 ± 1.48 | −0.78 ± 0.97 | <0.001 |
WHtR | 68 | 0.60 ± 0.06 | 0.56 ± 0.07 | −0.04 ± 0.04 | <0.001 |
Adipose tissue (kg) | 66 * | 24.62 ± 12.56 | 22.86 ± 12.23 | −1.76 ± 4.85 | 0.03 |
Adipose tissue (%) | 66 * | 32.27 ± 5.8 | 30.13 ± 7.02 | −2.14 ± 3.54 | <0.001 |
Lean muscle weight (kg) | 66 * | 43.89 ± 4.47 | 45.23 ± 14.01 | 1.34 ± 2.83 | <0.001 |
Measured Parameter | n | Before | After | Difference in Measured Parameters | p-Value |
---|---|---|---|---|---|
± SD | ± SD | ± SD | |||
Total cholesterol (mg/dL) | 67 | 166.11 ± 27.62 | 161.91 ± 29.9 | −4.20 ± 20.39 | 0.22 |
HDL-CH (mg/dL) | 67 | 46.19 ± 10.98 | 51.5 ± 13.8 | 5.31 ± 7.72 | <0.001 |
TG (mg/dL) | 67 | 114.45 ± 60.59 | 97.5 ± 49.4 | −16.95 ± 53.98 | 0.02 |
LDL-CH (mg/dL) | 66 | 108.89 ± 26.12 | 102.6 ± 29.4 | −6.29 ± 19.23 | 0.02 |
TG/HDL-CH ratio | 67 | 2.75 ± 1.97 | 2.1 ± 1.4 | −0.65 ± 1.58 | 0.0009 |
ALT (U/L) | 61 | 26.29 ± 17.84 | 19.1 ± 9.3 | −7.19 ± 15.78 | 0.0001 |
Systolic pressure SDS Diastolic pressure SDS | 68 68 | 1.18 ± 1.03 1.14 ± 0.82 | 1.03 ± 1.01 1.24 ± 0.91 | −0.15 ± 1.11 0.10 ± 0.91 | 0.11 0.53 |
Measured Parameter | n | Measured Parameter | After | Difference in Measured Parameters | p-Value |
---|---|---|---|---|---|
± SD | ± SD | ± SD | |||
Fasting glucose (mg/dL) | 67 | 88.44 ± 7.87 | 86.25 ± 8.58 | −2.19 ± 9.39 | 0.04 |
Glucose at 120′of OGTT (mg/dL) | 65 | 110.90 ± 20.32 | 102.80 ± 17.67 | −8.10 ± 27.43 | 0.01 |
Fasting insulin (µIU/mL) | 66 | 21.37 ± 10.86 | 16.46 ± 8.35 | −4.91 ± 11.56 | 0.001 |
Insulin at 120′of OGTT (µIU/mL) | 64 | 125.02 ± 105.09 | 86.42 ± 68.19 | −38.60 ± 98.08 | 0.005 |
HOMA-IR | 65 | 4.74 ± 2.49 | 3.53 ± 1.87 | −1.21 ± 2.72 | 0.002 |
Measured Parameter | n | Before Dietary Intervention | After Dietary Intervention | Difference | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Me (Min.–Max.) | Q3 | Q1 | Me (Min.–Max.) | Q3 | Me Q1 ÷ Q3 | ||||
Energy | (kcal/day) | 68 | 1824.5 | 2183.45 (1331.80–4719.20) | 2595.5 | 1472.4 | 1741.30 (845.30–3500.00) | 2123 | −412.8 −750.5 ÷ 18.20 | <0.001 |
(%) norm * | 81.5 | 103.36 (55.57–197.38) | 129.8 | 61.1 | 85.20 (30.30–170.98) | 97.7 | −23.7 −32.7 ÷ 53.8 | <0.001 | ||
Proteins | (g/day) | 68 | 70.7 | 79.95 (38.55–148.25) | 100.1 | 61.9 | 75.05 (26.00–175.00) | 88.8 | −7.9 −22.8 ÷ 7.0 | 0.006 |
(%) norm * | 98.8 | 129.86 (50.02–282.74) | 160.1 | 81.4 | 109.92 (39.61–215.38) | 133.9 | −17.3 −38.5 ÷ 4.4 | 0.0003 | ||
% E from P | 13.3 | 14.91 (9.25–26.43) | 17.1 | 15.7 | 17.39 (6.11–26.20) | 18.7 | 2.25 −0.17 ÷ 4.41 | 0.0002 | ||
Fat | (g/day) | 68 | 58.7 | 74.30 (34.70–171.80) | 96 | 41.4 | 58.75 (17.50–139.60) | 78.7 | −14.2 −38.1 ÷ 1.7 | <0.001 |
(%) norm * | 83.9 | 109.71 (45.87–228.00) | 146.4 | 59.4 | 82.12 (25.00–151.58) | 109.8 | −23.2 −62.8 ÷ −0.9 | <0.001 | ||
% E from F | 27.4 | 32.87 (18.44–47.92) | 47.9 | 25.6 | 30.35 (9.26–46.47) | 35.1 | −6.9 −18.8 ÷ −0.3 | 0.052 | ||
Saturated fats | (g/day) | 68 | 23.7 | 32.10 (12.80–70.00) | 42.1 | 16.2 | 22.95 (8.90–64.00) | 29.9 | −6.15 −19 ÷ −1.2 | <0.001 |
(%) norm * | 105.7 | 140.78 (53.58–272.57) | 174.7 | 72.1 | 97.60 (31.15–221.53) | 122.3 | −33.42 −75.3 ÷ −10.4 | <0.001 | ||
E from SF | 10.7 | 13.79 (6.80–25.55) | 15.7 | 9.7 | 11.75 (4.71–20.50) | 14.1 | −1.7 −3.3 ÷ 1.6 | 0.01 | ||
Cholesterol | (mg/day) | 68 | 266.6 | 342.20 (62.00–698.50) | 452.9 | 192.5 | 239.00 (33.40–751.30) | 331.6 | −79.7 −203.2 ÷ 7.2 | 0.0001 |
(%) norm * | 82.2 | 114.06 (20.66–232.83) | 150.9 | 64.2 | 79.66 (11.13–250.43) | 110.5 | −26.6 −67.7 ÷ 2.4 | 0.0001 | ||
Carbohydrates | (g/day) | 68 | 236.1 | 289.70 (155.10–780.10) | 337.8 | 174.6 | 217.50 (102.50–441.10) | 266.5 | −56.4 −126.3 ÷ −0.8 | <0.001 |
(%) norm * | 75.2 | 92.57 (39.67–200.44) | 118.4 | 51.6 | 68.30 (24.40–181.36) | 88.7 | −26.2 −47.4 ÷ −3.9 | <0.001 | ||
% E from C | 46.7 | 50.67 (39.28–68.19) | 56.7 | 45.5 | 50.46 (25.43–66.86) | 55.5 | −0.02 −8.2 ÷ 4.9 | 0.25 | ||
“Simple sugars” | (g/day) | 68 | 54.3 | 81.01 (14.10–375.90) | 105.7 | 32.2 | 52.05 (10.28–227.00) | 65.7 | −26.6 −61.9 ÷ 2.86 | <0.001 |
(%) norm * | 65.5 | 105.25 (17.90–345.65) | 145.2 | 34.7 | 54.77 (12.75–207.25) | 97.1 | −34.6 −80.2 ÷ −0.7 | <0.001 | ||
% E from SS | 11.3 | 15.04 (4.00–32.01) | 19.3 | 8.7 | 10.16 (3.38–33.28) | 14.7 | −2.7 −8.1 ÷ 1.9 | 0.0009 | ||
Dietary fibre | (g/day) | 68 | 16.0 | 19.45 (8.80–36.10) | 25.1 | 15.7 | 18.95 (7.90–42.70) | 23.4 | −0.05 −6.0 ÷ 3.9 | 0.52 |
(%) norm * | 94.5 | 114.47 (53.15–199.28) | 134.2 | 82.5 | 102.53 (41.57–224.73) | 134.2 | −11.1 −31.6 ÷ 18.5 | 0.08 |
Measured Parameter | Waist Circumference SDS | WHtR | % of Adipose Tissue in the Body | |||
---|---|---|---|---|---|---|
n = 68 | n = 68 | n = 68 | ||||
rs | p-Value | rs | p-Value | rs | p-Value | |
Percentage of protein consumption | 0.24 | 0.051 | 0.25 | 0.03 | 0.15 | 0.23 |
Percentage of fat consumption | 0.13 | 0.27 | 0.16 | 0.17 | 0.12 | 0.34 |
Percentage of saturated fat consumption | 0.17 | 0.17 | 0.17 | 0.16 | 0.15 | 0.24 |
Percentage of cholesterol consumption | −0.31 | 0.76 | −0.62 | 0.53 | −0.40 | 0.68 |
Percentage of carbohydrate consumption | 0.20 | 0.10 | 0.26 | 0.03 | 0.27 | 0.03 |
Percentage of “simple sugars” consumption | 0.57 | 0.57 | 0.47 | 0.63 | 0.98 | 0.32 |
Percentage of dietary fibre consumption | −0.57 | 0.56 | −0.23 | 0.82 | 0.60 | 0.54 |
Measured Parameter | Total Cholesterol | LDL-CH | HDL-CH | TG | TG/HDL Ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|
n = 67 | n = 66 | n = 67 | n = 67 | n = 67 | ||||||
rs | p-Value | rs | p-Value | rs | p-Value | rs | p-Value | rs | p-Value | |
Protein consumption percentage | 0.16 | 0.2 | 0.28 | 0.02 | 0.12 | 0.3 | 0.03 | 0.8 | −0.14 | 0.9 |
Fat consumption percentage | 0.21 | 0.08 | 0.16 | 0.19 | 0.19 | 0.13 | 0.26 | 0.03 | 0.18 | 0.15 |
Saturated fat consumption percentage | 0.08 | 0.5 | 0.15 | 0.22 | 0.21 | 0.08 | 0.10 | 0.4 | 0.06 | 0.63 |
Cholesterol consumption percentage | −0.01 | 0.94 | 0.04 | 0.8 | 0.13 | 0.30 | 0.06 | 0.65 | 0.02 | 0.87 |
Carbohydrate consumption percentage | 0.06 | 0.63 | 0.02 | 0.85 | 0.03 | 0.81 | 0.12 | 0.33 | 0.10 | 0.41 |
“Simple sugars” consumption percentage | 0.02 | 0.88 | −0.06 | 0.65 | 0.05 | 0.68 | 0.14 | 0.24 | 0.09 | 0.44 |
Dietary fibre consumption percentage | 0.03 | 0.79 | 0.05 | 0.71 | 0.2 | 0.11 | 0.003 | 0.88 | −0.01 | 0.91 |
Measured Parameter | Fasting Glucose | Glucose at 120′ of OGTT | Fasting Insulin | Insulin at 120′ of OGTT | HOMA-IR | |||||
---|---|---|---|---|---|---|---|---|---|---|
n = 67 | n = 65 | n = 66 | n = 64 | n = 66 | ||||||
rs | p-Value | rs | p-Value | rs | p-Value | rs | p-Value | rs | p-Value | |
Protein consumption percentage | 0.22 | 0.07 | 0.10 | 0.40 | 0.12 | 0.32 | 0.22 | 0.07 | 0.18 | 0.14 |
Fat consumption percentage | 0.14 | 0.24 | 0.16 | 0.20 | 0.16 | 0.21 | 0.23 | 0.06 | 0.18 | 0.16 |
Saturated fat consumption percentage | 0.22 | 0.07 | 0.09 | 0.49 | 0.15 | 0.21 | 0.19 | 0.14 | 0.18 | 0.16 |
Cholesterol consumption percentage | 0.08 | 0.53 | 0.10 | 0.40 | 0.13 | 0.29 | 0.16 | 0.19 | 0.18 | 0.19 |
Carbohydrate consumption percentage | 0.29 | 0.01 | 0.24 | 0.054 | 0.17 | 0.16 | 0.35 | 0.04 | 0.22 | 0.07 |
“Simple sugars” consumption percentage | 0.008 | 0.95 | 0.25 | 0.04 | 0.15 | 0.22 | 0.32 | 0.01 | 0.16 | 0.18 |
Dietary fibre consumption percentage | 0.16 | 0.19 | 0.04 | 0.75 | −0.009 | 0.94 | 0.06 | 0.63 | 0.03 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strączek, K.; Horodnicka-Józwa, A.; Szmit-Domagalska, J.; Jackowski, T.; Safranow, K.; Petriczko, E.; Walczak, M. Impact of One-Year Dietary Education on Change in Selected Anthropometric and Biochemical Parameters in Children with Excess Body Weight. Int. J. Environ. Res. Public Health 2022, 19, 11686. https://doi.org/10.3390/ijerph191811686
Strączek K, Horodnicka-Józwa A, Szmit-Domagalska J, Jackowski T, Safranow K, Petriczko E, Walczak M. Impact of One-Year Dietary Education on Change in Selected Anthropometric and Biochemical Parameters in Children with Excess Body Weight. International Journal of Environmental Research and Public Health. 2022; 19(18):11686. https://doi.org/10.3390/ijerph191811686
Chicago/Turabian StyleStrączek, Kamilla, Anita Horodnicka-Józwa, Justyna Szmit-Domagalska, Tomasz Jackowski, Krzysztof Safranow, Elżbieta Petriczko, and Mieczysław Walczak. 2022. "Impact of One-Year Dietary Education on Change in Selected Anthropometric and Biochemical Parameters in Children with Excess Body Weight" International Journal of Environmental Research and Public Health 19, no. 18: 11686. https://doi.org/10.3390/ijerph191811686
APA StyleStrączek, K., Horodnicka-Józwa, A., Szmit-Domagalska, J., Jackowski, T., Safranow, K., Petriczko, E., & Walczak, M. (2022). Impact of One-Year Dietary Education on Change in Selected Anthropometric and Biochemical Parameters in Children with Excess Body Weight. International Journal of Environmental Research and Public Health, 19(18), 11686. https://doi.org/10.3390/ijerph191811686