Assessment of Natural Radioactivity in Cements Used as Building Materials in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples for Gamma Spectrometric Measurements
2.2. Gamma-Rays Spectroscopy
- (a)
- MAZAR spectrometer connected with the scintillation probe NaI(Tl) 2 × 2” (POLON-IZOT Ltd., Warsaw, Poland). The scintillation probe is placed in a lead shielding unit with wall thickness of 50 mm to minimize the radiation background. This is an analyzer that operates in three measurement ranges that allow to determine the radionuclides: 40K, 226Ra and 232Th. Particular measurement channels comprise energy ranges of gamma radiation photons, as follows:
- channel 1, with energy range of 1.26 MeV–1.65 MeV, detects photons of gamma radiation of the potassium radionuclide (40K) with energy of 1.46 MeV, as well as photons from Compton gamma radiation of elements of the thorium and uranium chain, and the apparatus background radiation;
- channel 2, with energy range of 1.65 MeV–2.30 MeV, detects photons of gamma radiation of the bismuth radionuclide (214Bi) with energy of 1.76 MeV, being in secular equilibrium with radium radionuclides (226Ra), as well as photons from Compton spectra from the thallium radionuclide 208Tl, and the apparatus background radiation;
The detector output calibration has been based on three volumetric measurement calibrations: 40K, 226Ra, and 232Th and the measurement of the matrix of standards as background measurement. Ten calibration coefficients required for setting out radioactive concentrations of potassium 40K, radium 226Ra, and thorium 232Th were calculated with the use of the matrix method. The geometry of the reference sources was similar to that of the tested samples, i.e., it was based on Marinelli beakers of 1.5 dm3 volume. The bulk density of reference sources equaled 1.6 g/cm3, while the bulk density of samples was contained within the range of 1.1 g/cm3 to 1.4 g/cm3. To minimize the external background, the detector was placed in a lead shielding unit with wall thickness of 50 mm. The energy resolution of the spectrometer was 6–8%. For every sample, an average value of activity with the uncertainty was calculated. To calibrate the apparatus there were used standard samples: 40K (pure potassium chloride KCl, 99.9% b.w.) and 226Ra and 232Th made on the basis of certified reference materials from the U.S. Department of Energy New Brunswick Laboratory—uranium and thorium ores. The background measurement for the analyzer was made using an aluminum cylinder of weight 1600 g. A detailed diagram of MAZAR apparatus has been presented on Figure 2a. - (b)
- HPGe of XTRa type (CANBERRA Industries Inc., Meriden, CT, USA). Another equipment used in this study was gamma ray HPGe XTRa detector with a relative efficiency of approx. 30% and 2.0 keV FWHM (at 1332 keV line). The detector, liquid nitrogen cooled, works with a computer equipped with software enabling the calculation of radionuclide concentrations present in the tested sample (GENIE-2000 software, v. 3.2.1, CANBERRA Industries Inc.). The photons energy range of the studied radionuclides lies within the range of from about a dozen to over 2000 keV. The detector is placed in a low-background shielding house, Figure 2b, which ensures a reduction, at least by two orders of magnitude, of the external background of gamma radiation.
2.3. Estimation of Radiological Hazard Parameters
- Raeq—radium equivalent activity,
- Hex—external hazard index,
- Hin—internal hazard index,
- D—radiation dose level,
- E (AEDE)—annual effective dose,
- Iγ—Gamma radiation activity index,
- Iα—alpha radiation index.
2.3.1. Radium Equivalent Activity
2.3.2. Absorbed Gamma Radiation Dose Rate
2.3.3. Annual Effective Dose
2.3.4. External Hazard Index
2.3.5. Internal Hazard Index
2.3.6. Gamma Radiation Activity Index
2.3.7. Alpha Radiation Index
2.4. Statistical Methods
3. Results
3.1. Natural Activity Concentration
3.2. Statistical Analysis
3.3. Evaluation of Radiological Threats
4. Discussion
4.1. General Discussion
- (1)
- Portland cements are these of lowest (by average) activity concentrations of 40K, 226Ra and 232Th;
- (2)
- There is a need to collect data with more additional information, including the types of studied cement, to verify variability between various groups;
- (3)
- (4)
- Kruskal–Wallis test, which is a non-parametric version of one-way ANOVA (i.e., compares means between various groups), proves, on 95% significance level, that there are significant differences of activity concentrations within groups (cement types), see Table 7;
- (5)
- Pairwise WMW tests comparing the data within cement types’ groups reveal that, at 95% significance level, one can postulate that:
- the lowest concentrations of the natural radionuclides are in CEM-I type of cements, i.e., Portland;
- CEM-II (slag, fly-ash or composite cements) possess higher activities of the radionuclides than in Portland;
- the highest values are observed in CEM-IV, see Table 7.As it is easily visible, in all cases (activities of 40K, 226Ra, 232Th for all data or for this study data only) the p value is significantly less than α = 0.05.Pairwise WMW tests were performed for groups “CEM-I”, “CEM-II”, “CEM-III”, and “CEM-IV” cement types.
- (6)
- The question is whether the quite high correlation (determined for all collected data) should be in a way explained; is it a very nature or a chance because of relatively small size (n = 120)? The authors tend to conclude that this is not a random effect, but augmented data would give more reliable answer and could reveal some dependencies which at this moment are merely supposed. To clarify this, let us have a look again at Figure 5. In all cases (Ra-Th, Ra-K, and Th-K), there is a main branch of a more or less linear relationship, but there are a few data lying beneath (high concentration of radium, low concentration of the other radionuclides). These values may be due to several properties. First one is the geological origin, the second one—production technology. One should notice that among the sparse data of small 40K concentration and high 226Ra concentration are those from Senegal [35], and samples are of CEM-II, CEM-III, and CEM-IV types, thus with fly ash or slag or other materials, which may possess specific geological origin or specific production technology. The above-mentioned main branch reflects the almost-linear relationship: the higher radium concentration, the higher potassium and thorium concentration. Some data, however, elude this pattern and more data would give a better inference.
Statistics | 40K —All Data | 40K —This Study | 226Ra —All Data | 226Ra —This Study | 232Th —All Data | 232Th —This Study |
---|---|---|---|---|---|---|
Kruskal-Wallis Test | p = 0.220 > α | p = 0.355 > α | p = 0.162 > α | p = 0.380 > α | p = 0.110 > α | p = 0.228 > α |
Pairwise WMW test for cement types (1) | CEM-II > CEM-I (p ~ 10−5) | CEM-II > CEM-I (p ~ 10−6) | CEM-II > CEM-I (p ~ 10−6) | CEM-II > CEM-I (p ~ 10−8) | CEM-II > CEM-I (p ~ 10−9), | CEM-II > CEM-I (p ~ 10−9), |
CEM-IV > CEM-I (p ~ 10−5) | CEM-IV > CEM-I (p ~ 10−7) | CEM-IV > CEM-I (p ~ 10−4) | CEM-IV > CEM-I (p ~ 10−5) | CEM-IV > CEM-I (p ~ 10−4) | CEM-IV > CEM-I (p ~ 10−5) | |
CEM-IV > CEM-II (p ~ 10−3) | CEM-IV > CEM-II (p ~ 10−4) | CEM-IV > CEM-II (p ~ 10−3) | CEM-IV > CEM-II (p ~ 10−5) | CEM-IV > CEM-II (p = 0.01) | CEM-IV > CEM-II (p ~ 10−5) |
4.2. NORMS
4.3. Aging Time
Statistics | Cement Types | 40K Activity | 226Ra Activity | 232Th Activity | |
---|---|---|---|---|---|
WMW Test for Aging Time 30 d vs. 45 d (1) | All | Statistically Indistinguishable (p = 0.51) | Statistically Indistinguishable (p = 0.19) | Statistically Indistinguishable (p = 0.56) | |
Weighted mean ± weighted deviation in particular groups | CEM-I | 30 d (n = 14) (2) | 197 ± 52 | 26.3 ± 5.0 | 13.6 ± 1.8 |
45 d (n = 5) | 197 ± 46 | 22.0 ± 4.1 | 14.1 ± 1.3 | ||
CEM-II | 30 d (n = 23) | 297 ± 60 | 53 ± 13 | 33.8 ± 9.6 | |
45 d (n = 9) | 304 ± 58 | 52.4 ± 5.6 | 32.9 ± 6.0 | ||
CEM-IV | 30 d (n = 7) | 393 ± 49 | 75.0 ± 3.7 | 44.5 ± 4.0 | |
45 d (n = 2) | 408 ± 52 | 64.7 ± 2.1 | 46.9 ± 2.0 |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Scientific Committee of Atomic Radiation. Sources and Effects of Ionizing Radiation; United Nations Scientific Committee of Atomic Radiation: New York, NY, USA, 2000. [Google Scholar]
- Mehdizadeh, S.; Faghihi, R.; Sina, S. Natural radioactivity in building materials in Iran. Nukleonika 2011, 56, 363–368. [Google Scholar]
- International Commission on Radiological Protection, Pergamon Press. Protection against 222Rn at Home and at Work; International Commission on Radiological Protection, Pergamon Press: Oxford, UK, 1994. [Google Scholar]
- European Commission. Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials, Radiation Protection Report—RP-112; European Commission: Luxembourg, 1999. [Google Scholar]
- United Nations Scientific Committee on Effects of Atomic Radiation, United Nations Publications. Effects of Ionizing Radiation: Report to the General Assembly with Scientific Annexes; United Nations Scientific Committee on Effects of Atomic Radiation, United Nations Publications: New York, NY, USA, 2008. [Google Scholar]
- Council Directive 2013/59/Euratom of 5 Dec. 2013 (2014) Laying Down Basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiation, and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/ Euratom and 2003/122/Euratom. Off. J. Eur. Union 2014, L13, 57. Available online: https://www.legislation.gov.uk/eudr/2013/59 (accessed on 18 August 2022).
- Przylibski, T.A.; Zebrowski, A.; Karpinska, M.; Kapa, J.; Kozak, K.; Mazur, M.; Grządziel, D.; Mamont-Cieśla, K.; Stawarz, O.; Kozłowska, D.; et al. Mean annual 222Rn concentration in homes located in different geological regions of Poland—First approach to whole country area. J. Environ. Radioact. 2011, 102, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Tokonami, S. Characteristics of Thoron (220Rn) and Its Progeny in the Indoor Environment. Int. J. Environ. Res. Public Health 2020, 17, 8769. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef]
- Drzymała, T.; Zegardło, B.; Tofiło, P. Properties of Concrete Containing Recycled Glass Aggregates Produced of Exploded Lighting Materials. Materials 2020, 13, 226. [Google Scholar] [CrossRef]
- Drzymała, T.; Jackiewicz-Rek, W.; Gałaj, J.; Šukys, R. Assessment of mechanical properties of high strength concrete (HSC) after exposure to high temperature. J. Civ. Eng. Manag. 2018, 24, 138–144. [Google Scholar] [CrossRef]
- Rudnik, E.; Drzymała, T. Thermal behavior of polypropylene fiber-reinforced concrete at elevated temperatures. J. Therm. Anal. Calorim. 2018, 131, 1005–1015. [Google Scholar] [CrossRef]
- Drzymała, T.; Jackiewicz-Rek, W.; Tomaszewski, M.; Kuś, A.; Gałaj, J.; Šukys, R. Effects of High Temperature on the Properties of High Performance Concrete (HPC). Proc. Eng. 2017, 172, 256–263. [Google Scholar] [CrossRef]
- Jackiewicz-Rek, W.; Drzymała., T.; Kuś, A.; Tomaszewski, M. Durability of high-performance concrete (HPC) subject to fire temperature impact. Arch. Civ. Eng. 2016, LXII, 73–93. [Google Scholar] [CrossRef]
- Kurdowski, W. Chemia Cementu i Betonu [Cement and Concrete Chemistry]; Polski Cement i Wydawnictwo Naukowe PWN: Kraków, Poland; Warszawa, Poland, 2010. [Google Scholar]
- Beretka, J.; Mathew, P. Natural Radioactivity of Australian Building Materials, Industrial Wastes and By-Products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Sorantin, H.; Steger, F. Natural Radioactivity of building materials in Austria. Radiat. Prot. Dosim. 1984, 7, 59–61. [Google Scholar] [CrossRef]
- Amasi, A.I.; Mtei, K.M.; Ijumba, J.N.; Jodłowski, P.; Chau, N.D. Natural Radioactivity in Tanzania Cements and their Raw Materials. Res. J. Environ. Earth Sci. 2014, 6, 469–474. [Google Scholar] [CrossRef]
- Azmary, K.M.; Ferdous, J.; Haque, M.M. Natural Radioactivity Measurement and Assessment of Radiological Hazards in Some Building Materials Used in Bangladesh. J. Environ. Prot. 2018, 9, 1034–1048. [Google Scholar]
- Malanca, A.; Pessina, V.; Dallara, G. Assessment of the natural radioactivity in the Brazilian state of Rio Grande do Norte. Health Phys. 1993, 65, 298. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Yang, G.; Ren, C. Natural radioactivity and radiological hazards of building materials in Xianyang, China. Radiat. Phys. Chem. 2012, 81, 780–784. [Google Scholar] [CrossRef]
- Zapotoczna-Sytek, G.; Mamont-Cieśla, K.; Tomasz Rybarczyk, T. Naturalna promieniotwórczość wyrobów budowlanych, w tym autoklawizowanego betonu komórkowego (ABK) [Natural radioactivity of construction products, including autoclaved aerated concrete (AAC)]. Prz. Bud. 2012, 7–8, 39–42. [Google Scholar]
- Owczarek, M. Promieniotwórczość materiałów budowlanych stosowanych w budownictwie (promieniowanie jonizujące) [Radioactivity of building materials used in construction (ionizing radiation)]. Inz. Bezpieczeństwa Obiektów Antropog. 2016, 4, 16–18. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Ionizing Radiation: Sources and Biological Effects; United Nations Scientific Committee on the Effects of Atomic Radiation: New York, NY, USA, 1982. [Google Scholar]
- Fawizia, A. Natural radioactivity levels in building materials used in Egypt. Radiat. Eff. Defects Solids 2007, 162, 43–52. [Google Scholar]
- Trevisi, R.; Risica, S.; D’Alessandro, M.; Nuccetelli, C. Natural radioactivity in building materials in the European Union: A database and an estimate of radiological significance. J. Environ. Radioact. 2012, 105, 11–20. [Google Scholar] [CrossRef]
- Mustonen, R. Natural radioactivity in and radon exhalation from Finnish building materials. Health Phys. 1984, 46, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Bou-Rabee, F.; Bem, H. Natural radioactivity in building materials utilized in the State of Kuwait. J. Radioanal. Nucl. Chem. 1996, 213, 143–149. [Google Scholar] [CrossRef]
- Khan, K.; Khan, H.M. Natural gamma-emitting radionuclides in Pakistani Portland cement. Appl. Radiat. Isot. 2001, 54, 861–865. [Google Scholar] [CrossRef]
- Turhan, Ş.; Baykan, U.N.; Sen, K. Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses. J. Radiol. Protect. 2008, 28, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Eštoková, A.; Palaščáková, L. Assessment of natural radioactivity levels of cements and cement composites in the Slovak Republic. Int. J. Environ. Res. Public Health 2013, 10, 7165–7179. [Google Scholar] [CrossRef]
- Eštoková, A.; Palaščáková, P. Study of natural radioactivity of Slovak cements. Chem. Eng. Trans. 2013, 32, 1675–1680. [Google Scholar]
- El-Taher, A.; Makhluf, S.; Nossair, A.; Abdel Halim, A.S. Assessment of natural radioactivity levels and radiation hazards due to cement industry. Appl. Radiat. Isot. 2010, 68, 169–174. [Google Scholar] [CrossRef]
- Trevisi, R.; Leonardi, F.; Risica, S.; Nuccetelli, C. Updated database on natural radioactivity in building materials in Europe. J. Environ. Radioact. 2018, 187, 90–105. [Google Scholar] [CrossRef]
- Ndour, O.; Thiandoume, C.; Traore, A.; Cagnat, X.; Diouf, P.M.; Ndeye, M.; Ndao, A.S.; Tidjani, A. Assessment of natural radioactivity and its radiological hazards in several types of cement used in Senegal. SN Appl. Sci. 2020, 2, 2078–2085. [Google Scholar] [CrossRef]
- Papaefthymiou, H.; Gouseti, O. Natural radioactivity and associated radiation hazards in building materialsused in Peloponnese, Greece. Radiat. Meas. 2008, 43, 1453–1457. [Google Scholar] [CrossRef]
- Shala, F.; Xhixha, G.; Kaceli Xhixha, M.; Hasani, F.; Xhixha, E.; Shyti, M.; Sadiraj Kuqi, M.; Prifti, D.; Qafleshi, M. Natural radioactivity in cements and raw materials used in Albanian cement industry. Environ. Earth Sci. 2017, 76, 670–676. [Google Scholar] [CrossRef]
- Brígido Flores, O.; Montalván Estrada, A.; Rosa Suárez, R.; Tomás Zerquera, J.; Hernández Pérez, A. Natural radionuclide content in building materials and gamma dose rate in dwellings in Cuba. J. Environ. Radioact. 2008, 99, 1834–1837. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.S.; Ahmad, G.U. Gamma activity of some building materials in West Malaysia. Health Phys. 1982, 43, 272–273. [Google Scholar] [PubMed]
- Ackers, J.G.; Den Boer, J.F.; De Jong, P.; Wolschrijn, R.A. Radioactivity and radon exhalation rates of building materials in The Netherlands. Sci. Total Environ. 1985, 45, 151–156. [Google Scholar] [CrossRef]
- Ademola, A.K.; Abodunrin, O.P.; Afolake, F.M.; Omoboyede, J.O. Assessment of natural radioactivity levels in cement samples commonly used for construction in Lagos and Ota environments, Nigeria. Elixir Nucl. Radiat. Phys. 2017, 102, 44416–44420. [Google Scholar]
- Michael, F.; Parpottas, Y.; Tsertos, H. Gamma radiation measurements and dose rates in commonly used building materials in Cyprus. Radiat. Prot. Dosim. 2010, 142, 282–291. [Google Scholar] [CrossRef]
- Kassi, B.; Boukhair, A.; Azkour, K.; Fahad, M.; Benjelloun, M.; Nourreddine, A.-M. Assessment of Exposure Due to Technologically Enhanced Natural Radioactivity in Various Samples of Moroccan Building Materials. World J. Nucl. Sci. Technol. 2018, 8, 176–189. [Google Scholar] [CrossRef]
- Ángel Sanjuán, M.; Suarez-Navarro, J.A.; Argiz, C.; Mora, P. Assessment of radiation hazards of white and grey Portland cements. J. Radioanal. Nucl. Chem. 2019, 322, 1169–1177. [Google Scholar] [CrossRef]
- Sharma, A.; Mahurc, A.K.; Yadavd, M.; Sonkawadee, R.G.; Sharmab, A.C.; Ramolad, R.C.; Prasadc, R. Measurement of natural radioactivity, radon exhalation rate and radiation hazard assessment in Indian cement samples. Phys. Proc. 2015, 80, 135–139. [Google Scholar] [CrossRef]
- Rizzo, S.; Brai, M.; Basile, S.; Bellia, S.; Hauser, S. Gamma activity and geochemical features of building materials: Estimation of gamma dose rate and indoor radon levels in Sicily. Appl. Radiat. Isot. 2001, 55, 259–265. [Google Scholar] [CrossRef]
- Xayheungsy, S.; Khiem, L.H.; Nam, L.D. Radiation Dose Estimation of Cement Samples Used in Lao PDR. Commun. Phys. 2017, 27, 193–203. [Google Scholar] [CrossRef]
- Özdis, B.E.; Cam, N.F.; Canbaz Öztürk, B. Assessment of natural radioactivity in cements used as building materials in Turkey. J. Radioanal. Nucl. Chem. 2017, 311, 307–316. [Google Scholar] [CrossRef]
- Stranden, E.; Berteiz, L. Radon in dwellings and influencing factors. Health Phys. 1980, 39, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Sciocchetti, G.; Clemente, G.F.; Igrao, G.; Scacco, F. Results of a survey on radioactivity of building materials in Italy. Health Phys. 1983, 45, 385–388. [Google Scholar] [CrossRef]
- Poradnik ITB 455/2010 Badania Promieniotwórczości Naturalnej Wyrobów Budowlanych (Zastępujący Instrukcję ITB 234/2003) [ITB Guide 455/2010 Tests on Natural Radioactivity of Construction Products (Replacing ITB Instruction 234/2003)]. Available online: https://klient.itb.pl/itb/faces/pages/shop/shopping/paramProductView.xhtml?product=838 (accessed on 18 August 2022).
- Drzymała, T.; Łukaszek-Chmielewska, A.; Lewicka, S.; Stec, J.; Piotrowska, B.; Isajenko, K.; Lipiński, P. Assessment of the Natural Radioactivity of Polish and Foreign Granites Used for Road and Lapidary Constructions in Poland. Materials 2020, 13, 2824. [Google Scholar] [CrossRef] [PubMed]
- Wallbrink, P.; Walling, D.E.; Quili, H. Radionuclide Measurement Using HPGe Gamma Spectrometry. In Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides; Springer: Dordrecht, The Netherlands, 2007; pp. 67–96. [Google Scholar] [CrossRef]
- Organization of Economic Cooperation and Development. Exposure to Radiation from Natural Radioactivity in Building Materials; Report by a Group of Experts of the OECD; Organization of Economic Cooperation and Development: Paris, France, 1979. [Google Scholar]
- Tufail, M. Radium equivalent activity in the light of UNSCEAR report. Environ. Monit. Assess. 2012, 184, 5663–5667. [Google Scholar] [CrossRef]
- Righi, S.; Bruzzi, L. Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J. Environ. Radioact. 2006, 88, 158–170. [Google Scholar] [CrossRef]
- ISO Guide 98-3; Uncertainty in Measurement. Part 3: Guide to the Expression of Uncertainty of Measurement. International Organization for Standardization (ISO): Geneva, Switzerland; IEC: Geneva, Switzerland, 2008.
- Cousineau, D.; Chartier, S. Outliers detection and treatment: A review. Int. J. Psychol. Res. 2010, 3, 58–67. [Google Scholar] [CrossRef]
- Veazie, P.J. Understanding statistical testing. SAGE Open 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Das, K.R.; Imon, A.H.M.R. A Brief Review of Tests for Normality. Am. J. Theor. Appl. Stat. 2016, 5, 5. [Google Scholar]
- Dyckman, T.R.; Zeff, S.A. Important Issues in Statistical Testing and Recommended Improvements in Accounting Research. Econometrics 2019, 7, 18. [Google Scholar] [CrossRef]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 7: Correlation and regression. Crit. Care 2003, 7, 451–459. [Google Scholar] [CrossRef] [PubMed]
- University of Washington, Lectures of the Genome Sciences’ Faculty. Available online: https://www.gs.washington.edu/academics/courses/akey/56008/lecture/lecture7.pdf (accessed on 18 August 2022).
- Sawilowsky, S.S. Nonparametric tests of interaction in experimental design. Rev. Edu. Res. 1990, 60, 91–126. [Google Scholar] [CrossRef]
- R Documentation. Available online: http://www.sthda.com/english/ (accessed on 18 August 2022).
- Ngachin, M.; Garavaglia, M.; Giovani, C.; Kwato Njock, M.G.; Nourreddine, A. Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials. Radiat. Meas. 2006, 42, 61–67. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation; Report to General Assembly; United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR): New York, NY, USA, 1977. [Google Scholar]
- Ojovan, M.I.; Lee, W.E. Naturally Occurring Radionuclides. In An Introduction to Nuclear Waste Immobilisation, 2nd ed.; Ojovan, M.I., Lee, W.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 31–39. [Google Scholar]
- Schroeyers, W. (Ed.) Naturally Occurring Radioactive Materials in Construction: Integrating Radiation Protection in Reuse (COST Action Tu1301 NORM4BUILDING); Woodhead Publishing: Thorston, UK, 2017. [Google Scholar]
- Kovacs, T.; Bator, G.; Schroeyers, W.; Labrincha, J.; Puertas, F.; Hegedus, M.; Doherty, R. From raw materials to NORM by-products. In Naturally Occurring Radioactive Materials in Construction; Woodhead Publishing: Thorston, UK, 2017; pp. 135–182. [Google Scholar]
- Nuccetelli, C.; Leonardi, F.; Trevisi, R. A new accurate and flexible index to assess the contribution of building materials to indoor gamma exposure. J. Environ. Rad. 2015, 143, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Maringer, F.J.; Baumgartner, A.; Cardellini, F.; Cassette, P.; Crespo, T.; Dean, J.; Vodenik, B. Advancements in NORM metrology—Results and impact of the European joint research project MetroNORM. Appl. Radiat. Isot. 2017, 126, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Barišić, I.; Netinger Grubeša, I.; Hackenberger Kutuzović, B. Multidisciplinary approach to the environmental impact of steel slag reused in road construction. Road Mater. Pavement Des. 2017, 18, 897–912. [Google Scholar] [CrossRef]
Sample Name | Cement Type | Description | Additives | Number of Samples Taken, Detector (Maturing Time in Days) |
---|---|---|---|---|
CM-1 | CEM-I | Portland cement | 0–5% secondary ingredients | 4, 3 × MAZAR (30 d), 1 × HPGe (45 d) |
CM-2 | CEM-II | Portland fly ash cement | 21–35% silica fly ash, 0–5% secondary ingredients | 4, 3 × MAZAR (30 d), 1 × HPGe (45 d) |
CM-3 | CEM-IV | Pozzolan cement | 36–55% silica fume and natural and industrial pozzolan and silica fly ash, 0–5% secondary ingredients | 4, 3 × MAZAR (30 d), 1 × HPGe (45 d) |
CM-4 | CEM-I | Portland cement | 0–5% secondary ingredients | 4, 3 × MAZAR (30 d), 1 × HPGe (45 d) |
CM-5 | CEM-I | Portland cement | 0–5% secondary ingredients | 4, 3 × MAZAR (30 d), 1 × HPGe (45 d) |
CM-6 | CEM-II | Portland fly ash cement | 21–35% silica fly ash, 0–5% secondary ingredients | 4, 3 × MAZAR (30 d), 1 × HPGe (45 d) |
CM-7 | CEM-II | Slag cement with fly ash | 10–20% blast furnace slag, 10–20% silica fly ash, 0–5% secondary ingredients | 4, 3 × MAZAR (30 d), 1 × HPGe (45 d) |
CM-8 | CEM-IV | Pozzolan cement | 36–55% silica fume and natural and industrial pozzolan and silica fly ash, 0–5% secondary ingredients | 4, 3 × MAZAR (30 d), 1 × HPGe (45 d) |
CM-9 | CEM-II | Portland composite cement | 21–35% silica fly ash and limestone, calcium sulphate as binding time regulator | 4, 3 × MAZAR (30 d), 1 × HPGe (45 d) |
CM-10 | CEM-II | Slag cement with fly ash | 10–20% blast furnace slag, 10–20% silica fly ash, 0–5% secondary ingredients | 4, 3 × MAZAR (30 d), 1 × HPGe (45 d) |
CM-11 | CEM-I | Portland cement | 0–5% secondary ingredients | 6, 4 × MAZAR (30 d), 2 × HPGe (45 d) |
CM-12 | CEM-II | Portland composite cement | 21–35% silica fly ash and limestone, calcium sulphate as binding time regulator | 6, 4 × MAZAR (30 d), 2 × HPGe (45 d) |
CM-13 | CEM-II | Portland fly ash cement | 21–35% silica fly ash, 0–5% secondary ingredients | 6, 4 × MAZAR (30 d), 2 × HPGe (45 d) |
CM-14 | CEM-I | Portland cement | 0–5% secondary ingredients | 1, 1 × MAZAR (30 d) |
CM-15 | CEM-IV | Pozzolan cement | 36–55% silica fume and natural and industrial pozzolan and silica fly ash, 0–5% secondary ingredients | 1, 1 × MAZAR (30 d) |
TOTAL | 15 | 60 (44 × MAZAR, 16×HPGe) |
Dose Criterion | 0.3 mSv y−1 | 1.0 mSv y−1 |
---|---|---|
Materials used in large amounts, e.g., cement, | Iγ ≤ 0.5 | Iγ ≤ 1.0 |
Surface materials with limited usage, such as roof tiles, boards, panels | Iγ ≤ 2.0 | Iγ ≤ 6.0 |
Sample Name | Concentration Activity of Radionuclides (Bq kg−1) | ||
---|---|---|---|
40K | 226Ra | 232Th | |
CM-1 | 246 ± 9 | 24.8 ± 1.4 | 13.2 ± 0.8 |
CM-2 | 278 ± 32 | 62 ± 21 | 41 ± 12 |
CM-3 | 347 ± 40 | 75.6 ± 2.6 | 41.1 ± 1.9 |
CM-4 | 182 ± 14 | 33.9 ± 2.3 | 14.6 ± 1.1 |
CM-5 | 220 ± 33 | 25.1 ± 1.3 | 14.8 ± 1.1 |
CM-6 | 349 ± 33 | 49.1 ± 5.1 | 33.8 ± 5.6 |
CM-7 | 344 ± 8 | 64 ± 12 | 37.5 ± 5.8 |
CM-8 | 430 ± 17 | 73.6 ± 5.2 | 47.3 ± 3.2 |
CM-9 | 248 ± 9 | 34.8 ± 2.6 | 21.1 ± 0.8 |
CM-10 | 177 ± 3 | 47 ± 3 | 18.4 ± 0.5 |
CM-11 | 123 ± 14 | 21.7 ± 2.5 | 12.3 ± 2.3 |
CM-12 | 280 ± 27 | 53.1 ± 2.3 | 38.9 ± 4.2 |
CM-13 | 348 ± 28 | 54.0 ± 1.8 | 34.2 ± 2.8 |
CM-14 | 262 ± 39 | 27 ± 7 | 14 ± 3 |
CM-15 | 412 ± 45 | 75.7 ± 9.2 | 46.1 ± 6.3 |
Arithmetic mean | 283 ± 89 | 48 ± 19 | 29 ± 13 |
Weighted mean | 305 ± 78 | 56 ± 17 | 35 ± 11 |
Earth’s crust by average (1) | 400 | 35 | 30 |
ISO Code | Cement Type (If Specified) | Concentration Activity of Radionuclides (Bq kg−1) | Literature Reference | ||
---|---|---|---|---|---|
40K | 226Ra | 232Th | |||
ALB | CEM-I | 169 ± 25 | 51.2 ± 5.5 | 16.1 ± 2.3 | [37] |
ALB | CEM-II | 150 ± 20 | 51.0 ± 3.7 | 16.5 ± 3.6 | |
ALB | CEM-II | 134 ± 12 | 46.2 ± 3.6 | 12.0 ± 3.1 | |
AUS | - | 114 | 52 | 48 | [16] |
AUT | - | 210 | 27 | 14 | [17] |
BRA (1) | - | 564 | 62 | 59 | [20] |
CHN | - | 207.7 | 51.7 | 32 | [21] |
CMR | - | 277 | 27 | 15 | [66] |
CUB | - | 467 | 23 | 11 | [38] |
CYP | - | 127 | 28 | 7 | [42] |
CZE(SVK) | - | 157 | 12 | 18 | [31] |
DEU | - | 325 | 15 | 23 | [67] |
EGY | - | 73 | 19 | 15 | [25] |
EGY | - | 82 | 35.6 | 43.2 | [33] |
ESP | - | 182 | 34 | 13 | [44] |
EUR (2) | - | 216 | 45 | 31 | [34] |
FIN | - | 251 | 40 | 20 | [27] |
GRC | - | 257 | 85 | 19 | [26] |
GRC | CEM-I | 154 ± 13 | 17 ± 1 | 15 ± 1 | [36] |
GRC | CEM-I | 132 ± 13 | 15 ± 1 | 13 ± 2 | |
GRC | CEM-II | 212 ± 15 | 91 ± 1 | 18 ± 3 | |
GRC | CEM-II | 196 ± 17 | 89 ± 1 | 19 ± 3 | |
GRC | CEM-IV | 244 ± 30 | 111 ± 17 | 19 ± 3 | |
IND | - | 430 | 98 | 81 | [18] |
IND | - | 177 | 24 | 20 | [56] |
IRN | - | 291 | 40 | 29 | [2] |
ITA | - | 316 | 46 | 42 | [26] |
ITA | - | 357 | 41 | 63 | [50] |
ITA | - | 218 | 38 | 22 | [56] |
JPN | - | 139 | 36 | 21 | [29] |
KWT | - | 240 | 13 | 9 | [28] |
LAO | - | 116 | 38 | 14 | [47] |
MAR | - | 238 | 31 | 19 | [43] |
MKD | - | 264 | 42 | 28 | [48] |
MYS | - | 204 | 81 | 59 | [39] |
NGA | - | 114 | 8 | 2 | [41] |
NLD | - | 230 | 27 | 19 | [40] |
NOR | - | 259 | 30 | 19 | [49] |
PAK (2) | - | 273 ± 68 | 26.1 ± 5.6 | 28.7 ± 4.3 | [29] |
SEN | CEM-I | 59.3 ± 7.3 | 136.0 ± 8.2 | 15.1 ± 0.9 | [35] |
SEN | CEM-II | 81 ± 19 | 110 ± 29 | 12.0 ± 1.2 | |
SEN | CEM-III | 80 ± 20 | 92 ± 17 | 12.2 ± 1.8 | |
SEN | CEM-IV | 119 ± 12 | 8.1 ± 0.9 | 4.68 ± 0.78 | |
SVK | CEM-I | 52.0 | 58.0 | 17.0 | [32] |
SVK | CEM-I | 169.3 | 13.1 | 19.8 | |
SVK | CEM-II | 314.6 | 10.8 | 32.8 | |
SVK | CEM-II | 460 | 12.4 | 34.2 | |
SVK | CEM-III | 417 | 16.7 | 37.5 | |
SVK (1) | CEM-V | 733 | 14.6 | 38.2 | |
SVK | CEM-I | 228.3 | 9.3 | 18.2 | |
SVK | CEM-II | 178.9 | 8.2 | 18.7 | |
SVK | CEM-II | 146 | 12.1 | 16.0 | |
SVK | CEM-II | 150.2 | 14.0 | 20.1 | |
SVK | CEM-III | 111.3 | 21.6 | 22.9 | |
TUN | - | 176 | 22 | 10 | [29] |
TUR | - | 247 | 41 | 26 | [30] |
TUR | CEM-I | 208 ± 16 | 34 ± 7 | 13 ± 2 | [48] |
TUR | CEM-II | 221 ± 19 | 51 ± 12 | 18 ± 4 | |
TUR | CEM-IV | 352 ± 49 | 45 ± 13 | 26 ± 5 | |
TUR (1) | CEM-V | 447 | 319 | 136 | |
TZA | - | 228 | 46 | 28 | [18] |
YEM | - | 428 | 40 | 25 | [48] |
mean ± SEM | 241 ± 19 | 44 ± 6 | 25.3 ± 2.6 | ||
(w.mean ± w.dev.) | (195 ± 88) | (83 ± 34) | (17.0 ± 4.7) | ||
Earth’s crust by average | 400 | 35 | 30 |
Statistics | Concentration of 40K (Bq/kg) | Concentration of 226Ra (Bq/kg) | Concentration of 232Th (Bq/kg) | |||
---|---|---|---|---|---|---|
All Data | This Study | All Data | This Study | All Data | This Study | |
Mean (1) | 250 | 283 | 43 | 48 | 26 | 29 |
95% confidence interval of mean | (230, 270) | (252, 298) | (38, 47) | (43, 53) | (23, 28) | (26, 33) |
Median | 240 | 261 | 40 | 48 | 20 | 31 |
Std deviation | 110 | 89 | 25 | 19 | 14 | 13 |
Weighted Deviation (1) | 93 | 78 | 27 | 17 | 13 | 11 |
Shapiro–Wilk | p = 0.063 ≈ α | p = 0.318 > α | p = 1.5 × 10−5 < α | p = 0.01 < α | p = 1.2 × 10−6 < α | p = 8.8 × 10−4 < α |
Skewness coeff. | 0.43 | 0.04 | 1.02 | 0.30 | 1.06 | 0.17 |
Correlation coeff. 90% confidence interval for ρ (2) | K-Ra: ρ = 0.300 (0.09, 0.48) | K-Ra: ρ = 0.575 (0.41, 0.70) | Ra-Th: ρ = 0.436 (0.24, 0.59) | Ra-Th: ρ = 0.710 (0.58, 0.80) | K-Th: ρ = 0.524 (0.35, 0.66) | K-Th: ρ = 0.634 (0.49, 0.75) |
Kendall rank | p = 1 × 10−6 < α | p = 1 × 10−10 < α | p = 2 × 10−12 < α | p = 1 × 10−15 < α | p = 2 × 10−16 < α | p = 1 × 10−12 < α |
SUMMARY | Right-asymmetry, questionable normality | symmetry, normality | Extreme right-asymmetry, non-normality | Right-asymmetry, non-normality | Extreme right-asymmetry, non-normality | Right-asymmetry, non-normality |
Sample Name | Raeq (Bq kg−1) | D (nGy h−1) | E (mSv) | Hex (-) | Hin (-) | Iγ (-) | Iα (-) |
---|---|---|---|---|---|---|---|
CM-1 | 62.4 ± 2.6 | 56.8 ± 2.3 | 0.276 ± 0.014 | 0.169 ± 0.072 | 0.235 ± 0.013 | 0.230 ± 0.011 | 0.124 ± 0.007 |
CM-2 | 142 ± 40 | 124 ± 34 | 0.61 ± 0.19 | 0.38 ± 0.13 | 0.55 ± 0.20 | 0.50± 0.17 | 0.31 ± 0.11 |
CM-3 | 160 ± 3 | 142.0 ± 3.4 | 0.70 ± 0.02 | 0.433 ± 0.010 | 0.637 ± 0.021 | 0.571 ± 0.015 | 0.378 ± 0.013 |
CM-4 | 68.7 ± 3.0 | 61.7 ± 2.8 | 0.302 ± 0.016 | 0.185 ± 0.009 | 0.277 ± 0.016 | 0.246 ± 0.013 | 0.170 ± 0.012 |
CM-5 | 63.2 ± 1.7 | 57.0 ± 1.3 | 0.279 ± 0.008 | 0.171 ± 0.006 | 0.238 ± 0.010 | 0.231 ± 0.006 | 0.125 ± 0.007 |
CM-6 | 124 ± 9 | 110.0 ± 7.4 | 0.539 ± 0.042 | 0.235 ± 0.028 | 0.467 ± 0.032 | 0.448 ± 0.038 | 0.245 ± 0.026 |
CM-7 | 143 ± 20 | 127 ± 18 | 0.62 ± 0.10 | 0.387 ± 0.063 | 0.56 ± 0.11 | 0.513 ± 0.080 | 0.318 ± 0.061 |
CM-8 | 174 ± 7 | 153.8 ± 5.7 | 0.754 ± 0.033 | 0.470 ± 0.022 | 0.669 ± 0.035 | 0.624 ± 0.024 | 0.368 ± 0.026 |
CM-9 | 84.0 ± 3.4 | 75.0 ± 3.1 | 0.368 ± 0.018 | 0.227 ± 0.011 | 0.32 ± 0.02 | 0.304 ± 0.014 | 0.174 ± 0.013 |
CM-10 | 87.1 ± 3.6 | 77.7 ± 3.2 | 0.381 ± 0.018 | 0.235 ± 0.011 | 0.36 ± 0.02 | 0.308 ± 0.014 | 0.236 ± 0.015 |
CM-11 | 48.4 ± 1.8 | 43.1 ± 1.5 | 0.21 ± 0.01 | 0.131 ± 0.007 | 0.189 ± 0.009 | 0.174 ± 0.009 | 0.108 ± 0.013 |
CM-12 | 130 ± 7 | 114 ± 6 | 0.56 ± 0.04 | 0.351 ± 0.026 | 0.495 ± 0.024 | 0.464 ± 0.036 | 0.266 ± 0.012 |
CM-13 | 129.7 ± 5.2 | 115.1 ± 4.6 | 0.564 ± 0.028 | 0.350 ± 0.018 | 0.496 ± 0.020 | 0.467 ± 0.026 | 0.270 ± 0.009 |
CM-14 | 67 ± 15 | 61 ± 13 | 0.30 ± 0.06 | 0.18 ± 0.04 | 0.254 ± 0.058 | 0.247 ± 0.052 | 0.135 ± 0.035 |
CM-15 | 173 ± 22 | 153 ± 19 | 0.751 ± 0.093 | 0.47 ± 0.06 | 0.673 ± 0.084 | 0.620 ± 0.078 | 0.379 ± 0.046 |
WEIGHTED AVERAGE | 127 ± 36 | 115 ± 31 | 0.57 ± 0.17 | 0.32 ± 0.12 | 0.51 ± 0.16 | 0.47 ± 0.14 | 0.28 ± 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewicka, S.; Piotrowska, B.; Łukaszek-Chmielewska, A.; Drzymała, T. Assessment of Natural Radioactivity in Cements Used as Building Materials in Poland. Int. J. Environ. Res. Public Health 2022, 19, 11695. https://doi.org/10.3390/ijerph191811695
Lewicka S, Piotrowska B, Łukaszek-Chmielewska A, Drzymała T. Assessment of Natural Radioactivity in Cements Used as Building Materials in Poland. International Journal of Environmental Research and Public Health. 2022; 19(18):11695. https://doi.org/10.3390/ijerph191811695
Chicago/Turabian StyleLewicka, Sylwia, Barbara Piotrowska, Aneta Łukaszek-Chmielewska, and Tomasz Drzymała. 2022. "Assessment of Natural Radioactivity in Cements Used as Building Materials in Poland" International Journal of Environmental Research and Public Health 19, no. 18: 11695. https://doi.org/10.3390/ijerph191811695
APA StyleLewicka, S., Piotrowska, B., Łukaszek-Chmielewska, A., & Drzymała, T. (2022). Assessment of Natural Radioactivity in Cements Used as Building Materials in Poland. International Journal of Environmental Research and Public Health, 19(18), 11695. https://doi.org/10.3390/ijerph191811695