Adverse Childhood Experiences and Cardiovascular Risk among Young Adults: Findings from the 2019 Behavioral Risk Factor Surveillance System
Abstract
:1. Introduction
- Are ACEs associated with cardiovascular risk factors in young adulthood (ages 18–34)?
- Is the relationship between ACEs and cardiovascular risk factors in young adulthood mediated by cumulative disadvantage (low education and income) and poor mental health?
- Is the relationship between ACEs and cardiovascular risk factors consistent across participant race, sex, and urbanicity?
2. Materials and Methods
2.1. Dependent Variable: Cardiovascular Risk
2.2. Independent Variable: Adverse Childhood Experiences
2.3. Mediating Variables
2.4. Covariates
2.5. Analytic Plan
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
State | Sample Size (N) | Response Rate |
---|---|---|
Alabama | 715 | 45.9% |
Delaware | 481 | 38.2% |
Florida | 1665 | 44.3% |
Indiana | 926 | 46.2% |
Iowa | 1369 | 58.7% |
Michigan | 1460 | 51.5% |
Mississippi | 639 | 57.4% |
Missouri | 849 | 56.2% |
New Mexico | 684 | 52.2% |
North Dakota | 602 | 60.8% |
Pennsylvania | 984 | 46.6% |
Rhode Island | 546 | 43.6% |
South Carolina | 803 | 54.6% |
Tennessee | 656 | 42.0% |
Virginia | 1100 | 43.4% |
West Virginia | 448 | 49.6% |
Wisconsin | 498 | 53.3% |
Total/Average | 14,425 | 49.68% |
Variables | Moderate RRR (CI) | High RRR (CI) | Moderate RRR (CI) | High RRR (CI) |
---|---|---|---|---|
Male (n = 7303) | Female (n = 6952) | |||
ACEs | ||||
One | 1.24 * (1.02–1.51) | 2.23 ** (1.56–3.20) | 1.15 (0.93–1.42) | 1.35 (1.37–2.34) |
Two | 1.39 ** (1.11–1.74) | 2.07 ** (1.41–3.03) | 1.81 ** (1.42–2.30) | 3.08 ** (1.97–4.80) |
Three or Four | 1.41 ** (1.14–1.75) | 3.36 ** (2.34–4.82) | 1.40 ** (1.12–1.76) | 3.13 ** (2.11–4.63) |
Five or More | 1.55 ** (1.23–1.95) | 4.24 ** (2.97–6.05) | 1.70 ** (1.36–2.12) | 4.48 ** (3.12–6.44) |
White (n = 9644) | Non-White (n = 4611) | |||
ACEs | ||||
One | 1.30 ** (1.10–1.53) | 1.80 ** (1.33–2.44) | 1.00 (0.76–1.33) | 1.75 * (1.04–2.94) |
Two | 1.59 ** (1.31–1.94) | 2.80 ** (1.98–3.97) | 1.45 * (1.07–1.97) | 1.85 * (1.10–3.12) |
Three or Four | 1.47 ** (1.23–1.76) | 3.02 ** (2.20–4.14) | 1.27 (0.94–1.73) | 3.68 ** (2.27–5.96) |
Five or More | 1.75 ** (1.46–2.11) | 4.53 ** (3.34–6.12) | 1.38 * (1.00–1.90) | 4.04 ** (2.55–6.39) |
18–26 Years Old (n = 6950) | 27–34 Years Old (n = 7305) | |||
ACEs | ||||
One | 1.22 (0.99–1.49) | 1.61 (0.98–2.66) | 1.19 (0.97–1.47) | 1.89 ** (1.39–2.58) |
Two | 1.42 ** (1.13–1.78) | 1.85 * (1.13–3.03) | 1.75 ** (1.37–2.24) | 3.01 ** (2.08–4.36) |
Three or Four | 1.40 ** (1.13–1.74) | 2.82 ** (1.81–4.40) | 1.42 ** (1.13–1.77) | 3.48 ** (2.49–4.86) |
Five or More | 1.54 ** (1.24–1.92) | 3.41 ** (2.21–5.26) | 1.72 ** (1.35–2.19) | 5.04 ** (3.67–6.92) |
Urban/Suburban County (n = 12,492) | Rural County (n = 1763) | |||
ACEs | ||||
One | 1.16 (0.99–1.36) | 1.81 ** (1.35–2.42) | 1.53 * (1.04–2.27) | 1.87 (0.99–3.52) |
Two | 1.53 ** (1.29–1.82) | 2.60 ** (1.90–3.55) | 1.74 * (1.04–2.92) | 1.85 (0.81–4.23) |
Three or Four | 1.38 ** (1.17–1.62) | 3.41 ** (2.57–4.54) | 1.71 * (1.08–2.68) | 2.15 * (1.08–4.31) |
Five or More | 1.57 ** (1.33–1.86) | 4.44 ** (3.38–5.83) | 2.57 ** (1.59–4.13) | 5.04 ** (2.57–9.89) |
Variables | Moderate RRR CI | High RRR CI |
---|---|---|
ACEs | ||
Family Member Mental Illness | 1.21 ** (1.08–1.36) | 1.98 ** (1.66–2.35) |
Family Member Alcoholic | 1.22 ** (1.09–1.38) | 1.73 ** (1.45–2.07) |
Family Member Used Illegal Drugs | 1.35 ** (1.18–1.55) | 2.16 ** (1.78–2.62) |
Family Member Incarcerated | 1.27 ** (1.10–1.47) | 1.92 ** (1.54–2.39) |
Parents Divorced | 1.22 ** (1.10–1.36) | 1.79 ** (1.51–2.11) |
Physical Violence Between Parents | 1.37 ** (1.20–1.56) | 1.79 ** (1.47–2.17) |
Parent Physically Abused Child | 1.34 ** (1.18–1.52) | 1.98 ** (1.64–2.38) |
Parent Verbally Abused Child | 1.18 ** (1.06–1.31) | 1.90 ** (1.60–2.25) |
Child Sexual Abuse | 1.29 ** (1.10–1.53) | 2.40 ** (1.91–3.01) |
Variables | Moderate RRR CI | High RRR CI |
---|---|---|
ACEs | ||
One | 1.19 * (1.03–1.37) | 1.76 ** (1.35–2.29) |
Two | 1.56 ** (1.33–1.84) | 2.46 ** (1.84–3.27) |
Three or Four | 1.40 ** (1.20–1.64) | 3.18 ** (2.45–4.13) |
Five or More | 1.63 ** (1.39–1.92) | 4.25 ** (3.31–5.45) |
Covariates | ||
Age | 1.04 ** (1.03–1.05) | 1.15 ** (1.13–1.18) |
Male | 1.15 ** (1.03–1.27) | 1.44 ** (1.22–1.70) |
Black | 1.20 * (1.02–1.41) | 1.31 * (1.01–1.70) |
Hispanic | 1.13 (0.93–1.36) | 1.27 (0.93–1.73) |
Asian/Pacific Islander | 0.87 (0.65–1.16) | 0.35 ** (0.17–0.71) |
Native American/American Indian | 0.70 (0.42–1.16) | 0.98 (0.50–1.92) |
Multiracial | 1.01 (0.76–1.35) | 1.11 (0.69–1.79) |
Other Race/Ethnicity | 1.09 (0.63–1.89) | 1.56 (0.70–3.46) |
Married | 0.81 ** (0.71–0.92) | 0.61 (0.50–0.74) |
Urbanicity | 0.79 ** (0.67–0.93) | 0.62 ** (0.49–0.78) |
Cardiovascular Disease | 1.45 (0.79–2.64) | 3.45 ** (1.73–6.86) |
Low Education | Low Income | |
---|---|---|
Variables | OR (CI) | B/Beta (SE) |
ACEs | ||
One | 1.26 ** (1.09–1.46) | 0.00/0.00 (0.04) |
Two | 1.24 ** (1.06–1.45) | 0.01/0.00 (0.05) |
Three or Four | 1.40 ** (1.21–1.63) | 0.14 **/0.04 (0.05) |
Five or More | 2.25 ** (1.92–2.58) | 0.41 **/0.12 (0.05) |
Covariates | ||
Age | 0.93 (0.92–0.94) | 0.01 **/0.05 (0.00) |
Male | 1.57 ** (1.42–1.74) | −0.27 **/−0.10 (0.03) |
Black | 1.64 ** (1.41–1.91) | 0.55 **/0.13 (0.05) |
Hispanic | 1.91 ** (1.60–2.27) | 0.51 **/0.13 (0.06) |
Asian/Pacific Islander | 0.62 ** (0.45–0.85) | 0.39 **/0.05 (0.10) |
Native American/American Indian | 1.78 ** (1.12–2.84) | 0.94 **/0.06 (0.16) |
Multiracial | 1.62 ** (1.24–2.13) | 0.35 **/0.04 (0.10) |
Other Race/Ethnicity | 0.97 (0.60–1.59) | 0.00/0.00 (0.16) |
Married | 0.81 ** (0.71–0.92) | −0.59 **/−0.20 (0.03) |
Urbanicity | 0.55 ** (0.47–0.63) | −0.13 **/−0.03 (0.04) |
Poor Mental Health Days | |||
---|---|---|---|
Depression Diagnosis | 1–13 | 14 or More | |
Variables | OR (CI) | RRR (CI) | RRR (CI) |
ACEs | |||
One | 1.82 ** (1.49–2.23) | 1.24 ** (1.07–1.43) | 1.70 ** (1.36–2.12) |
Two | 2.69 ** (2.20–3.30) | 1.88 ** (1.60–2.21) | 2.99 ** (2.39–3.75) |
Three or Four | 4.49 ** (3.71–5.43) | 2.45 ** (2.10–2.87) | 4.66 ** (3.77–5.77) |
Five or More | 7.69 ** (6.41–9.23) | 3.11 ** (2.63–3.68) | 9.84 ** (7.97–12.14) |
Covariates | |||
Age | 1.03 ** (1.02–1.05) | 0.97 ** (0.95–0.98) | 0.98 * (0.97–0.99) |
Male | 0.44 ** (0.39–0.50) | 0.51 ** (0.46–0.57) | 0.45 ** (0.39–0.51) |
Black | 0.38 ** (0.31–0.46) | 0.71 ** (0.60–0.83) | 0.61 ** (0.50–0.75) |
Hispanic | 0.59 ** (0.47–0.73) | 0.66 ** (0.55–0.80) | 0.68 ** (0.54–0.86) |
Asian/Pacific Islander | 0.43 ** (0.27–0.68) | 0.58 ** (0.42–0.80) | 0.58 * (0.38–0.88) |
Native American/American Indian | 0.86 (0.52–1.41) | 0.64 (0.36–1.12) | 0.94 (0.52–1.70) |
Multiracial | 1.01 (0.76–1.35) | 1.10 (0.81–1.49) | 1.22 (0.85–1.76) |
Other Race/Ethnicity | 0.44 ** (0.23–0.81) | 0.89 (0.50–1.58) | 1.03 (0.57–1.87) |
Married | 0.53 ** (0.46–0.61) | 0.76 ** (0.67–0.87) | 0.41 ** (0.35–0.49) |
Urbanicity | 1.19 (0.99–1.42) | 1.18 * (1.01–1.39) | 1.11 (0.90–1.35) |
References
- Centers for Disease Control and Prevention. Underlying Cause of Death, 1999–2018. In CDC WONDER Online Database; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2018. [Google Scholar]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2021 update: A report from the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, R.; Vasan, R.S. Age As a Risk Factor. Med. Clin. N. Am. 2012, 96, 87–91. [Google Scholar] [CrossRef] [PubMed]
- North, B.J.; Sinclair, D.A. The intersection between aging and cardiovascular disease. Circ. Res. 2012, 110, 1097–1108. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention, Leading CVasues of Death Reports, 1981–2020. Available online: https://wisqars.cdc.gov/fatal-leading (accessed on 1 September 2022).
- Lloyd-Jones, D.M.; Hong, Y.; Labarthe, D.; Mozaffarian, D.; Appel, L.J.; Van Horn, L.; Greenlund, K.; Daniels, S.; Nichol, G.; Tomaselli, G.F.; et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation 2010, 121, 586–613. [Google Scholar] [CrossRef]
- Folsom, A.R.; Yatsuya, H.; Nettleton, J.A.; Lutsey, P.L.; Cushman, M.; Rosamond, W.D. Community prevalence of ideal cardiovascular health, by the american heart association definition, and relationship with cardiovascular disease incidence. J. Am. Coll. Cardiol. 2011, 57, 1690–1696. [Google Scholar] [CrossRef]
- Folsom, A.R.; Olson, N.C.; Lutsey, P.L.; Roetker, N.S.; Cushman, M. American Heart Association’s Life’s Simple 7 and incidence of venous thromboembolism. Am. J. Hematol. 2015, 90, E92. [Google Scholar] [CrossRef]
- Ford, E.S.; Greenlund, K.J.; Hong, Y. Ideal cardiovascular health and mortality from all causes and diseases of the circulatory system among adults in the united states. Circulation 2012, 125, 987–995. [Google Scholar] [CrossRef]
- de Lemos, J.A.; Navar, A.M. A life-course approach to cardiovascular disease prevention. Nat. Med. 2022, 28, 1133–1134. [Google Scholar] [CrossRef]
- Reuben, A.; Moffitt, T.E.; Caspi, A.; Belsky, D.W.; Harrington, H.; Schroeder, F.; Hogan, S.; Ramrakha, S.; Poulton, R.; Danese, A. Lest we forget: Comparing retrospective and prospective assessments of adverse childhood experiences in the prediction of adult health. J. Child Psychol. Psychiatry 2016, 57, 1103–1112. [Google Scholar] [CrossRef]
- Felitti, V.J.; Anda, R.F.; Nordenberg, D.; Williamson, D.F.; Spitz, A.M.; Edwards, V.; Marks, J.S. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: The Adverse Childhood Experiences (ACE) Study. Am. J. Prev. Med. 1998, 14, 245–258. [Google Scholar] [CrossRef]
- Hughes, K.; Bellis, M.A.; Hardcastle, K.A.; Sethi, D.; Butchart, A.; Mikton, C.; Jones, L.; Dunne, M.P. The effect of multiple adverse childhood experiences on health: A systematic review and meta-analysis. Lancet Public Health 2017, 2, e356–e366. [Google Scholar] [CrossRef]
- Sonu, S.; Post, S.; Feinglass, J. Adverse childhood experiences and the onset of chronic disease in young adulthood. Prev. Med. 2019, 123, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Anda, R.F.; Edwards, V.J.; Perry, G.S.; Zhao, G.; Li, C.; Croft, J.B. Adverse childhood experiences and smoking status in five states. Prev. Med. 2011, 53, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Wiss, D.A.; Brewerton, T.D. Adverse childhood experiences and adult obesity: A systematic review of plausible mechanisms and meta-analysis of cross-sectional studies. Physiol. Behav. 2020, 223, 112964. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yan, P.; Shan, Z.; Chen, S.; Li, M.; Luo, C.; Gao, H.; Hao, L.; Liu, L. Adverse childhood experiences and risk of type 2 diabetes: A systematic review and meta-analysis. Metabolism 2015, 64, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Jimenez, M.P.; Roberts, C.T.F.; Loucks, E.B. The role of adverse childhood experiences in cardiovascular disease risk: A review with emphasis on plausible mechanisms. Curr. Cardiol. Rep. 2015, 17, 1–10. [Google Scholar] [CrossRef]
- Godoy, L.C.; Frankfurter, C.; Cooper, M.; Lay, C.; Maunder, R.; Farkouh, M.E. Association of adverse childhood experiences with cardiovascular disease later in life: A review. JAMA Cardiol. 2021, 6, 228–235. [Google Scholar] [CrossRef]
- Suglia, S.F.; Koenen, K.C.; Boynton-Jarrett, R.; Chan, P.S.; Clark, C.J.; Danese, A.; Faith, M.S.; Goldstein, B.I.; Hayman, L.L.; Isasi, C.R.; et al. Childhood and Adolescent Adversity and Cardiometabolic Outcomes: A Scientific Statement From the American Heart Association. Circulation 2018, 137, e15–e28. [Google Scholar] [CrossRef]
- Merrick, M.T.; Ports, K.A.; Ford, D.C.; Afifi, T.O.; Gershoff, E.T.; Grogan-Kaylor, A. Unpacking the impact of adverse childhood experiences on adult mental health. Child Abus. Negl. 2017, 69, 10–19. [Google Scholar] [CrossRef]
- Mersky, J.; Topitzes, J.; Reynolds, A. Impacts of adverse childhood experiences on health, mental health, and substance use in early adulthood: A cohort study of an urban, minority sample in the U.S. Child Abus. Negl. 2013, 37, 917–925. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Liu, Y.; Goldberg, J.; Almeida, D.M. Adverse childhood experiences amplify the longitudinal associations of adult daily stress and health. Child Abus. Negl. 2021, 122, 105337. [Google Scholar] [CrossRef] [PubMed]
- Hare, D.L.; Toukhsati, S.; Johansson, P.; Jaarsma, T. Depression and cardiovascular disease: A clinical review. Eur. Health J. 2014, 35, 1365–1372. [Google Scholar] [CrossRef]
- Medina-Inojosa, J.R.; Vinnakota, S.; Garcia, M.; Arciniegas Calle, M.; Mulvagh, S.L.; Lopez-Jimenez, F.; Bhagra, A. Role of stress and psychosocial determinants on women’s cardiovascular risk and disease development. J. Women’s Health 2019, 28, 483–489. [Google Scholar] [CrossRef]
- Boden, J.M.; Horwood, L.J.; Fergusson, D.M. Exposure to childhood sexual and physical abuse and subsequent educational achievement outcomes. Child Abus. Negl. 2007, 31, 1101–1114. [Google Scholar] [CrossRef]
- Curie, J.; Spatz-Widom, C. Long-term consequences of child abuse and neglect on adult economic well-being. Child Maltreat. 2010, 15, 111–120. [Google Scholar] [CrossRef]
- Mersky, J.P.; Topitzes, J. Comparing early adult outcomes of maltreated and non-maltreated children: A prospective longitudinal investigation. Child. Youth Serv. Rev. 2010, 32, 1086–1096. [Google Scholar] [CrossRef]
- Johnson-Lawrence, V.; Galea, S.; Kaplan, G. Cumulative socioeconomic disadvantage and cardiovascular disease mortality in the Alameda County Study 1965 to 2000. Ann. Epidemiol. 2015, 25, 65–70. [Google Scholar] [CrossRef]
- Winkleby, M.A.; Jatulis, D.E.; Frank, E.; Fortmann, S.P. Socioeconomic status and health: How education, income, and occupation contribute to risk factors for cardiovascular disease. Am. J. Public Health 1992, 82, 816–820. [Google Scholar] [CrossRef]
- National Heart Lung and Blood Institute. Charting the Future Together The NHLBI Strategic Vision U.S.; Department of Health Human Services: Washington, DC, USA, 2020.
- Suglia, S.F.; Campo, R.A.; Brown, A.G.; Stoney, C.; Boyce, C.A.; Appleton, A.A.; Bleil, M.E.; Boynton-Jarrett, R.; Dube, S.R.; Dunn, E.C.; et al. Social determinants of cardiovascular health: Early life adversity as a contributor to disparities in cardiovascular diseases. J. Pediatrics 2020, 219, 267–273. [Google Scholar] [CrossRef]
- Kalmakis, K.A.; Chandler, G.E. Health consequences of adverse childhood experiences: A systematic review. J. Am. Assoc. Nurse Pr. 2015, 27, 457–465. [Google Scholar] [CrossRef]
- Lawrence, E.M.; Hummer, R.A.; Domingue, B.W.; Harris, K.M. Wide educational disparities in young adult cardiovascular health. SSM Popul. Health 2018, 5, 249–256. [Google Scholar] [CrossRef]
- Caleyachetty, R.; Echouffo-Tcheugui, J.B.; Muennig, P.; Zhu, W.; Muntner, P.; Shimbo, D. Association between cumulative social risk and ideal cardiovascular health in US adults: NHANES 1999–2006. Int. J. Cardiol. 2015, 191, 296–300. [Google Scholar] [CrossRef]
- Graham, G. Disparities in Cardiovascular Disease Risk in the United States. Curr. Cardiol. Rev. 2015, 11, 238–245. [Google Scholar] [CrossRef]
- Hackler, E., III; Lew, J.; Gore, M.O.; Ayers, C.R.; Atzler, D.; Khera, A.; Rohatgi, A.; Lewis, A.; Neeland, I.; Omland, T.; et al. Racial differences in cardiovascular biomarkers in the general population. J. Am. Heart Assoc. 2019, 8, e012729. [Google Scholar] [CrossRef]
- Bots, S.H.; Peters, S.A.; Woodward, M. Sex differences in coronary heart disease and stroke mortality: A global assessment of the effect of ageing between 1980 and 2010. BMJ Glob. Health 2017, 2, e000298. [Google Scholar] [CrossRef]
- Simon, M.; Boutouyrie, P.; Narayanan, K.; Gaye, B.; Tafflet, M.; Thomas, F.; Guibout, C.; Périer, M.-C.; Pannier, B.; Jouven, X.; et al. Sex disparities in ideal cardiovascular health. Heart 2017, 103, 1595–1601. [Google Scholar] [CrossRef]
- Cross, S.H.; Mehra, M.R.; Bhatt, D.L.; Nasir, K.; O’Donnell, C.J.; Califf, R.M.; Warraich, H.J. Rural-urban differences in cardiovascular mortality in the US, 1999–2017. JAMA 2020, 323, 1852–1854. [Google Scholar] [CrossRef]
- Lawrence, E.; Hummer, R.A.; Harris, K.M. The cardiovascular health of young adults: Disparities along the urban-rural continuum. Ann. Am. Acad. Political Soc. Sci. 2017, 672, 257–281. [Google Scholar] [CrossRef]
- Behavioral Risk Factor Surveillance System. Available online: https://www.cdc.gov/brfss/index.html (accessed on 1 September 2022).
- Behavioral Risk Factor Surveillance System Annual Survey data. Available online: https://www.cdc.gov/brfss/annual_data/annual_data.htm (accessed on 1 September 2022).
- Pierannunzi, C.; Hu, S.S.; Balluz, L. A systematic review of publications assessing reliability and validity of the Behavioral Risk Factor Surveillance System (BRFSS), 2004–2011. BMC Med Res. Methodol. 2013, 13, 49. [Google Scholar] [CrossRef]
- Briggs, A.C.; Black, A.W.; Lucas, F.L.; Siewers, A.E.; Fairfield, K.M. Association between the food and physical activity environment, obesity, and cardiovascular health across Maine counties. BMC Public Health 2019, 19, 374. [Google Scholar] [CrossRef] [Green Version]
- CDC. 2008 Physical Activity Guidelines for Americans. Available online: http://www.cdc.gov/physicalactivity/resources/recommendations.html (accessed on 14 December 2017).
- Fulton, S.L.; McKinley, M.C.; Young, I.; Cardwell, C.; Woodside, J.V. The effect of increasing fruit and vegetable consumption on overall diet: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2016, 56, 802–816. [Google Scholar] [CrossRef]
- Testa, A.; Jackson, D.B.; Semenza, D.C.; Vaughn, M.G. Food deserts and cardiovascular health among young adults. Public Health Nutr. 2021, 24, 117–124. [Google Scholar] [CrossRef]
- Hazlehurst, M.F.; Nurius, P.S.; Hajat, A. Individual and neighborhood stressors, air pollution and cardiovascular disease. Int. J. Environ. Res. Public. Health 2018, 15, 472. [Google Scholar] [CrossRef]
- Remigio-Baker, R.A.; Hayes, D.K.; Reyes-Salvail, F. Adverse childhood events and current depressive symptoms among women in Hawaii: 2010 BRFSS, Hawaii. Matern. Child Health J. 2014, 18, 2300–2308. [Google Scholar] [CrossRef]
- Bor, J.; Venkataramani, A.S.; Williams, D.R.; Tsai, A.C. Police killings and their spillover effects on the mental health of black Americans: A population-based, quasi-experimental study. Lancet 2018, 392, 302–310. [Google Scholar] [CrossRef]
- Karlson, K.B.; Holm, A.; Breen, R. Comparing regression coefficients between same-sample nested models using logit and probit: A new method. Sociol. Methodol. 2012, 42, 286–313. [Google Scholar] [CrossRef]
- Malaju, M.T.; Alene, G.D.; Bisetegn, T.A. Longitudinal mediation analysis of the factors associated with trajectories of posttraumatic stress disorder symptoms among postpartum women in Northwest Ethiopia: Application of the Karlson-Holm-Breen (KHB) method. PLoS ONE 2022, 17, e0266399. [Google Scholar] [CrossRef]
- Testa, A.; Jackson, D.B.; Vaughn, M.G.; Ganson, K.T.; Nagata, J.M. Adverse Childhood Experiences, health insurance status, and health care utilization in middle adulthood. Soc. Sci. Med. 2022, 115194. [Google Scholar] [CrossRef]
- Maunder, R.G.; Hunter, J.J.; Tannenbaum, D.W.; Le, T.L.; Lay, C. Physicians’ knowledge and practices regarding screening adult patients for adverse childhood experiences: A survey. BMC Health Serv. Res. 2020, 20, 314. [Google Scholar] [CrossRef]
- Tink, W.; Tink, J.C.; Turin, T.C.; Kelly, M. Adverse childhood experiences. Fam. Med. 2017, 49, 7–13. [Google Scholar]
- Graves, L.; Leung, S.; Raghavendran, P.; Mennito, S. Transitions of Care for Healthy Young Adults: Promoting Primary Care and Preventive Health. South. Med. J. 2019, 112, 497–499. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatrics, American Academy of Family Physicians; American College of Physicians; Transitions Clinical Report Authoring Group; Cooley, W.C.; Sagerman, P.J. Supporting the health care transition from adolescence to adulthood in the medical home. Pediatrics 2011, 128, 182–200. [Google Scholar] [CrossRef]
- Tran, D.-M.T.; Silvestri-Elmore, A. Healthcare-seeking behaviours in college students and young adults: A review. J. Res. Nurs. 2021, 26, 320–338. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, P.; McManus, M.; Rogers, K.; White, P. Outcome evidence for structured pediatric to adult health care transition interventions: A systematic review. J. Pediatr. 2017, 188, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Ozer, E.M.; Adams, S.H.; Orrell-Valente, J.K.; Wibbelsman, C.J.; Lustig, J.L.; Millstein, S.G.; Garber, A.K.; Irwin, C.E. Does delivering preventive services in primary care reduce adolescent risky behavior? J. Adolesc. Heal. 2011, 49, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Green, J.S.; Grant, M.; Hill, K.L.; Brizzolara, J.; Belmont, B. Heart disease risk perception in college men and women. J. Am. Coll. Health 2003, 51, 207–211. [Google Scholar] [CrossRef]
- Allen, H.; Wright, B.J.; Vartanian, K.; Dulacki, K.; Li, H.-F. Examining the Prevalence of Adverse Childhood Experiences and Associated Cardiovascular Disease Risk Factors Among Low-Income Uninsured Adults. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e004391. [Google Scholar] [CrossRef]
- Roberts, S.J.; Chandler, G.E.; Kalmakis, K. A model for trauma-informed primary care. J. Am. Assoc. Nurse Pr. 2019, 31, 139–144. [Google Scholar] [CrossRef]
- Sala-Hamrick, K.J.; Isakson, B.; Gonzalez, S.D.C.D.; Cooper, A.; Buchan, J.; Aceves, J.; Van Orton, E.; Holtz, J.; Waggoner, D.M. Trauma-Informed Pediatric Primary Care: Facilitators and Challenges to the Implementation Process. J. Ment. Health Adm. 2021, 48, 363–381. [Google Scholar] [CrossRef]
- Parker, D.R.; Assaf, A.R. Community Interventions for Cardiovascular Disease. Prim. Care Clin. Off. Pr. 2005, 32, 865–881. [Google Scholar] [CrossRef]
- Hassen, H.Y.; Ndejjo, R.; Van Geertruyden, J.-P.; Musinguzi, G.; Abrams, S.; Bastiaens, H. Type and effectiveness of community-based interventions in improving knowledge related to cardiovascular diseases and risk factors: A systematic review. Am. J. Prev. Cardiol. 2022, 10, 100341. [Google Scholar] [CrossRef] [PubMed]
- Ammerman, R.T.; Mallow, P.J.; Rizzo, J.A.; Putnam, F.W.; Van Ginkel, J.B. Cost-effectiveness of in-home cognitive behavioral therapy for low-income depressed mothers participating in early childhood prevention programs. J. Affect. Disord. 2017, 208, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Healing City Baltimore. Baltimore Neighbors Network. 2020. Available online: https://baltimoreneighborsnetwork.org/ (accessed on 1 September 2022).
- Basu, D.; Nagpal, S.; Pillai, R.R.; Mutiso, V.; Ndetei, D.; Bhui, K. Building youth and family resilience for better mental health: Developing and testing a hybrid model of intervention in low and middle-income countries. Brit. J. Psychol. 2022, 1, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.B. The case for conceptualizing youth–police contact as a racialized adverse childhood experience. Am. J. Public Health 2021, 111, 1189–1191. [Google Scholar] [CrossRef]
Cardiovascular Risk | ||||
---|---|---|---|---|
Full Sample (n = 14,255) | Low (n = 4308) | Moderate (n = 8474) | High (n = 1473) | |
Variables | Mean (SD) or % | Mean (SD) or % | Mean (SD) or % | Mean (SD) or % |
ACEs | ||||
Zero | 26.35% | 31.20% | 25.46% | 16.31% |
One | 21.92% | 23.59% | 21.45% | 18.87% |
Two | 14.18% | 12.94% | 14.85% | 13.48% |
Three or Four | 18.18% | 16.19% | 18.57% | 22.09% |
Five or More | 19.37% | 16.09% | 19.67% | 29.26% |
Covariates | ||||
Age | 26.42 (4.92) | 25.62 (5.03) | 26.48 (4.85) | 28.50 (4.32) |
Male | 51.23% | 50.75% | 51.19% | 52.47% |
White | 67.65% | 68.90% | 66.87% | 67.52% |
Black | 11.95% | 10.12% | 12.54% | 14.00% |
Hispanic | 12.54% | 12.27% | 12.96% | 11.24% |
Asian/Pacific Islander | 2.80% | 3.67% | 2.70% | 0.99% |
Native American/American Indian | 1.37% | 1.50% | 1.23% | 2.04% |
Multiracial | 2.88% | 2.74% | 2.96% | 3.02% |
Other Race/Ethnicity | 5.66% | 0.81% | 0.75% | 1.18% |
Married | 28.84% | 29.10% | 28.53% | 29.52% |
Urbanicity | 87.63% | 89.97% | 87.10% | 83.76% |
Mediators | ||||
Cumulative Disadvantage | ||||
Low Education | 37.03% | 32.33% | 37.72% | 47.73% |
Low Income | 2.31 (1.40) | 1.90 (1.32) | 2.08 (1.38) | 2.42 (1.48) |
Poor Mental Health | ||||
Depression Diagnosis | 23.11% | 17.69% | 23.25% | 40.89% |
Poor Mental Health Days | 0.73 (0.75) | 0.66 (0.73) | 0.75 (0.77) | 0.98 (0.83) |
Model 1 | Model 2 | |||
---|---|---|---|---|
Variables | Moderate RRR CI | High RRR CI | Moderate RRR CI | High RRR CI |
ACEs | ||||
One | 1.19 * 1.03–1.38 | 1.79 ** 1.37–2.34 | 1.16 * 1.00–1.34 | 1.59 ** 1.21–2.09 |
Two | 1.55 ** 1.32–1.83 | 2.47 ** 1.85–3.30 | 1.48 ** 1.25–1.75 | 1.99 ** 1.48–2.68 |
Three or Four | 1.40 ** 1.20–1.64 | 3.24 ** 2.48–4.22 | 1.28 ** 1.09–1.50 | 2.26 ** 1.72–2.95 |
Five or More | 1.62 ** 1.38–1.91 | 4.39 ** 3.41–5.64 | 1.37 ** 1.16–1.62 | 2.31 ** 1.77–3.01 |
Covariates | ||||
Age | 1.04 ** 1.03–1.05 | 1.15 ** 1.13–1.18 | 1.05 ** 1.04–1.06 | 1.16 ** 1.14–1.18 |
Male | 1.14 * 1.03–1.27 | 1.44 ** 1.21–1.70 | 1.19 ** 1.07–1.33 | 1.69 ** 1.42–2.01 |
Black | 1.20 * 1.02–1.42 | 1.34 * 1.03–1.74 | 1.17 0.99–1.39 | 1.38 * 1.06–1.80 |
Hispanic | 1.12 0.93–1.36 | 1.26 0.92–1.73 | 1.08 0.89–1.31 | 1.19 0.86–1.64 |
Asian/Pacific Islander | 0.89 0.67–1.19 | 0.37 ** 0.18–0.75 | 0.91 0.68–1.22 | 0.44 * 0.22–0.90 |
Native American/American Indian | 0.71 0.42–1.18 | 0.94 0.47–1.88 | 0.66 0.40–1.11 | 0.72 0.37–1.41 |
Multiracial | 1.02 0.76–1.37 | 1.00 0.61–1.67 | 0.97 0.72–1.30 | 0.88 0.52–1.48 |
Other Race/Ethnicity | 1.08 0.62–1.88 | 1.39 0.61–3.17 | 1.10 0.64–1.90 | 1.57 0.69–3.58 |
Married | 0.81 ** 0.71–0.92 | 0.61 0.50–0.74 | 0.87 * 0.76–0.99 | 0.79 * 0.65–0.97 |
Urbanicity | 0.80 ** 0.68–0.93 | 0.61 ** 0.48–0.77 | 0.81 * 0.69–0.95 | 0.65 ** 0.51–0.83 |
Mediators | ||||
Cumulative Disadvantage | ||||
Low Education | - | - | 1.24 ** 1.11–1.39 | 1.93 ** 1.61–2.31 |
Low Income | - | - | 1.08 ** 1.03–1.12 | 1.15 ** 1.08–1.23 |
Poor Mental Health | ||||
Depression Diagnosis | - | - | 1.16 * 1.00–1.34 | 2.09 ** 1.70–2.59 |
Poor Mental Health Days | - | - | 1.12 ** 1.04–1.21 | 1.43 ** 1.27–1.62 |
Moderate Cardiovascular Risk (Ref: Low Cardiovascular Risk) | ||||||||
---|---|---|---|---|---|---|---|---|
Mediators | One ACE | Two ACEs | Three or Four ACEs | Five or More ACEs | ||||
Cumulative Disadvantage | % Reduction | z-score | % Reduction | z-score | % Reduction | z-score | % Reduction | z-score |
Low Education | 6.87% | 2.57 ** | 2.61% | 2.65 ** | 3.80% | 3.53 ** | 7.76% | 4.63 ** |
Low Income | 2.97% | 0.92 | −0.32 | −0.28 | 4.96% | 3.85 ** | 9.01% | 5.65 ** |
Poor Mental Health | ||||||||
Depression Diagnosis | 8.65% | 3.15 ** | 7.34% | 3.56 ** | 10.99% | 3.66 ** | 16.03% | 3.70 ** |
Poor Mental Health Days | 14.04% | 3.56** | 9.33% | 3.84 ** | 12.84% | 3.93 ** | 16.97% | 3.97 ** |
Total | 32.53% | - | 18.96% | - | 32.59% | - | 49.77% | - |
High Cardiovascular Risk (Ref: Low Cardiovascular Risk) | ||||||||
Mediators | One ACE | Two ACEs | Three or Four ACEs | Five or More ACEs | ||||
Cumulative Disadvantage | % Reduction | z-score | % Reduction | z-score | % Reduction | z-score | % Reduction | z-score |
Low Education | 3.00% | 1.29 | 3.51% | 2.01 * | 3.64% | 3.05 ** | 8.44% | 6.68 ** |
Low Income | 0.01% | 0.01 | −0.92% | −0.54 | 3.04% | 2.54 ** | 7.19% | 6.06 ** |
Poor Mental Health | ||||||||
Depression Diagnosis | 10.66% | 4.84 ** | 13.29% | 6.24 ** | 16.21% | 7.86 ** | 21.07% | 8.71 ** |
Poor Mental Health Days | 7.52% | 3.92 ** | 12.12% | 5.29 ** | 10.70% | 5.62 ** | 13.97% | 5.93 ** |
Total | 21.19% | - | 28.00% | - | 33.59% | - | 50.67% | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, D.B.; Testa, A.; Woodward, K.P.; Qureshi, F.; Ganson, K.T.; Nagata, J.M. Adverse Childhood Experiences and Cardiovascular Risk among Young Adults: Findings from the 2019 Behavioral Risk Factor Surveillance System. Int. J. Environ. Res. Public Health 2022, 19, 11710. https://doi.org/10.3390/ijerph191811710
Jackson DB, Testa A, Woodward KP, Qureshi F, Ganson KT, Nagata JM. Adverse Childhood Experiences and Cardiovascular Risk among Young Adults: Findings from the 2019 Behavioral Risk Factor Surveillance System. International Journal of Environmental Research and Public Health. 2022; 19(18):11710. https://doi.org/10.3390/ijerph191811710
Chicago/Turabian StyleJackson, Dylan B., Alexander Testa, Krista P. Woodward, Farah Qureshi, Kyle T. Ganson, and Jason M. Nagata. 2022. "Adverse Childhood Experiences and Cardiovascular Risk among Young Adults: Findings from the 2019 Behavioral Risk Factor Surveillance System" International Journal of Environmental Research and Public Health 19, no. 18: 11710. https://doi.org/10.3390/ijerph191811710
APA StyleJackson, D. B., Testa, A., Woodward, K. P., Qureshi, F., Ganson, K. T., & Nagata, J. M. (2022). Adverse Childhood Experiences and Cardiovascular Risk among Young Adults: Findings from the 2019 Behavioral Risk Factor Surveillance System. International Journal of Environmental Research and Public Health, 19(18), 11710. https://doi.org/10.3390/ijerph191811710