Association of Metabolically Healthy Obesity and Glomerular Filtration Rate among Male Steelworkers in North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Populations
2.2. Definitions
2.3. Assessment of Covariates
2.4. Statistical Analysis
3. Results
3.1. Characterization of Studies
3.2. Relationship among MHO, eGFR, and hs-CRP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.-W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef]
- Collaboration, G.C.K.D. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Xie, Y.; Bowe, B.; Mokdad, A.H.; Xian, H.; Yan, Y.; Li, T.; Maddukuri, G.; Tsai, C.-Y.; Floyd, T.; Al-Aly, Z. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int. 2018, 94, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; He, K.; Wang, J.; Zhao, M.-H.; Li, Y.; Zhang, L.; Saran, R.; Bragg-Gresham, J.L. Prevalence and Risk Factors for CKD: A Comparison Between the Adult Populations in China and the United States. Kidney Int. Rep. 2018, 3, 1135–1143. [Google Scholar] [CrossRef]
- Collaborators, G.O.; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xue, H.; Sun, M.; Zhu, X.; Zhao, L.; Yang, Y. Prevention and control of obesity in China. Lancet Glob. Health 2019, 7, e1166–e1167. [Google Scholar] [CrossRef]
- National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Blüher, M. Metabolically Healthy Obesity. Endocr. Rev. 2020, 41, 405–420. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.L.; Stengel, B.; Legrand, K.; Briançon, S.; Jacquelinet, C.; Combe, C.; Fouque, D.; Massy, Z.A.; Laville, M.; Frimat, L.; et al. Obesity phenotype and patient-reported outcomes in moderate and severe chronic kidney disease: A cross-sectional study from the CKD-REIN cohort study. Qual. Life Res. 2019, 28, 1873–1883. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.K.; Huang, Y.; Yu, H.J.; Yuan, S.; Tang, B.W.; Li, Q.X.; Li, X.T.; Yang, X.H.; He, Q.Q. Association between obesity phenotypes and incident hypertension among Chinese adults: A prospective cohort study. Public Health 2017, 149, 65–70. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Mongraw-Chaffin, M.; Lewis, K.H.; Chen, H.; Ard, J.D.; Soliman, E.Z. Association of Obesity Phenotypes with Electrocardiographic Markers of Poor Outcomes in the General Population. Obesity 2019, 27, 2076–2083. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.H.; Lee, M.J.; Kang, Y.M.; Hwang, J.Y.; Kim, E.H.; Park, J.-Y.; Kim, H.-K.; Lee, W.J. The risk of chronic kidney disease in a metabolically healthy obese population. Kidney Int. 2015, 88, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Niratharakumar, K.; Gokhale, K.; Tahrani, A.A.; Taverner, T.; Thomas, G.N.; Dasgupta, I. Obesity Without Metabolic Abnormality and Incident CKD: A Population-Based British Cohort Study. Am. J. Kidney Dis. 2022, 79, 24–35.e21. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Tanaka, M.; Okada, H.; Senmaru, T.; Hamaguchi, M.; Asano, M.; Yamazaki, M.; Oda, Y.; Hasegawa, G.; Toda, H.; et al. Metabolically healthy obesity and risk of incident CKD. Clin. J. Am. Soc. Nephrol. 2015, 10, 578–583. [Google Scholar] [CrossRef]
- Esser, N.; L’homme, L.; Roover, A.D.; Kohnen, L.; Scheen, A.J.; Moutschen, M.; Piette, J.; Legrand-Poels, S.; Paquot, N. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia 2013, 56, 2487–2497. [Google Scholar] [CrossRef]
- Brennan, E.; Kantharidis, P.; Cooper, M.E.; Godson, C. Pro-resolving lipid mediators: Regulators of inflammation, metabolism and kidney function. Nat. Rev. Nephrol. 2021, 17, 725–739. [Google Scholar] [CrossRef]
- Mihai, S.; Codrici, E.; Popescu, I.D.; Enciu, A.-M.; Albulescu, L.; Necula, L.G.; Mambet, C.; Anton, G.; Tanase, C. Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. J. Immunol. Res. 2018, 2018, 2180373. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Lente, F.V.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Zhu, Y.; Li, X.; Song, Y.; Yuan, J. Rotating Night Shift Work, Exposure to Light at Night, and Glomerular Filtration Rate: Baseline Results from a Chinese Occupational Cohort. Int. J. Environ. Res. Public Health 2020, 17, 9035. [Google Scholar] [CrossRef]
- Consultation, W.E. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Jung, C.H.; Lee, M.J.; Kang, Y.M.; Jang, J.E.; Leem, J.; Hwang, J.Y.; Kim, E.H.; Park, J.-Y.; Kim, H.-K.; Lee, W.J. The risk of incident type 2 diabetes in a Korean metabolically healthy obese population: The role of systemic inflammation. J. Clin. Endocrinol. Metab. 2015, 100, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chang, Y.; Yun, K.E.; Jung, H.-S.; Kim, I.; Hyun, Y.Y.; Lee, K.-B.; Joo, K.J.; Park, H.J.; Shin, H.; et al. Metabolically healthy and unhealthy obesity phenotypes and risk of renal stone: A cohort study. Int. J. Obes. 2019, 43, 852–861. [Google Scholar] [CrossRef]
- Scherer, P.E.; Hill, J.A. Obesity, Diabetes, and Cardiovascular Diseases: A Compendium. Circ. Res. 2016, 118, 1703–1705. [Google Scholar] [CrossRef]
- Maskarinec, G.; Lim, U.; Jacobs, S.; Monroe, K.R.; Ernst, T.; Buchthal, S.D.; Shepherd, J.A.; Wilkens, L.R.; Marchand, L.L.; Boushey, C.J. Diet Quality in Midadulthood Predicts Visceral Adiposity and Liver Fatness in Older Ages: The Multiethnic Cohort Study. Obesity 2017, 25, 1442–1450. [Google Scholar] [CrossRef]
- Chang, A.R.; Surapaneni, A.; Kirchner, H.L.; Young, A.; Kramer, H.J.; Carey, D.J.; Appel, L.J.; Grams, M.E. Metabolically Healthy Obesity and Risk of Kidney Function Decline. Obesity 2018, 26, 762–768. [Google Scholar] [CrossRef]
- Lin, L.; Peng, K.; Du, R.; Huang, X.; Lu, J.; Xu, Y.; Xu, M.; Chen, Y.; Bi, Y.; Wang, W. Metabolically healthy obesity and incident chronic kidney disease: The role of systemic inflammation in a prospective study. Obesity 2017, 25, 634–641. [Google Scholar] [CrossRef]
- Shahali, A.; Tasdighi, E.; Barzin, M.; Mahdavi, M.; Valizadeh, M.; Niroomand, M.; Azizi, F.; Hosseinpanah, F. Abdominal obesity phenotypes and risk of kidney function decline: Tehran Lipid and Glucose Study. Obes. Res. Clin. Pract. 2020, 14, 168–175. [Google Scholar] [CrossRef]
- Hall, J.E.; Carmo, J.M.d.; Silva, A.A.d.; Wang, Z.; Hall, M.E. Obesity, kidney dysfunction and hypertension: Mechanistic links. Nat. Rev. Nephrol. 2019, 15, 367–385. [Google Scholar] [CrossRef]
- Gai, Z.; Wang, T.; Visentin, M.; Kullak-Ublick, G.A.; Fu, X.; Wang, Z. Lipid Accumulation and Chronic Kidney Disease. Nutrients 2019, 11, 722. [Google Scholar] [CrossRef] [Green Version]
- Moorhead, J.F.; Chan, M.K.; El-Nahas, M.; Varghese, Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 1982, 2, 1309–1311. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.; Liu, X.; Li, Y.; Li, M.; Liang, Y.; Shao, X.; Holthöfer, H.; Zou, H. Central obesity, C-reactive protein and chronic kidney disease: A community-based cross-sectional study in southern China. Kidney Blood Press. Res. 2013, 37, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.B.D.; Bentes, A.C.S.N.; Daher, E.D.F.; Matos, S.M.A.D. Obesity and kidney disease. Braz. J. Nephrol. 2017, 39, 65–69. [Google Scholar] [CrossRef]
- Ronti, T.; Lupattelli, G.; Mannarino, E. The endocrine function of adipose tissue: An update. Clin. Endocrinol. 2006, 64, 355–365. [Google Scholar] [CrossRef]
- Fried, L.; Solomon, C.; Shlipak, M.; Seliger, S.; Stehman-Breen, C.; Bleyer, A.J.; Chaves, P.; Furberg, C.; Kuller, L.; Newman, A. Inflammatory and prothrombotic markers and the progression of renal disease in elderly individuals. J. Am. Soc. Nephrol. 2004, 15, 3184–3191. [Google Scholar] [CrossRef]
- Nari, F.; Jang, B.N.; Kim, G.R.; Park, E.-C.; Jang, S.-I. Synergistic Effects and Sex Differences in Anthropometric Measures of Obesity and Elevated High-Sensitivity C-Reactive Protein Levels. Int. J. Environ. Res. Public Health 2020, 17, 8279. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Shur, N.F.; Smith, A.C. “Exercise as medicine” in chronic kidney disease. Scand. J. Med. Sci. Sports 2016, 26, 985–988. [Google Scholar] [CrossRef]
- Mallamaci, F.; Pisano, A.; Tripepi, G. Physical activity in chronic kidney disease and the EXerCise Introduction To Enhance trial. Nephrol. Dial. Transplant. 2020, 35 (Suppl. S2), ii18–ii22. [Google Scholar] [CrossRef]
- Sun, Q.; Dam, R.M.v.; Spiegelman, D.; Heymsfield, S.B.; Willett, W.C.; Hu, F.B. Comparison of dual-energy x-ray absorptiometric and anthropometric measures of adiposity in relation to adiposity-related biologic factors. Am. J. Epidemiol. 2010, 172, 1442–1454. [Google Scholar] [CrossRef]
- Li, X.; Cui, S.; Wu, J.; Wang, L.; Yuan, J. Job category differences in the prevalence and associated factors of insomnia in steel workers in China. Int. J. Occup. Med. Environ. Health 2020, 33, 215–233. [Google Scholar] [CrossRef]
- Millwood, I.Y.; Walters, R.G.; Mei, X.W.; Guo, Y.; Yang, L.; Bian, Z.; Bennett, D.A.; Chen, Y.; Dong, C.; Hu, R.; et al. Conventional and genetic evidence on alcohol and vascular disease aetiology: A prospective study of 500 000 men and women in China. Lancet 2019, 393, 1831–1842. [Google Scholar] [CrossRef]
- Celis-Morales, C.A.; Perez-Bravo, F.; Ibañez, L.; Salas, C.; Bailey, M.E.S.; Gill, J.M.R. Objective vs. self-reported physical activity and sedentary time: Effects of measurement method on relationships with risk biomarkers. PloS ONE 2012, 7, e36345. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Determination of Dust in the Air of Workplace. Part 1: Total Dust Concentration. Available online: http://niohp.chinacdc.cn/zyysjk/zywsbzml/201210/t20121012_70522.htm (accessed on 13 July 2022).
- Occupational Exposure Limits for Hazardous Agents in the Workplace. Part 2: Physical Agents. Available online: http://niohp.chinacdc.cn/zyysjk/zywsbzml/201303/t20130329_79199.htm (accessed on 13 July 2022).
- Measurement of Physical Agents in Workplace. Part 7: Heat Stress. Available online: http://niohp.chinacdc.cn/zyysjk/zywsbzml/201210/t20121012_70527.htm (accessed on 13 July 2022).
- Classification of Occupational Hazards at Workplaces. Part 2: Occupational Exposure to Chemicals. Available online: http://niohp.chinacdc.cn/zyysjk/zywsbzml/201210/t20121012_70489.htm (accessed on 13 July 2022).
- Methods for Determination of Inorganic Carbon Compounds in the Air of Workplace. Available online: http://niohp.chinacdc.cn/zyysjk/zywsbzml/201210/t20121015_70624.htm (accessed on 13 July 2022).
- Classification of Occupational Hazards at Workplaces. Part 4: Occupational Exposure to Noise. Available online: http://niohp.chinacdc.cn/zyysjk/zywsbzml/201307/t20130715_84934.htm (accessed on 13 July 2022).
- Measurement of Physical Agents in Workplace. Part 8: Noise. Available online: http://niohp.chinacdc.cn/zyysjk/zywsbzml/201210/t20121012_70526.htm (accessed on 13 July 2022).
Variables | Overall | Non-Decreased eGFR | Decreased eGFR | p Value |
---|---|---|---|---|
n = 6309 | n = 5356 | n = 953 | ||
Age (years), mean (SD) | 44.64 (8.31) | 43.97 (8.43) | 48.40 (6.46) | <0.001 |
Age (years), n (%) | <0.001 | |||
22–29 | 329 (5.21) | 319 (5.96) | 10 (1.05) | |
30–39 | 1478 (23.43) | 1383 (25.82) | 95 (9.97) | |
40–49 | 2369 (37.55) | 2006 (37.45) | 363 (38.09) | |
50–60 | 2133 (33.81) | 1648 (30.77) | 485 (50.89) | |
Education level, n (%) | <0.001 | |||
High school or below | 4860 (77.03) | 4048 (75.58) | 812 (85.20) | |
University or college | 1449 (22.97) | 1308 (24.42) | 141 (14.80) | |
BMI (kg/m2), mean (SD) | 25.77 (3.70) | 25.69 (3.75) | 26.26 (3.35) | <0.001 |
BMI (kg/m2), n (%) | <0.001 | |||
< 25 | 2766 (43.84) | 2424 (45.26) | 342 (35.89) | |
≥ 25 | 3543 (56.16) | 2932 (54.74) | 611 (64.11) | |
Lifestyle factors | ||||
Smoking status, n (%) | 0.009 | |||
Never | 2313 (36.66) | 1956 (36.52) | 357 (37.46) | |
Ever | 458 (7.26) | 368 (6.87) | 90 (9.44) | |
Current | 3538 (56.08) | 3032 (56.61) | 506 (53.10) | |
Drinking status, n (%) | 0.004 | |||
Never | 3422 (54.22) | 2900 (54.14) | 522 (54.77) | |
Ever | 244 (3.87) | 190 (3.55) | 54 (5.67) | |
Current | 2643 (41.89) | 2266 (42.31) | 377 (39.56) | |
Physical activity, n (%) | 0.891 | |||
Low | 1178 (18.67) | 1005 (18.76) | 173 (18.15) | |
Moderate | 3041 (48.20) | 2581 (48.19) | 460 (48.20) | |
High | 2090 (33.13) | 1770 (33.05) | 320 (33.58) | |
DASH score, mean (SD) | 26.92 (2.74) | 26.90 (2.72) | 27.01 (2.90) | 0.259 |
Blood pressure (mmHg) | ||||
SBP, mean (SD) | 129.57 (15.88) | 129.10 (15.63) | 132.20 (16.95) | <0.001 |
DBP, mean (SD) | 82.95 (10.34) | 82.56 (10.18) | 85.15 (10.94) | <0.001 |
Blood biochemistry (mmol/L) | ||||
TC, mean (SD) | 5.14 (0.97) | 5.13 (0.97) | 5.24 (0.96) | 0.001 |
TG, median (IQR) | 1.33 (0.92–1.99) | 1.31 (0.90–1.98) | 1.43 (1.00–2.06) | <0.001 |
HDL-C, mean (SD) | 1.28 (0.32) | 1.29 (0.33) | 1.25(0.29) | 0.002 |
LDL-C, mean (SD) | 3.23 (0.86) | 3.21 (0.86) | 3.35 (0.86) | <0.001 |
FPG, mean (SD) | 6.11 (1.35) | 6.11 (1.38) | 6.13 (1.16) | 0.599 |
hs-CRP (mg/dL), median (IQR) | 0.01 (0.00–0.07) | 0.01 (0.00–0.06) | 0.02 (0.00–0.08) | 0.006 |
MHNO | MUNO | MHO | MUO | |
---|---|---|---|---|
Cases/number (%) | 43/462 (9.31) | 299/2304 (12.98) | 36/225 (16.00) | 575/3318 (17.33) |
Model 1 | 1.00 | 1.45 (1.04 to 2.04) | 1.86 (1.15 to 2.98) | 2.04 (1.47 to 2.83) |
Model 2 | 1.00 | 1.12 (0.79 to 1.58) | 1.98 (1.22 to 3.23) | 1.70 (1.22 to 2.40) |
Model 3 | 1.00 | 1.14 (0.81 to 1.61) | 1.97 (1.21 to 3.22) | 1.74 (1.25 to 2.43) |
Model 4 | 1.00 | 1.13 (0.80 to 1.60) | 1.95 (1.20 to 3.17) | 1.70 (1.21 to 2.38) |
hs-CRP (mg/dL) | Obesity Phenotype | Decreased eGFR | OR (95% CI) | |
---|---|---|---|---|
No, (n (%)) | Yes, (n (%)) | |||
≤0.01 | MHNO | 298 (5.56) | 36 (3.78) | 1.00 |
≤0.01 | MUNO | 1253 (23.39) | 181 (18.99) | 0.94 (0.64 to 1.39) |
≤0.01 | MHO | 103 (1.92) | 16 (1.68) | 1.28 (0.67 to 2.44) |
≤0.01 | MUO | 1161 (21.68) | 231 (24.24) | 1.36 (0.93 to 1.99) |
>0.01 | MHNO | 121 (2.26) | 7 (0.73) | 0.46 (0.20 to 1.08) |
>0.01 | MUNO | 752 (14.04) | 118 (12.38) | 0.98 (0.65 to 1.47) |
>0.01 | MHO | 86 (1.61) | 20 (2.10) | 2.17 (1.17 to 4.02) |
>0.01 | MUO | 1582 (29.54) | 344 (36.10) | 1.53 (1.06 to 2.23) |
Interaction Terms | Total |
---|---|
Additive interaction a | |
Relative excess risk due to interaction, RERI (95% CI) | 0.25 (−0.10 to 0.60) |
Attributable proportion due to interaction, AP (95% CI) | 0.15 (−0.06 to 0.37) |
Synergy index, S (95% CI) | 1.65 (0.65 to 4.20) |
Multiplicative interaction, OR (95% CI) | 1.63 (1.35 to 1.97) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Zhang, S.; Wang, L.; Feng, H.; Li, X.; Wu, J.; Yuan, J. Association of Metabolically Healthy Obesity and Glomerular Filtration Rate among Male Steelworkers in North China. Int. J. Environ. Res. Public Health 2022, 19, 11764. https://doi.org/10.3390/ijerph191811764
Yu M, Zhang S, Wang L, Feng H, Li X, Wu J, Yuan J. Association of Metabolically Healthy Obesity and Glomerular Filtration Rate among Male Steelworkers in North China. International Journal of Environmental Research and Public Health. 2022; 19(18):11764. https://doi.org/10.3390/ijerph191811764
Chicago/Turabian StyleYu, Miao, Shengkui Zhang, Lihua Wang, Hongman Feng, Xiaoming Li, Jianhui Wu, and Juxiang Yuan. 2022. "Association of Metabolically Healthy Obesity and Glomerular Filtration Rate among Male Steelworkers in North China" International Journal of Environmental Research and Public Health 19, no. 18: 11764. https://doi.org/10.3390/ijerph191811764
APA StyleYu, M., Zhang, S., Wang, L., Feng, H., Li, X., Wu, J., & Yuan, J. (2022). Association of Metabolically Healthy Obesity and Glomerular Filtration Rate among Male Steelworkers in North China. International Journal of Environmental Research and Public Health, 19(18), 11764. https://doi.org/10.3390/ijerph191811764