First Trimester of Pregnancy as the Sensitive Period for the Association between Prenatal Mosquito Coil Smoke Exposure and Preterm Birth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.2.1. Prenatal MCS Exposure Measurement
2.2.2. Preterm Birth Assessment
2.2.3. Covariates Collection
2.3. Statistical Analyses
3. Results
3.1. Population Characteristics
3.2. Prenatal MCS Exposure in Different Periods of Pregnancy with Risk of PTB: Identifying the Sensitive Period
3.3. Subgroup and Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Preterm Birth: Fact Sheet. 2016. Available online: https://www.who.int/en/news-room/fact-sheets/detail/preterm-birth (accessed on 19 February 2018).
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of under-5 mortality in 2000–15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef]
- He, C.; Liu, L.; Chu, Y.; Perin, J.; Dai, L.; Li, X.; Miao, L.; Kang, L.; Li, Q.; Scherpbier, R.; et al. National and subnational all-cause and cause-specific child mortality in China, 1996–2015: A systematic analysis with implications for the Sustainable Development Goals. Lancet Glob. Health 2017, 5, e186–e197. [Google Scholar] [CrossRef]
- Saigal, S.; Doyle, L.W. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 2008, 371, 261–269. [Google Scholar] [CrossRef]
- Crump, C. An overview of adult health outcomes after preterm birth. Early Hum. Dev. 2020, 150, 105187. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Li, Q.; Guo, Y.; Zhou, H.; Wang, Q.M.; Shen, H.P.; Zhang, Y.P.; Yan, D.H.; Li, S.; Chen, G.; et al. Ambient temperature and the risk of preterm birth: A national birth cohort study in the mainland China. Environ. Int. 2020, 142, 105851. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-S. Indoor air pollution: Unusual sources. In Encyclopedia of Environmental Health; Elsevier Science: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Liu, W.; Zhang, J.; Hashim, J.H.; Jalaludin, J.; Hashim, Z.; Goldstein, B.D. Mosquito coil emissions and health implications. Environ. Health Perspect. 2003, 111, 1454–1460. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lydy, M.J.; You, J. Pyrethroids in indoor air during application of various mosquito repellents: Occurrence, dissipation and potential exposure risk. Chemosphere 2016, 144, 2427–2435. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Liu, J. Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis: A reproductive health perspective. Environ. Pollut. 2019, 245, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.R.; Chitra, G.A.; Elavarasu, G.; Kamaraj, P.; Kaliaperumal, K.; Kaur, P. Exposure to mosquito coil and biomass fuel smoke and respiratory health in rural Tamil Nadu, India. J. Public Health 2022, 44, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Lim, W.Y.; Eng, P.; Leong, S.S.; Lim, T.K.; Ng, A.W.; Tee, A.; Seow, A. Lung cancer in Chinese women: Evidence for an interaction between tobacco smoking and exposure to inhalants in the indoor environment. Environ. Health Perspect. 2010, 118, 1257–1260. [Google Scholar] [CrossRef]
- Chen, S.C.; Wong, R.H.; Shiu, L.J.; Chiou, M.C.; Lee, H. Exposure to mosquito coil smoke may be a risk factor for lung cancer in Taiwan. J. Epidemiol. 2008, 18, 19–25. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; Mishra, G.; Kuh, D. Life Course Epidemiology. In Handbook of Epidemiology; Ahrens, W., Pigeot, I., Eds.; Springer: New York, NY, USA, 2014; pp. 1521–1549. [Google Scholar]
- Allotey, P.A.; Harel, O. Multiple Imputation for Incomplete Data in Environmental Epidemiology Research. Curr. Environ. Health Rep. 2019, 6, 62–71. [Google Scholar] [CrossRef]
- Liu, W.; Huang, C.; Cai, J.; Wang, X.; Zou, Z.; Sun, C. Household environmental exposures during gestation and birth outcomes: A cross-sectional study in Shanghai, China. Sci. Total Environ. 2018, 615, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Balalian, A.A.; Liu, X.; Herbstman, J.B.; Daniel, S.; Whyatt, R.; Rauh, V.; Calafat, A.M.; Wapner, R.; Factor-Litvak, P. Prenatal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-dichlorophenoxyacetic acid and size at birth in urban pregnant women. Environ. Res. 2021, 201, 111539. [Google Scholar] [CrossRef] [PubMed]
- Jaakkola, J.J.K.; Jaakkola, N.; Zahlsen, K. Fetal growth and length of gestation in relation to prenatal exposure to environmental tobacco smoke assessed by hair nicotine concentration. Environ. Health Perspect. 2001, 109, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, A.T.; Canfield, M.A.; Romitti, P.A.; Botto, L.D.; Anderka, M.T.; Krikov, S.V.; Feldkamp, M.L. Does Maternal Exposure to Secondhand Tobacco Smoke During Pregnancy Increase the Risk for Preterm or Small-for-Gestational Age Birth? Matern. Child Health J. 2018, 22, 1418–1429. [Google Scholar] [CrossRef]
- Pervin, J.; Rahman, S.M.; Rahman, M.; Aktar, S.; Rahman, A. Association between antenatal care visit and preterm birth: A cohort study in rural Bangladesh. BMJ Open 2020, 10, e036699. [Google Scholar] [CrossRef]
- Giorgione, V.; Quintero Mendez, O.; Pinas, A.; Ansley, W.; Thilaganathan, B. Routine first-trimester pre-eclampsia screening and risk of preterm birth. Ultrasound Obstet. Gynecol. 2022, 60, 185–191. [Google Scholar] [CrossRef]
- Billionnet, C.; Mitanchez, D.; Weill, A.; Nizard, J.; Alla, F.; Hartemann, A.; Jacqueminet, S. Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia 2017, 60, 636–644. [Google Scholar] [CrossRef]
- Liu, W.; Huang, C.; Li, B.; Zhao, Z.; Yang, X.; Deng, Q.; Zhang, X.; Qian, H.; Sun, Y.; Qu, F.; et al. Household renovation before and during pregnancy in relation to preterm birth and low birthweight in China. Indoor Air 2019, 29, 202–214. [Google Scholar] [CrossRef]
- Qiu, J.; He, X.; Cui, H.; Zhang, C.; Zhang, H.; Dang, Y.; Han, X.; Chen, Y.; Tang, Z.; Zhang, H.; et al. Passive Smoking and Preterm Birth in Urban China. Am. J. Epidemiol. 2014, 180, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Younger, A.; Alkon, A.; Harknett, K.; Jean Louis, R.; Thompson, L.M. Adverse birth outcomes associated with household air pollution from unclean cooking fuels in low- and middle-income countries: A systematic review. Environ. Res. 2022, 204, 112274. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Q.; He, S.; Wu, K.; Ren, M.; Dong, H.; Di, J.; Yu, Z.; Huang, C. Ambient air pollution and gestational diabetes mellitus: A review of evidence from biological mechanisms to population epidemiology. Sci. Total Environ. 2020, 719, 137349. [Google Scholar] [CrossRef]
- Pedersen, M.; Halldorsson, T.I.; Olsen, S.F.; Hjortebjerg, D.; Ketzel, M.; Grandstrom, C.; Raaschou-Nielsen, O.; Sorensen, M. Impact of Road Traffic Pollution on Pre-eclampsia and Pregnancy-induced Hypertensive Disorders. Epidemiology 2017, 28, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, A.; Baer, R.J.; Jelliffe-Pawlowski, L.L.; Norton, M.E. Hypertensive Disorders of Pregnancy and Preterm Birth Rates among Black Women. Am. J. Perinatol. 2019, 36, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Nilsson, I.A.K.; Gissler, M.; Lavebratt, C. Associations of Maternal Diabetes and Body Mass Index With Offspring Birth Weight and Prematurity. JAMA Pediatr. 2019, 173, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Obesity, China Working Group on Obesity. Guidelines for the Prevention and Control of Overweight and Obesity in Chinese Adults. J. Nutr. 2004, 26, 1–4. [Google Scholar] [CrossRef]
- Al-Qaraghouli, M.; Fang, Y.M.V. Effect of Fetal Sex on Maternal and Obstetric Outcomes. Front. Pediatr. 2017, 5, 144. [Google Scholar] [CrossRef]
- Challis, J.; Newnham, J.; Petraglia, F.; Yeganegi, M.; Bocking, A. Fetal sex and preterm birth. Placenta 2013, 34, 95–99. [Google Scholar] [CrossRef]
- Pan, D.; Liu, S.; Huang, D.; Zeng, X.; Zhang, Y.; Pang, Q.; Wu, H.; Tan, H.J.J.; Liang, J.; Sheng, Y.; et al. Effects of household environmental exposure and ventilation in association with adverse birth outcomes: A prospective cohort study in rural China. Sci. Total Environ. 2022, 822, 153519. [Google Scholar] [CrossRef]
- Avicor, S.W.; Wajidi, M.F.F.; Owusu, E.O. To coil or not to coil: Application practices, perception and efficacy of mosquito coils in a malaria-endemic community in Ghana. Environ. Sci. Pollut. Res. Int. 2017, 24, 21138–21145. [Google Scholar] [CrossRef] [PubMed]
- Mytton, O.T.; McGready, R.; Lee, S.J.; Roberts, C.H.; Ashley, E.A.; Carrara, V.I.; Thwai, K.L.; Jay, M.P.; Wiangambun, T.; Singhasivanon, P.; et al. Safety of benzyl benzoate lotion and permethrin in pregnancy: A retrospective matched cohort study. BJOG 2007, 114, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Neta, G.; Goldman, L.R.; Barr, D.; Apelberg, B.J.; Witter, F.R.; Halden, R.U. Fetal exposure to chlordane and permethrin mixtures in relation to inflammatory cytokines and birth outcomes. Environ. Sci. Technol. 2011, 45, 1680–1687. [Google Scholar] [CrossRef] [PubMed]
- Ostrea, E.M., Jr.; Bielawski, D.M.; Posecion, N.C., Jr.; Corrion, M.; Villanueva-Uy, E.; Bernardo, R.C.; Jin, Y.; Janisse, J.J.; Ager, J.W. Combined analysis of prenatal (maternal hair and blood) and neonatal (infant hair, cord blood and meconium) matrices to detect fetal exposure to environmental pesticides. Environ. Res. 2009, 109, 116–122. [Google Scholar] [CrossRef]
- Ding, G.; Cui, C.; Chen, L.; Gao, Y.; Zhou, Y.; Shi, R.; Tian, Y. Prenatal exposure to pyrethroid insecticides and birth outcomes in Rural Northern China. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 264–270. [Google Scholar] [CrossRef]
- He, Y.; Jiang, Y.; Yang, Y.; Xu, J.; Zhang, Y.; Wang, Q.; Shen, H.; Zhang, Y.; Yan, D.; Peng, Z.; et al. Composition of fine particulate matter and risk of preterm birth: A nationwide birth cohort study in 336 Chinese cities. J. Hazard. Mater. 2022, 425, 127645. [Google Scholar] [CrossRef]
- Liu, X.; Ye, Y.; Chen, Y.; Li, X.; Feng, B.; Cao, G.; Xiao, J.; Zeng, W.; Li, X.; Sun, J.; et al. Effects of prenatal exposure to air particulate matter on the risk of preterm birth and roles of maternal and cord blood LINE-1 methylation: A birth cohort study in Guangzhou, China. Environ. Int. 2019, 133, 105177. [Google Scholar] [CrossRef]
- Ottone, M.; Broccoli, S.; Parmagnani, F.; Giannini, S.; Scotto, F.; Bonvicini, L.; Luberto, F.; Bacco, D.; Trentini, A.; Poluzzi, V.; et al. Source-related components of fine particulate matter and risk of adverse birth outcomes in Northern Italy. Environ. Res. 2020, 186, 109564. [Google Scholar] [CrossRef]
- Smith, R.B.; Beevers, S.D.; Gulliver, J.; Dajnak, D.; Fecht, D.; Blangiardo, M.; Douglass, M.; Hansell, A.L.; Anderson, H.R.; Kelly, F.J.; et al. Impacts of air pollution and noise on risk of preterm birth and stillbirth in London. Environ. Int. 2020, 134, 105290. [Google Scholar] [CrossRef]
- Ye, L.; Ji, Y.; Lv, W.; Zhu, Y.; Lu, C.; Xu, B.; Xia, Y. Associations between maternal exposure to air pollution and birth outcomes: A retrospective cohort study in Taizhou, China. Environ. Sci. Pollut. Res. Int. 2018, 25, 21927–21936. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, Y.; Wang, W.; Chen, R.; Liu, Y.; Liu, C.; Kan, H.; Gao, Y.; Tian, Y.; Shanghai Birth Cohort, S. Critical windows for maternal fine particulate matter exposure and adverse birth outcomes: The Shanghai birth cohort study. Chemosphere 2020, 240, 124904. [Google Scholar] [CrossRef] [PubMed]
- Freije, S.L.; Enquobahrie, D.A.; Day, D.B.; Loftus, C.; Szpiro, A.A.; Karr, C.J.; Trasande, L.; Kahn, L.G.; Barrett, E.; Kannan, K.; et al. Prenatal exposure to polycyclic aromatic hydrocarbons and gestational age at birth. Environ. Int. 2022, 164, 107246. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Liang, S.; Yang, S.; Trevathan, E.; Huang, Z.; Yang, R.; Wang, J.; Hu, K.; Zhang, Y.; Vaughn, M.; et al. Ambient air pollution and preterm birth: A prospective birth cohort study in Wuhan, China. Int. J. Hyg. Environ. Health 2016, 219, 195–203. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, L.; Bai, X.; Du, W.; Shen, G.; Fei, J.; Wang, Y.; Chen, A.; Chen, Y.; Zhao, M. Maternal ambient air pollution exposure with spatial-temporal variations and preterm birth risk assessment during 2013–2017 in Zhejiang Province, China. Environ. Int. 2019, 133, 105242. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J. The origins of the developmental origins theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.K.; McElrath, T.F.; Ko, Y.A.; Mukherjee, B.; Meeker, J.D. Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth. Environ. Int. 2014, 70, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, P.; Zhou, Y.; Xia, B.; Zhu, Q.; Ge, W.; Li, J.; Shi, H.; Xiao, X.; Zhang, Y. Prenatal fine particulate matter exposure, placental DNA methylation changes, and fetal growth. Environ. Int. 2021, 147, 106313. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, B.; Zheng, T.; Hu, J.; Zhou, A.; Bassig, B.A.; Xia, W.; Savitz, D.A.; Buka, S.; Xiong, C.; et al. Critical Windows of Prenatal Exposure to Cadmium and Size at Birth. Int. J. Environ. Res. Public Health 2017, 14, 58. [Google Scholar] [CrossRef]
- Huppertz, B. The anatomy of the normal placenta. J. Clin. Pathol. 2008, 61, 1296–1302. [Google Scholar] [CrossRef]
- Mook-Kanamori, D.O.; Steegers, E.A.; Eilers, P.H.; Raat, H.; Hofman, A.; Jaddoe, V.W. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA 2010, 303, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Elehinafe, F.B.; Okedere, O.B.; Adesanmi, A.J.; Jimoh, E.M. Assessment of Indoor Levels of Carbon Monoxide Emission from Smoldering Mosquito Coils Used in Nigeria. Environ. Health Insights 2022, 16, 11786302221091031. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, Y.; Wang, T.; Ji, Q.; Jia, Q.; Meng, T.; Ma, S.; Zhang, Z.; Li, Y.; Chen, R.; et al. Ambient particulate matter compositions and increased oxidative stress: Exposure-response analysis among high-level exposed population. Environ. Int. 2021, 147, 106341. [Google Scholar] [CrossRef] [PubMed]
- Augenreich, M.; Stickford, J.; Stute, N.; Koontz, L.; Cope, J.; Bennett, C.; Ratchford, S.M. Vascular dysfunction and oxidative stress caused by acute formaldehyde exposure in female adults. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H1369–H1379. [Google Scholar] [CrossRef] [PubMed]
- Piantadosi, C.A. Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic. Biol. Med. 2008, 45, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Martinez, M.A.; Dai, M.; Chen, D.; Ares, I.; Romero, A.; Castellano, V.; Martinez, M.; Rodriguez, J.L.; Martinez-Larranaga, M.R.; et al. Permethrin-induced oxidative stress and toxicity and metabolism. A review. Environ. Res. 2016, 149, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Kroener, L.; Wang, E.T.; Pisarska, M.D. Predisposing Factors to Abnormal First Trimester Placentation and the Impact on Fetal Outcomes. Semin. Reprod. Med. 2016, 34, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, P.; Mayhew, T.M.; Charnock-Jones, D.S. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta 2004, 25, 114–126. [Google Scholar] [CrossRef]
- Charnock-Jones, D.S.; Kaufmann, P.; Mayhew, T.M. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta 2004, 25, 103–113. [Google Scholar] [CrossRef]
- Christiaens, I.; Zaragoza, D.B.; Guilbert, L.; Robertson, S.A.; Mitchell, B.F.; Olson, D.M. Inflammatory processes in preterm and term parturition. J. Reprod. Immunol. 2008, 79, 50–57. [Google Scholar] [CrossRef]
- Taylor, T.; Quinton, A.; Hyett, J. The developmental origins of placental function. Australas. J. Ultrasound Med. 2017, 20, 141–146. [Google Scholar] [CrossRef]
- Morgan, T.K. Role of the Placenta in Preterm Birth: A Review. Am. J. Perinatol. 2016, 33, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.E.; Werler, M.M. Epidemiology of ischemic placental disease: A focus on preterm gestations. Semin. Perinatol. 2014, 38, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.C. First-trimester determination of complications of late pregnancy. JAMA 2010, 303, 561–562. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.E.; Park, H.; Hong, Y.C.; Ha, M.; Kim, Y.; Chang, N.; Kim, B.N.; Kim, Y.J.; Yu, S.D.; Ha, E.H. Prenatal bisphenol A and birth outcomes: MOCEH (Mothers and Children’s Environmental Health) study. Int. J. Hyg. Environ. Health 2014, 217, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Wainstock, T.; Shoham-Vardi, I.; Glasser, S.; Anteby, E.; Lerner-Geva, L. Fetal sex modifies effects of prenatal stress exposure and adverse birth outcomes. Stress 2015, 18, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.M.; Golding, J.; Emond, A.M. Moderate Prenatal Cadmium Exposure and Adverse Birth Outcomes: A Role for Sex-Specific Differences? Paediatr. Perinat. Epidemiol. 2016, 30, 603–611. [Google Scholar] [CrossRef]
- Ghidini, A.; Salafia, C.M. Gender differences of placental dysfunction in severe prematurity. BJOG 2005, 112, 140–144. [Google Scholar] [CrossRef]
- Cagnacci, A.; Arangino, S.; Caretto, S.; Mazza, V.; Volpe, A. Sexual dimorphism in the levels of amniotic fluid leptin in pregnancies at 16 weeks of gestation: Relation to fetal growth. Eur. J. Obstet. Gynecol. Reprod. Biol. 2006, 124, 53–57. [Google Scholar] [CrossRef]
- Orzack, S.H.; Stubblefield, J.W.; Akmaev, V.R.; Colls, P.; Munne, S.; Scholl, T.; Steinsaltz, D.; Zuckerman, J.E. The human sex ratio from conception to birth. Proc. Natl. Acad. Sci. USA 2015, 112, E2102–E2111. [Google Scholar] [CrossRef] [PubMed]
- James, W.H.; Grech, V. The human sex ratio at conception. Early Hum. Dev. 2020, 140, 104862. [Google Scholar] [CrossRef]
Characteristics | Mean ± SD or n (%) |
---|---|
Maternal age at conception, years, Mean ± SD | 28.28 ± 4.40 |
Maternal education, n (%) | |
Less than high school | 10,054 (15.1) |
High school | 13,590 (20.4) |
Greater than high school | 42,859 (64.4) |
Household income, RMB/month, n (%) | |
<20,000 | 33,196 (49.9) |
20,000–39,999 | 22,231 (33.4) |
≥40,000 | 11,076 (16.7) |
Marital status, n (%) | |
Married | 64,888 (97.6) |
Not married | 1615 (2.4) |
Parity, n (%) | |
Nulliparous | 21,659 (32.6) |
Multiparous | 44,844 (67.4) |
Frequency of prenatal care visits, n (%) | |
0 | 3919 (5.9) |
1–6 | 11,772 (17.7) |
≥7 | 50,812 (76.4) |
Maternal pre-pregnancy BMI, kg/m2, n (%) | |
<18.5 | 13,269 (20.0) |
18.5–23.9 | 45,369 (68.2) |
>24 | 7865 (11.8) |
Child’s sex, n (%) | |
Boy | 35,507 (53.4) |
Girl | 30,996 (46.6) |
Birth season, n (%) | |
Spring | 15,523 (23.3) |
Summer | 16,236 (24.4) |
Autumn | 18,205 (27.4) |
Winter | 16,539 (24.9) |
MCS exposure, n (%) | |
No | 46,167 (69.4) |
Yes | 20,336 (30.6) |
PTB, n (%) | |
No | 61,716 (92.8) |
Yes | 4787 (7.2) |
Exposure Periods | MCS Exposure | PTB/n | ORs (95% CI) | |
---|---|---|---|---|
Crude | Adjusted a | |||
Entire pregnancy | No | 3186/46,167 | 1.00 | 1.00 |
Yes | 1601/20,336 | 1.15 (1.08, 1.23) | 1.12 (1.05, 1.20) | |
The first trimester | No | 3340/48,643 | 1.00 | 1.00 |
Yes | 1447/17,860 | 1.20 (1.12, 1.27) | 1.17 (1.09, 1.25) | |
The second trimester | No | 3461/49,641 | 1.00 | 1.00 |
Yes | 1326/16,862 | 1.14 (1.07, 1.22) | 1.11 (1.03, 1.19) | |
The third trimester | No | 3548/50,502 | 1.00 | 1.00 |
Yes | 1239/16,001 | 1.11 (1.04, 1.19) | 1.08 (1.01, 1.16) |
Exposure Periods | Child’s Sex | aORs (95% CI) |
---|---|---|
Entire pregnancy | Boys | 1.05 (0.96, 1.15) |
Girls | 1.22 (1.11, 1.35) | |
The first trimester | Boys | 1.09 (0.99, 1.19) |
Girls | 1.28 (1.16, 1.42) | |
The second trimester | Boys | 1.03 (0.94, 1.13) |
Girls | 1.22 (1.10, 1.35) | |
The third trimester | Boys | 1.00 (0.91, 1.10) |
Girls | 1.19 (1.07, 1.32) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.-C.; Strodl, E.; Huang, L.-H.; Lu, Q.; Liang, Y.; Chen, W.-Q. First Trimester of Pregnancy as the Sensitive Period for the Association between Prenatal Mosquito Coil Smoke Exposure and Preterm Birth. Int. J. Environ. Res. Public Health 2022, 19, 11771. https://doi.org/10.3390/ijerph191811771
Liu X-C, Strodl E, Huang L-H, Lu Q, Liang Y, Chen W-Q. First Trimester of Pregnancy as the Sensitive Period for the Association between Prenatal Mosquito Coil Smoke Exposure and Preterm Birth. International Journal of Environmental Research and Public Health. 2022; 19(18):11771. https://doi.org/10.3390/ijerph191811771
Chicago/Turabian StyleLiu, Xin-Chen, Esben Strodl, Li-Hua Huang, Qing Lu, Yang Liang, and Wei-Qing Chen. 2022. "First Trimester of Pregnancy as the Sensitive Period for the Association between Prenatal Mosquito Coil Smoke Exposure and Preterm Birth" International Journal of Environmental Research and Public Health 19, no. 18: 11771. https://doi.org/10.3390/ijerph191811771
APA StyleLiu, X. -C., Strodl, E., Huang, L. -H., Lu, Q., Liang, Y., & Chen, W. -Q. (2022). First Trimester of Pregnancy as the Sensitive Period for the Association between Prenatal Mosquito Coil Smoke Exposure and Preterm Birth. International Journal of Environmental Research and Public Health, 19(18), 11771. https://doi.org/10.3390/ijerph191811771