Colicins and Microcins Produced by Enterobacteriaceae: Characterization, Mode of Action, and Putative Applications
Abstract
:1. Introduction
2. Colicins and Microcins
2.1. Colicins—Short Overview of Genetic Organization, Classification, and Mechanisms of Action
2.2. Microcins—Short Overview of Genetic Organization, Classification, and Mechanisms of Action
3. Interaction of Colicins and Microcins with Prokaryotic and Eukaryotic Cells
3.1. Colicins
3.2. Microcins
4. Potential Application of Colicins and Microcins
4.1. Applications in Medicine
4.1.1. Antimicrobial Activity
4.1.2. Cancer Therapy
5. Applications in Food Biotechnology
5.1. Antimicrobial Activity
5.2. Probiotic Activity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halkman, H.B.D.; Halkman, A.K. Indicator organisms. In Encyclopedia of Food Microbiology, 2nd ed.; Carl, A., Batt, M., Lou, T., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 358–363. [Google Scholar] [CrossRef]
- D’Agostino, M.; Cook, N. Foodborne Pathogens. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 83–86. [Google Scholar] [CrossRef]
- Jha, C.K.; Aeron, A.; Patel, B.V.; Maheshwari, D.K.; Saraf, M. Enterobacter: Role in plant growth promotion. In Bacteria in Agrobiology: Plant Growth Responses; Maheshwari, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 159–182. [Google Scholar] [CrossRef]
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar] [CrossRef] [PubMed]
- Morales-López, S.; Yepes, J.A.; Prada-Herrera, J.C.; Torres-Jiménez, A. Enterobacteria in the 21st century: A review focused on taxonomic changes. J. Infect. Dev. Ctries 2019, 13, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Tajbakhsh, M.; Karimi, A.; Fallah, F.; Akhavan, M.M. Overview of ribosomal and non-ribosomal antimicrobial peptides produced by gram positive bacteria. Cell Mol. Biol. 2017, 63, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Drider, D.; Rebuffat, S. Prokaryotic Antimicrobial Peptides: From Genes to Applications; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Gratia, A. Sur un remarquable example d’antagonisme entre deux souches de colibacille. Compt. Rend. Soc. Biol. 1925, 93, 1040–1042. [Google Scholar]
- Gordon, D.M.; O’Brien, C.L. Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology 2006, 152, 3239–3244. [Google Scholar] [CrossRef] [PubMed]
- Cursino, L.; Smarda, J.; Chartone-Souza, E.; Nascimento, A.M.A. Recent updated aspects of colicins of Enterobacteriaceae. Braz. J. Microbiol. 2002, 33, 185–195. [Google Scholar] [CrossRef]
- Chérier, D.; Patin, D.; Blanot, D.; Touzé, T.; Barreteau, H. The biology of colicin m and its orhologs. Antibiotics 2021, 10, 1109. [Google Scholar] [CrossRef]
- Baquero, F.; Lanza, V.F.; Baquero, M.; Campo, R.; Bravo-Vázquez, A.D. Microcins in Enterobacteriaceae: Peptide antimicrobials in the eco-active intestinal chemosphere. Front. Microbiol. 2019, 10, 2261. [Google Scholar] [CrossRef]
- Gillor, O.; Etzion, A.; Riley, M. The dual role of bacteriocins as anti-and probiotics. Appl. Microbiol. Biotechnol. 2008, 81, 591–606. [Google Scholar] [CrossRef]
- Hegarty, J.W.; Guinane, C.M.; Ross, R.P.; Hill, C.; Cotter, P.D. Bacteriocin production: Arelatively unharnessed probiotic trait? F1000Research 2016, 5, 2587. [Google Scholar] [CrossRef]
- Flaherty, R.A.; Freed, S.D.; Lee, S.W. The wide world of ribosomally encoded bacterial peptides. PLoS Pathog. 2014, 10, e1004221. [Google Scholar] [CrossRef]
- Destoumieux-Garzón, D.; Peduzzi, J.; Rebuffat, S. Focus on modified microcins: Structural features and mechanisms of action. Biochimie 2002, 84, 511–519. [Google Scholar] [CrossRef]
- Cascales, E.; Buchanan, S.K.; Duché, D.; Kleanthous, C.; Lloubes, R.; Postle, K.; Riley, M.; Slatin, S.; Cavard, D. Colicin biology. Microbiol. Mol. Biol. Rev. 2007, 71, 158–229. [Google Scholar] [CrossRef]
- Paquette, S.J.; Zaheer, R.; Stanford, K.; Thomas, J.; Reuter, T. Competition among escherichia coli strains for space and resources. Veter. Sci. 2018, 5, 93. [Google Scholar] [CrossRef]
- Cameron, A.; Zaheer, R.; Adator, E.H.; Barbieri, R.; Reuter, T.; McAllister, T.A. Bacteriocin occurrence and activity in Escherichia coli isolated from bovines and wastewater. Toxins 2019, 11, 475. [Google Scholar] [CrossRef]
- Konisky, J. Colicins and other bacteriocins with established modes of action. Annu. Rev. Microbiol. 1982, 36, 125–144. [Google Scholar] [CrossRef]
- Braun, V.; Pilsl, H.; Gross, P. Colicins: Structures, modes of action, transfer through membranes and evolution. Arch. Microbiol. 1994, 161, 199–206. [Google Scholar] [CrossRef]
- Duché, D.; Letellier, L.; Géli, V.; Bénédetti, H.; Baty, D. Quantification of group a colicin import sites. J. Bacteriol. 1995, 177, 4935–4939. [Google Scholar] [CrossRef]
- Braun, V.; Patzer, S.I.; Hantke, K. Ton-dependent colicins and microcins: Modular Design and Evolution. Biochimie 2002, 84, 365–380. [Google Scholar] [CrossRef]
- Šmarda, J.; Šmajs, D. Colicins-exocellular lethal proteins of Escherichia coli. Folia Microbiol. 1998, 43, 563–582. [Google Scholar] [CrossRef]
- Hardy, K.G.; Meynell, G.G.; Dowman, J.E.; Spratt, B.G. Two Major Groups of Colicinogenic Factors: Their evolutionary significance. Mol. Gen. Genet. 1973, 125, 217–230. [Google Scholar] [CrossRef]
- Riley, M.A. Positive selection for colicin diversity in bacteria. Mol. Biol. Evol. 1993, 10, 1048–1059. [Google Scholar] [CrossRef]
- Herschman, H.R.; Helinski, D.R. Comparative study of the events associated with colicin induction. J. Bacteriol. 1967, 94, 691–699. [Google Scholar] [CrossRef]
- Lu, F.M.; Chak, K.F. Two overlapping sos boxes in cole1 operon are responsible for the viability of cells harboring the col plasmid. Mol. Gen. Genet. 1996, 251, 407–411. [Google Scholar] [CrossRef]
- Pugsley, A.P.; Schwartz, M.; Lavina, M.; Moreno, F. On the effect of ompr mutation on colicin e2 production. FEMS Microbiol. Lett. 1983, 19, 87–92. [Google Scholar] [CrossRef]
- Ebina, Y.; Nakazawa, A. Cyclic AMP-dependent initiation and ρ-dependent termination of colicin e1 gene transcription. J. Biol. Chem. 1983, 258, 7072–7078. [Google Scholar] [CrossRef]
- Dekker, N.; Tommassen, J.; Verheij, H.M. Bacteriocin release protein triggers dimerization of outer membrane phospholipase A In vivo. J. Bacteriol. 1999, 181, 3281–3283. [Google Scholar] [CrossRef] [Green Version]
- Bénédetti, H.; Frenette, M.; Baty, D.; Knibiehler, M.; Pattus, F.; Lazdunski, J.C. Individual domains of colicins confer specificity in colicin uptake, in pore-properties and in immunity requirements. J. Mol. Biol. 1991, 217, 429–439. [Google Scholar] [CrossRef]
- Davies, J.K.; Reeves, P. Genetics of resistance to colicins in Escherichia coli K12: Cross-resistance among resistance of group A. J. Bacteriol. 1975, 123, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.A.; Valvano, M.A. Role of tol genes in cloacin DF13 susceptibility of Escherichia Coli K-12 strains expressing the cloacin DF13- aerobactin receptor Lut A. J. Bacteriol. 1993, 175, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Ahmer, B.M.M.; Thomas, M.G.; Larsen, R.A.; Postle, K. Characterization of the exbBD operon of Escherichia coli and role of ExbB and ExbD in TonB function and stability. J. Bacteriol. 1995, 177, 4742–4747. [Google Scholar] [CrossRef] [PubMed]
- Michel-Briand, Y.; Baysse, C. The pyocins of Pseudomonas aeruginosa. Biochimie 2002, 84, 499–510. [Google Scholar] [CrossRef]
- Barreteau, H.; Bouhss, A.; Gérard, F.; Duché, D.; Boussaid, B.; Blanot, D.; Lloubes, R.; Mengin-Lecreulx, D.; Touzé, T. Deciphering the catalytic domain of colicin M, a peptidoglycan lipid II degrading enzyme. J. Biol. Chem. 2010, 285, 12378–12389. [Google Scholar] [CrossRef]
- Cavard, D.; Sauve, P.; Heitz, F.; Pattus, F.; Martinez, C.; Dijkman, R.; Lazdunski, C. Hydrodynamic properties of colicin A. existence of a high-affinity lipid-binding site and oligomerization at acid pH. Eur. J. Biochem. 1988, 172, 507–512. [Google Scholar] [CrossRef]
- Schein, S.J.; Kagan, B.L.; Finkelstein, A. Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature 1978, 276, 159–163. [Google Scholar] [CrossRef]
- Parker, M.W.; Pattus, F.; Tucker, A.D.; Tsernoglou, D. Structure of the membrane pore-forming fragments of colicin A. Nature 1989, 337, 93–96. [Google Scholar] [CrossRef]
- Lakey, J.H.; Duche, D.; Gonzalez-Manas, J.M.; Baty, D.; Pattus, F. Fluorescence energy transfer distance measurements: The hydrophobic helical hairpin of colicin a in the membrane bound state. J. Mol. Biol. 1993, 230, 1055–1067. [Google Scholar] [CrossRef]
- Slatin, S.L.; Duche, D.; Kienker, P.K.; Baty, D. Gating movements of colicin A and Colicin Ia are different. J. Membr. Biol. 2004, 202, 73–83. [Google Scholar] [CrossRef]
- Collarini, M.; Amblard, G.; Lazdunski, C.; Pattus, F. Gating processes of channels induced by colicin A, its C-terminal fragment and colicin E1, in planar lipid bilayers. Eur. Biophys. J. 1987, 14, 147–153. [Google Scholar] [CrossRef]
- Nogueira, R.A.; Varanda, W.A. Gating properties of channels formed by colicin Ia in planar lipid bilayer membranes. J. Membr. Biol. 1988, 105, 143–153. [Google Scholar] [CrossRef]
- James, R.; Penfold, C.N.; Moore, G.R.; Kleanthous, C. Killing of E. coli cells by E group nuclease colicins. Biochimie 2002, 84, 381–389. [Google Scholar] [CrossRef]
- Ku, W.Y.; Liu, Y.W.; Hsu, Y.C.; Liao, C.C.; Liang, P.H.; Yuan, H.S.; Chak, K.F. The zinc ion in the HNH motif of the endonuclease domain of colicin E7 is not required for DNA binding but is essential for DNA hydrolysis. Nucleic Acids Res. 2002, 30, 1670–1678. [Google Scholar] [CrossRef]
- Krone, W.J.A.; de Vries, P.; Koningstein, G.; de Jonge, A.J.R.; de Graaf, F.K.; Oudega, B. uptake of cloacin DF13 by susceptible cells: Removal of immunity protein and fragmentation of cloacin molecules. J. Bacteriol. 1986, 166, 260–268. [Google Scholar] [CrossRef]
- Braun, V.; Schaller, K.; Wabl, M.R. Isolation, characterization, and action of colicin M. Antimicrob. Agents Chemother. 1974, 5, 520–533. [Google Scholar] [CrossRef]
- Harkness, R.E.; Braun, V. Colicin M inhibits peptidoglycan biosynthesis by interfering with lipid carrier recycling. J. Biol. Chem. 1989, 264, 6177–6182. [Google Scholar] [CrossRef]
- Harkness, R.E.; Olschläger, T. The biology of colicin M. FEMS Microbiol. Rev. 1991, 8, 27–41. [Google Scholar] [CrossRef]
- Baquero, F.; Moreno, F. The microcins. FEMS Microbiol. Lett. 1984, 23, 117–124. [Google Scholar] [CrossRef]
- Duquesne, S.; Destoumieux-Garzón, D.; Peduzzi, J.; Rebuffat, S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 2007, 24, 708–734. [Google Scholar] [CrossRef]
- Duquesne, S.; Petit, V.; Peduzzi, J.; Rebuffat, S. Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria. J. Mol. Microbiol. Biotechnol. 2007, 13, 200–209. [Google Scholar] [CrossRef]
- Severinov, K.; Semenova, E.; Kazakov, A.; Kazakov, T.; Gelfand, M.S. Low-molecular-weight post-translationally modified microcins. Mol. Microbiol. 2007, 65, 1380–1394. [Google Scholar] [CrossRef]
- Poey, M.E.; Azpiroz, M.F.; Laviña, M. Comparative analysis of chromosome-encoded microcins. Antimicrob. Agents Chemother. 2006, 50, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Vassiliadis, G.; Destoumieux-Garzón, D.; Lombard, C.; Rebuffat, S.; Peduzzi, J. Siderophore microcins form the first family of structure-related antimicrobial peptides from Enterobacteriaceae:isolation and characterization of microcins M and H47. Antimicrob. Agents Chemother. 2010, 54, 288–297. [Google Scholar] [CrossRef]
- Rebuffat, S. Microcins in action: Amazing defence strategies of Enterobacteria. Biochem. Soc. Trans 2012, 40, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Lagos, R.; Villanueva, J.E.; Monasterio, O. Identification and properties of the genes encoding microcin E492 and its immunity protein. J. Bacteriol. 1999, 181, 212–217. [Google Scholar] [CrossRef]
- Lagos, R.; Baeza, M.; Corsini, G.; Hetz, C.; Strahsburger, E.; Castillo, J.A.; Vergara, C.; Monasterio, O. Structure, organization and characterization of the gene cluster involved in the production of microcin E492, a channel-forming bacteriocin. Mol. Microbiol. 2011, 42, 229–243. [Google Scholar] [CrossRef]
- Thomas, X.; Destoumieux-Garzon, D.; Peduzzi, J.; Afonso, C.; Blond, A.; Biriirakis, N.; Goulard, C.; Dubost, L.; Thai, R.; Tabet, J.C.; et al. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J. Biol. Chem. 2004, 279, 28233–28242. [Google Scholar] [CrossRef]
- Rebuffat, S. Microcins. In Handbook of Biologically Active Peptides, 2nd ed.; Kastin, A.J., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 129–137. [Google Scholar] [CrossRef]
- Pons, A.M.; Delalande, F.; Duarte, M.; Benoit, S.; Lanneluc, I.; Sablé, S.; Van Dorsselaer, A.; Cottenceau, G. Genetic analysis and complete primary structure of microcin L. Antimicrob. Agents Chemother. 2004, 48, 505–513. [Google Scholar] [CrossRef]
- Fomenko, E.D.; Metlitskaya, A.Z.; Péduzzi, J.; Goulard, C.; Katrukha, G.S.; Gening, L.V.; Rebuffat, S.; Khmel, I.A. Microcin C51 plasmid genes: Possible source of horizontal gene transfer. Antimicrob. Agents Chemother. 2003, 47, 2868–2874. [Google Scholar] [CrossRef]
- Allali, N.; Afif, H.; Couturier, M.; Van Melderen, L. The highly conserved TldD and TldE proteins of Escherichia coli are involved in microcin B17 processing and in CcdA degradation. J. Bacteriol. 2002, 12, 3224–3231. [Google Scholar] [CrossRef]
- Morin, N.; Lanneluc, I.; Connil, N.; Cottenceau, M.; Pons, A.M.; Sablé, S. Mechanism of bactericidal activity of microcin L in Escherichia coli and Salmonella enterica. Antimicrob. Agents Chemother. 2011, 55, 997–1007. [Google Scholar] [CrossRef]
- Rebuffat, S. Microcins from Enterobacteria: On the edge between Gram-positive bacteriocins and colicins. In Prokaryotic Antimicrobial Peptides: From Genes to Applications; Drider, D., Rebuffat, S., Eds.; Springer: New York, NY, USA, 2011; pp. 333–353. [Google Scholar]
- Pierrat, O.A.; Maxwell, A. Evidence for the role of DNA strand passage in the mechanism of action of microcin B17 on DNA gyrase. Biochemistry 2005, 44, 4204–4215. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, J.; Sineva, E.; Knight, J.; Levy, R.M.; Ebright, R.H. Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. Mol. Cell 2004, 14, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, E.; Laviña, M. The proton channel is the minimal structure of ATP synthase necessary and sufficient for microcin H47 antibiotic action. Antimicrob. Agents Chemother. 2003, 47, 181–187. [Google Scholar] [CrossRef]
- Scholl, D. Phage Tail-Like Bacteriocins. Annu. Rev. Virol. 2017, 4, 453–467. [Google Scholar] [CrossRef]
- Simons, A.; Alhanout, K.; Duval, R.E. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 2020, 8, 639. [Google Scholar] [CrossRef]
- Coyte, K.Z.; Schluter, J.; Foster, K.R. The ecology of the microbiome: Networks, competition, and stability. Science 2015, 350, 663–666. [Google Scholar] [CrossRef]
- Hibbing, M.E.; Fuqua, C.; Parsek, M.R.; Peterson, S.B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 2010, 8, 15–25. [Google Scholar] [CrossRef]
- García-Bayona, L.; Comstock, L.E. Bacterial antagonism in hostassociated microbial communities. Science 2018, 361, eaat2456. [Google Scholar] [CrossRef]
- Jordi, B.J.; Boutaga, K.; van Heeswijk, C.M.; van Knapen, F.; Lipman, L.J. Sensitivity of Shiga toxin-producing Escherichia coli (STEC) strains for colicins under different experimental conditions. FEMS Microbiol. Lett. 2001, 204, 329–334. [Google Scholar] [CrossRef]
- Stahl, C.H.; Callaway, T.R.; Lincoln, L.M.; Lonergan, S.M.; Genovese, K.J. Inhibitory activities of colicins against Escherichia coli strains responsible for postweaning diarrhea and edema disease in swine. Antimicrob. Agents Chemother. 2004, 48, 3119–3121. [Google Scholar] [CrossRef]
- Brown, C.; Smith, K.; McCaughey, L.; Walker, D. Colicin-like bacteriocins as novel therapeutic agents for the treatment of chronic biofilm-mediated infection. Biochem. Soc. Trans. 2012, 40, 1549–1552. [Google Scholar] [CrossRef]
- Trautner, B.W.; Hull, R.A.; Darouiche, R.O. Colicins prevent colonization of urinary catheters. J. Antimicrob. Chemother. 2005, 56, 413–415. [Google Scholar] [CrossRef]
- Gillor, O.; Giladi, I.; Riley, M. Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol. 2009, 9, 165. [Google Scholar] [CrossRef]
- Micenková, L.; Bosák, J.; Kucera, J.; Hrala, M.; Dolejšová, T.; Šedo, O.; Linke, D.; Fišer, R.; Šmajs, D. Colicin Z, a structurally and functionally novel colicin type that selectively kills enteroinvasive Escherichia coli and Shigella strains. Sci. Rep. 2019, 9, 11127. [Google Scholar] [CrossRef]
- Tahamtan, Y.; Golestan, F.; Moazamian, E. Evaluation of colicin effect on the induction of treated mice in prevention of infection caused by Escherichia coli K99. Int. J. Enteric. Pathog. 2016, 4, 28–32. [Google Scholar] [CrossRef]
- Majeed, H.; Gillor, O.; Kerr, B.; Riley, M.A. Competitive interactions in Escherichia coli populations: The role of bacteriocins. ISME J. 2011, 5, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Valenzuela, A.; Morales, E.; Rodríguez, M.; López-Espinosa, M.J.; Coque, M.T.; Sunyer, J.; Baquero, F. Copper-resistance in Enterobacteriaceae and other Proteobacteria from children’s intestine. J. Environ. Health Sci. 2017, 3, 1–13. [Google Scholar]
- Metelev, M.; Serebryakova, M.; Ghilarov, D.; Zhao, Y.; Severinov, K. Structure of microcin B-like compounds produced by Pseudomonas syringae and species specificity of their antibacterial action. J. Bacteriol. 2013, 195, 4129–4137. [Google Scholar] [CrossRef]
- Lee, J.; Cho, Y.J.; Yang, J.Y.; Jung, Y.J.; Hong, S.G.; Kim, O.S. Complete genome sequence of Pseudomonas antarctica PAMC 27494, a bacteriocin-producing psychrophile isolated from Antarctica. J. Biotechnol. 2017, 259, 15–18. [Google Scholar] [CrossRef]
- Lopez, F.E.; Vincent, P.A.; Zenoff, A.M.; Salomón, R.A.; Farías, R.N. Efficacy of microcin J25 in biomatrices and in a mouse model of Salmonella infection. J. Antimicrob. Chemother. 2007, 59, 676–680. [Google Scholar] [CrossRef]
- Håvarstein, L.S.; Holo, H.; Nes, I.F. The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria. Microbiology 1994, 140, 2383–2389. [Google Scholar] [CrossRef] [PubMed]
- Sablé, S.; Duarte, M.; Bravo, D.; Lanneluc, I.; Pons, A.M.; Cottenceau, G.; Moreno, F. Wild-type Escherichia coli producing microcins B17, D93, J25, and L; cloning of genes for microcin L production and immunity. Can. J. Microbiol. 2003, 49, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Wooley, R.E.; Gibbs, P.S.; Shotts, E.B. Inhibition of Salmonella Typhimurium in the chicken intestinal tract by a transformed avirulent avian Escherichia coli. Avian Dis. 1999, 43, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Zschüttig, A.; Zimmermann, K.; Blom, J.; Goesmann, A.; Pöhlmann, C.; Gunzer, F. Identification and characterization of microcin S, a new antibacterial peptide produced by probiotic Escherichia coli G3/10. PLoS ONE 2012, 7, e33351. [Google Scholar] [CrossRef]
- Zschüttig, A.; Auerbach, C.; Meltke, S.; Eichhorn, C.; Brandt, M.; Blom, J.; Goesmann, A.; Jarek, M.; Scharfe, M.; Zimmermann, K.; et al. Complete sequence of probiotic symbioflor 2 Escherichia coli strain G3/10 and draft sequences of symbioflor 2 E. coli strains G1/2, G4/9, G5, G6/7, and G8. Genome Announc. 2015, 3, e01330-14. [Google Scholar] [CrossRef]
- O’Brien, G.J.; Mahanty, H.K. Colicin 24, a new plasmid-borne colicin from a uropathogenic strain of Escherichia coli. Plasmid 1994, 31, 288–296. [Google Scholar] [CrossRef]
- Dicks, L.M.T.; Dreyer, L.; Smith, C.; van Staden, A.D. A Review: The fate of bacteriocins in the human gastro-intestinal tract: Do they cross the gut-blood barrier? Front. Microbiol. 2018, 28, 2297. [Google Scholar] [CrossRef] [Green Version]
- Hegemann, J.D.; De Simone, M.; Zimmermann, M.; Knappe, T.A.; Xie, X.; Di Leva, F.S.; Marinelli, L.; Novellino, E.; Zahler, S.; Kessler, H.; et al. Rational improvement of the affinity and selectivity of integrin binding of grafted lasso peptides. J. Med. Chem. 2014, 57, 5829–5834. [Google Scholar] [CrossRef]
- Hammad, R.N.; Obaid, H.H. Assessment of genotoxicity of Citrobacter freundii bacteriocin on bone marrow cells in albino mice. Iraqi J. Sci. 2020, 61, 999–1007. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef]
- Nedialkova, L.P.; Denzler, R.; Koeppel, M.B.; Diehl, M.; Ring, D.; Wille, T.; Gerlach, R.G.; Stecher, B. Inflammation Fuels Colicin Ib-Dependent Competition of Salmonella Serovar Typhimurium and E. coli in Enterobacterial blooms. PLoS Pathog. 2014, 10, e1003844. [Google Scholar] [CrossRef]
- Pang, W.; Wang, H.; Shi, L.; Sun, Y.; Wang, X.; Wang, M.; Li, J.; Wang, H.; Shi, G. Immunomodulatory effects of Escherichia coli ATCC 25922 on allergic airway inflammation in a mouse model. PLoS ONE 2013, 8, e59174. [Google Scholar] [CrossRef]
- Yang, G.; Yue, Y.; Li, D.; Duan, C.; Qiu, X.; Zou, Y.; Zhu, Y.; Lauridsen, C.; Wang, J. Antibacterial and immunomodulatory effects of Pheromonicin-NM on Escherichia coli-challenged bovine mammary epithelial cells. Int. Immunopharmacol. 2020, 84, 106569. [Google Scholar] [CrossRef]
- Brown, C.; Smith, K.; Wall, D.M.; Walker, D. Activity of species-specific antibiotics against Crohn’s disease–associated adherent-invasive Escherichia coli. Inflamm. Bowel Dis. 2015, 21, 2372–2382. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Hassett, M.J.; O’Malley, A.J.; Pakes, J.R.; Newhouse, J.P.; Earle, C.C. Frequency and cost of chemotherapy-related serious adverse effects in a population sample of women with breast cancer. J. Natl. Cancer Inst. 2006, 98, 1108–1117. [Google Scholar] [CrossRef]
- Valeri, N.; Gasparini, P.; Braconi, C.; Paone, A.; Lovat, F.; Fabbri, M.; Sumani, K.M.; Alder, H.; Amadori, D.; Patel, T.; et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc. Natl. Acad. Sci. USA 2010, 107, 21098–21103. [Google Scholar] [CrossRef] [Green Version]
- Collins, B.; Mac Kenzie, J.; Tasca, G.A.; Scherling, C.; Smith, A. Cognitive effects of chemotherapy in breast cancer patients: A dose—Response study. Psycho-Oncology 2012, 22, 1517–1527. [Google Scholar] [CrossRef]
- Mitrović, T.; Stamenković, S.; Cvetković, V.; Tošić, S.; Stanković, M.; Radojević, I.; Stefanović, O.; Čomić, L.; Đačić, D.; Ćurčić, M.; et al. Antioxidant, antimicrobial and antiproliferative activities of five lichen species. Int. J. Mol. Sci. 2011, 12, 5428–5448. [Google Scholar] [CrossRef]
- Milutinović, M.; Stanković, M.; Cvetković, D.; Maksimović, V.; Šmit, B.; Pavlović, R.; Marković, S. The molecular mechanisms of apoptosis induced by Allium flavum L. and synergistic effects with new-synthesized Pd(II) complex on colon cancer cells. J. Food Biochem. 2015, 39, 238–250. [Google Scholar] [CrossRef]
- Alimpić, A.; Knežević, A.; Milutinović, M.; Stević, T.; Šavikin, K.; Stajić, M.; Marković, S.; Marin, P.; Matevski, V.; Duletić-Laušević, S. Biological activities and chemical composition of Salvia amplexicaulis Lam. extracts. Ind. Crops Prod. 2017, 105, 1–9. [Google Scholar] [CrossRef]
- Elrayess, R.A.; El-Hak, H.N.G. Anticancer natural products: A Review. Cancer Stud. Mol. Med. Open J. 2019, 5, 11–22. [Google Scholar] [CrossRef]
- Milutinović, M.; Cvetković, D. Anticancer activity of secondary metabolites of Teucrium species. Spp. In Teucrium Species: Biology and Application; Stanković, M., Ed.; Springer: Cham, Switzerland, 2020; pp. 355–390. [Google Scholar]
- Milutinović, M.G.; Maksimović, V.M.; Cvetković, D.C.; Nikodijević, D.D.; Stanković, M.S.; Pešić, M.S.; Marković, S.D. Potential of Teucrium chamaedrys L. to modulate apoptosis and biotransformation in colorectal carcinoma cells. J. Ethnopharmacol. 2019, 240, 111951. [Google Scholar] [CrossRef] [PubMed]
- Nikodijević, D.D.; Milutinović, M.G.; Cvetković, D.M.; Ćupurdija, M.Đ.; Jovanović, M.M.; Mrkić, I.V.; Jankulović-Gavrović, M.Đ.; Marković, S.D. Impact of bee venom and melittin on apoptosis and biotransformation in colorectal carcinoma cell lines. Toxin. Rev. 2019, 40, 1272–1279. [Google Scholar] [CrossRef]
- Milutinović, M.; Čurović, D.; Nikodijević, D.; Vukajlović, F.; Predojević, D.; Marković, S.; Pešić, S. The silk of Plodia interpunctella as a potential biomaterial and its cytotoxic effect on cancer cells. Anim. Biotechnol. 2020, 30, 195–202. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, S. Bacteriocins as potential anticancer agents. Front. Pharmacol. 2015, 6, 272. [Google Scholar] [CrossRef]
- Karpinski, T.; Adamczak, A. Anticancer activity of bacterial proteins and peptides. Pharmaceutics 2018, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Yaghoubi, A.; Khazaei, M.; Avan, A.; Soleimanpour, S. The bacterial instrument as a promising therapy for colon cancer. Int. J. Colorectal. Dis. 2020, 35, 595–606. [Google Scholar] [CrossRef]
- Farkas-Himsley, H.; Cheung, R. Bacterial protei-naceous product (bacteriocin) as a cytotoxic agent of neoplasia. Cancer Res. 1976, 36, 3561–3567. [Google Scholar]
- Chumchalová, J.; Smarda, J. Human tumor cells are selectively inhibited by colicins. Folia Microbiol. 2003, 48, 111–115. [Google Scholar] [CrossRef]
- Lancaster, L.; Wintermeyer, W.; Rodnina, M. Colicins and their potential in cancer treatment. Blood Cells Mol. Dis. 2007, 38, 15–18. [Google Scholar] [CrossRef]
- Singh, J.; Ghosh, C. Ribosomal encoded bacteriocins: Their functional insight and applications. J. Microbiol. Res. 2012, 2, 19–25. [Google Scholar] [CrossRef]
- Fuska, J.; Fuskova, A.; Smarda, J.; Mach, J. Effect of colicin E3 on leukemia cells P388 in vitro. Experientia 1978, 35, 406–407. [Google Scholar] [CrossRef]
- Wang, L.L.; Han, L.; Ma, X.L.; Yua, Q.L.; Zhao, S.N. Effect of mitochondrial apoptotic activation through the mitochondrial membrane permeability transition pore on yak meat tenderness during postmortem aging. Food Chem. 2017, 234, 323–331. [Google Scholar] [CrossRef]
- D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef]
- Arunmanee, W.; Ecoy, G.A.; Khine, H.E.; Duangkaew, M.; Prompetchara, E.; Chanvorachote, P.; Chaotham, C. Colicin N mediates apoptosis and suppresses integrin-modulated survival in human lung cancer cells. Molecules 2020, 25, 816. [Google Scholar] [CrossRef]
- Westbrook, A.; Szakmary, A.; Schiestl, R. Mechanisms of intestinal inflammation and development of associated cancers: Lessons learned from mouse models. Mutat. Res. 2010, 705, 4–59. [Google Scholar] [CrossRef]
- Serban, D.E. Microbiota in inflammatory bowel Disease pathogenesis and therapy: Is it all about diet? Nutr. Clin. Pract. 2015, 30, 760–779. [Google Scholar] [CrossRef]
- Kohoutova, D.; Smajs, D.; Moravkova, P.; Cyrany, J.; Moravkova, M.; Forstlova, M.; Cihak, M.; Rejchrt, S.; Bures, J. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect. Dis. 2014, 14, 733. [Google Scholar] [CrossRef]
- Kohoutova, D.; Forstlova, M.; Moravkova, P.; Cyrany, J.; Bosak, J.; Smajs, D.; Rejchrt, S.; Bures, J. Bacteriocin production by mucosal bacteria in current and previous colorectal neoplasia. BMC Cancer 2020, 20, 39. [Google Scholar] [CrossRef]
- Hnatyszyn, A.; Hryhorowicz, S.; Kaczmarek-Ryś, M.; Lis, E.; Słomski, R.; Scott, R.J.; Pławski, A. Colorectal carcinoma in the course of inflammatory bowel diseases. Hered Cancer Clin. Pract. 2019, 17, 17–18. [Google Scholar] [CrossRef] [PubMed]
- Baindara, P.; Korpole, S.; Grover, V. Bacteriocins: Perspective for the development of novel anticancer drugs. Appl. Microbiol. Biotechnol. 2018, 102, 10393–10408. [Google Scholar] [CrossRef] [PubMed]
- Stritzker, J.; Weibel, S.; Hill, P.J.; Oelschlaeger, T.A.; Goebel, W.; Szalay, A.A. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int. J. Med. Microbiol. 2007, 297, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Lagos, R.; Tello, M.; Mercado, G.; García, V.; Monasterio, O. Antibacterial and antitumorigenic properties of microcin E492, a pore-forming bacteriocin. Curr. Pharm. Biotechnol. 2009, 10, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Hetz, C.; Bono, M.R.; Barros, L.F.; Lagos, R. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc. Natl. Acad. Sci. USA 2002, 99, 2696–2701. [Google Scholar] [CrossRef] [PubMed]
- Soudy, R.; Etayash, H.; Bahadorani, K.; Lavasanifar, A.; Kaur, K. Breast cancer targeting peptide binds keratin 1: A new molecular marker for targeted drug delivery to breast cancer. Mol. Pharm. 2017, 14, 593–604. [Google Scholar] [CrossRef] [PubMed]
- James, R.; Lazdunski, C.; Pattus, F. Bacteriocins, Microcins and Lantibiotics; Nato Asi Subseries H, Heidelberg; Springer: Berlin/Heidelberg, Germany, 1992; Volume 65, p. 519. [Google Scholar]
- Varas, M.A.; Muñoz-Montecinos, C.; Kallens, V.; Simon, V.; Allende, M.L.; Marcoleta, A.E.; Lagos, R. Exploiting zebrafish xenografts for testing the in vivo antitumorigenic activity of microcin e492 against human colorectal cancer cells. Front. Microbiol. 2020, 11, 405. [Google Scholar] [CrossRef]
- Lyon, W.J.; Olson, D.M.; Murano, E.A. Method and Colicin Composition for Inhibiting Escherichia coli O157:H7 in Food Products. U.S. Patent 5549895A, 1993. [Google Scholar]
- Patton, B.S.; Dickson, J.S.; Lonergan, S.M.; Cutler, S.A.; Chad, H. Stahl inhibitory activity of Colicin E against Listeria monocytogenes. J. Food Prot. 2007, 70, 1256–1262. [Google Scholar] [CrossRef]
- Olejnik-Schmidt, A.K.; Schmidt, M.T.; Sip, A.; Szablewski, T.; Grajek, W. Expression of bacteriocin divercin AS7 in Escherichia coli and its functional analysis. Ann. Microbiol. 2014, 64, 1197–1202. [Google Scholar] [CrossRef]
- Ritala, A.; Rischer, H.; Häkkinen, S.T.; Joensuu, J.J.; Oksman-Caldentey, K.M. Proceedings of ISPMF 2018—Plant Molecular Farming. Front. Plant Sci. 2020, 11, 492. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial activitiesof bacteriocins:application in foods and pharmaceuticals. Front. Microbiol. 2014, 5, 241. [Google Scholar] [CrossRef]
- Ohland, C.L.; MacNaughton, W.K. Probiotic bacteria and intestinal epithelial barrier function. Am. J. Gastrointest. Liver Physiol. 2010, 298, 807–819. [Google Scholar] [CrossRef]
- Heselmans, M.; Reid, G.; Akkermans, L.M.; Savelkoul, H.; Timmerman, H.; Rombouts, F.M. Gut flora in health and disease: Potential role of probiotics. Curr. Issues Intest. Microbiol. 2005, 6, 1–7. [Google Scholar]
- Schultz, M. Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflamm. Bowel Dis. 2008, 14, 1012–1018. [Google Scholar] [CrossRef]
- Sonnenborn, U.; Schulze, J. The non-pathogenic Escherichia coli strain Nissle 1917-features of a versatile probiotic. Microb. Ecol. Health Dis. 2009, 21, 122–158. [Google Scholar] [CrossRef]
- Schlee, M.; Wehkamp, J.; Altenhoefer, A.; Oelschlaeger, T.A.; Stange, E.F.; Fellermann, K. Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect. Immun. 2007, 75, 2399–2407. [Google Scholar] [CrossRef]
- Patzer, S.I.; Baquero, M.R.; Bravo, D.; Moreno, F.; Hantke, K. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 2003, 149, 2557–2570. [Google Scholar] [CrossRef]
- Hancock, V.; Dahl, M.; Klemm, P. Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. J. Med. Microbiol. 2010, 59, 392–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsin, M.; Guenther, S.; Schierack, P.; Tedin, K.; Wieler, L.H. Probiotic Escherichia coli Nissle 1917 reduces growth, Shiga toxin expression, release and thus cytotoxicity of enterohemorrhagic Escherichia coli. Int. J. Med. Microbiol. 2015, 305, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Jin, X.; Hong, S.H. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci. Rep. 2018, 8, 4939. [Google Scholar] [CrossRef] [PubMed]
- Cursino, L.; Smajs, D.; Smarda, J.; Nardi, R.M.D.; Nicoli, J.R.; Chartone-Souza, E.; Nascimento, A.M.A. Exoproducts of the Escherichia coli strainH22inhibiting some enteric pathogens both in vitro and in vivo. J. Appl. Microbiol. 2006, 100, 821–829. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marković, K.G.; Grujović, M.Ž.; Koraćević, M.G.; Nikodijević, D.D.; Milutinović, M.G.; Semedo-Lemsaddek, T.; Djilas, M.D. Colicins and Microcins Produced by Enterobacteriaceae: Characterization, Mode of Action, and Putative Applications. Int. J. Environ. Res. Public Health 2022, 19, 11825. https://doi.org/10.3390/ijerph191811825
Marković KG, Grujović MŽ, Koraćević MG, Nikodijević DD, Milutinović MG, Semedo-Lemsaddek T, Djilas MD. Colicins and Microcins Produced by Enterobacteriaceae: Characterization, Mode of Action, and Putative Applications. International Journal of Environmental Research and Public Health. 2022; 19(18):11825. https://doi.org/10.3390/ijerph191811825
Chicago/Turabian StyleMarković, Katarina G., Mirjana Ž. Grujović, Maja G. Koraćević, Danijela D. Nikodijević, Milena G. Milutinović, Teresa Semedo-Lemsaddek, and Milan D. Djilas. 2022. "Colicins and Microcins Produced by Enterobacteriaceae: Characterization, Mode of Action, and Putative Applications" International Journal of Environmental Research and Public Health 19, no. 18: 11825. https://doi.org/10.3390/ijerph191811825
APA StyleMarković, K. G., Grujović, M. Ž., Koraćević, M. G., Nikodijević, D. D., Milutinović, M. G., Semedo-Lemsaddek, T., & Djilas, M. D. (2022). Colicins and Microcins Produced by Enterobacteriaceae: Characterization, Mode of Action, and Putative Applications. International Journal of Environmental Research and Public Health, 19(18), 11825. https://doi.org/10.3390/ijerph191811825