Risk Analysis of Heavy Metals Migration from Sewage Sludge of Wastewater Treatment Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Collection Points and Potential Uses of Sludge
2.2. Heavy Metal Speciation
- FI fraction—associated with carbonates, the most mobile;
- FII fraction—associated with amorphous iron and manganese oxides;
- FIII fraction—associated with organic and sulfide matter;
- FIV fraction—associated with silicates—a completely chemically stable fraction.
- Step I: CH3COOH extraction–(FI—exchangeable fraction);
- Step II: extraction NH2OH·HCl–(FII—reducible fraction);
- Step III: extraction H2O2/CH3COONH4–(FIII—oxidizable fraction);
- Step IV: mineralization of the residual fraction with a mixture of concentrated acids (HCl, HF, HNO3)–(FIV—residual fraction).
2.3. Heavy Metal Accumulation Risk Indicators
2.3.1. Geoaccumulation Index of Heavy Metal in Soil (Igeo)
- Cn—the concentration of a specific heavy metal element in sewage sludge, mg∙kg−1 d.m.;
- Bn—content of a given element from the group of heavy metals present in the soil, mg∙kg−1 d.m.
2.3.2. Risk Assessment Code (RAC)
- F1—acid heavy metal concentration—soluble/free fraction; mg∙kg−1; HM—total heavy metal concentration, mg∙kg−1.
2.3.3. Potential Environmental Risk Index (PERI)
- —pollution factor;
- —concentration of the i-th element from the HM’s group present in sludge, mg∙kg−1 d.m.;
- —concentration of the i-th element from the HM’s group in the soil, mg∙kg−1.
- – index of the potential ecological risk of the i-th element from the HM group;
- –toxicity factor of the i-th element from the HM group;
- The degree of heavy metal toxicity varies according to the toxicity factor. (): Cd-30, Cu, Ni and Pb-5, and Zn-1 [30].
2.3.4. Environmental Risk Determinant (ERD)
- Fp1 = F1; F1—metal content in Fraction FI on a scale of 0–1; Fp2 = F22; F2—metal content in Fraction FII on a scale of 0–1; Fp3 = F33; F3—metal content in Fraction FIII on a scale of 0–1.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miksch, K.; Sikora, J. Biotechnologia Ścieków; WN PWN: Warszawa, Poland, 2012. [Google Scholar]
- Bień, J.; Neczaj, E.; Worwąg, M.; Grosser, A.; Nowak, D.; Milczarek, M.; Janik, M. Kierunki zagospodarowania osadów w Polsce po roku 2013. Inżynieria Ochr. Sr. 2011, 14, 375–384. [Google Scholar]
- Ministry of Environment. Municipal Sewage Sludge Treatment Strategy for the Years 2019–2022; Ministry of Environment: Warszawa, Poland, 2018. Available online: https://www.gov.pl/attachment/2846e2b3-68c7-46eb-b36e-7643e81efd9a (accessed on 19 May 2022).
- McBride, M.B. Toxic elements in sewage suldge-amended soils: Has promotion of beneficial use discounted the risks? Adv. Environ. Res. 2003, 8, 5–19. [Google Scholar] [CrossRef]
- Gawdzik, J. Mobility of Selected Heavy Metals in Sewage Sludge; Kielce University of Technology: Kielce, Poland, 2013. [Google Scholar]
- National Waste Management Plan. 2016. Available online: https://bip.mos.gov.pl/fileadmin/user_upload/bip/strategie_plany_programy/DGO/Krajowy_plan_gospodarki_odpadami_2022_____M.P._poz._784_.pdf (accessed on 30 May 2021).
- Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 30 May 2021).
- Durdević, D.; Trstenjak, M.; Hulenić, I. Sewage sludge thermal treatment technology selection by utilizing the analytical hierarchy process. Water 2020, 12, 1255–1271. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Latosińska, J. Influence of temperature and time of sewage sludge incineration on the mobility of heavy metals. Environ. Prot. Eng. 2017, 43, 105–122. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Mijangos, I.; Epelde, L.; Garbisu, C. Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities. Sci. Total Environ. 2019, 10, 1410–1420. [Google Scholar] [CrossRef]
- Latosińska, J. Risk assessment of soil contamination with heavy metals from sewage sludge and ash after its incineration. Desalin. Water Treat 2020, 199, 297–306. [Google Scholar] [CrossRef]
- Waste Act (J.L. 2013, No. 0, Item. 21). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20130000021/T/D20130021L.pdf (accessed on 19 March 2022).
- Minister of the Environment. Regulation of the Minister of the Environment of 6 February 2015 on the Municipal Sewage Sludge (J. L. 2015, No. 0, Item. 257); Minister of the Environment: Warsaw, Poland, 2015.
- Minister of the Economy. Regulation of the Minister of the Economy of 16 of 16 July 2015 on the Acceptance of Waste for Landfilling (J.L. 2015, No.0, Item. 1277); Minister of the Economy: Warsaw, Poland, 2015.
- Minister of Agriculture and Rural Development. Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the Implementation of Certain Provisions of the Act on Fertilizers and Fertilization (J.L. 2008, No. 119, Item.765); Minister of Agriculture and Rural Development: Warsaw, Poland, 2008.
- Code of Federal Regulations. Protection of Environment. Chapter I—Environmental Protection Agency (Continued), Subchapter O—Sewage Sludge, Part 503—Standards for The Use Or Disposal Of Sewage Sludge, Subpart B—Land Application, Section 503.13—Pollutant Limits; Office of the Federal Register (United States): Washington, DC, USA, 2010.
- Water Research Commission. Guidelines for the Utilisation and Disposal of Wastewater Sludge. Vol. 2. Requirements for the Agricultural Use of Wastewater Sludge; WRC Report No.: TT 262/06; WRC: Pretoria, South Africa, 2009. [Google Scholar]
- Gawdzik, J. Mobility of heavy metals in sewage sludge on the example of a selected sewage treatment plan. Eng. Environ. Prot. 2012, 15, 5–15. [Google Scholar]
- Mizerna, K.; Król, A. Sequential extraction of heavy metals in mineral-organic composite. Ecol. Eng. Environ. Technol. 2018, 19, 23–29. [Google Scholar] [CrossRef]
- Bąk, Ł.; Szeląg, B.; Górski, J.; Górska, K. The Impact of Catchment Characteristics and Weather Conditions on Heavy Metal Concentrations in Stormwater—Data Mining Approach. Appl. Sci. 2019, 9, 2210. [Google Scholar] [CrossRef]
- Latosińska, J.; Kowalik, R.; Gawdzik, J. Risk assessment of soil contamination with heavy metals from municipal sewage sludge. Appl. Sci. 2021, 11, 548–561. [Google Scholar] [CrossRef]
- Monitoring of Soil and Land Quality in Poland. Monitoring of Soil and Land Quality in Poland. Chief Inspectorate of the Environmental Protection. Poland. Available online: http://www.gios.gov.pl/pl/stan-srodowiska/monitoring-jakosci-gleby-i-ziemi (accessed on 19 May 2022).
- Jasińska, A. The Importance of Heavy Metal Speciation from the Standpoint of the Use of Sewage Sludge in Nature. Eng. Prot. Environ. 2018, 21, 239–250. [Google Scholar] [CrossRef]
- Larner, B.L.; Sean, A.J.; Townsend, A.T. Comparative study of optimised BCR sequential extraction scheme and acid leaching of elements in the certified reference material NIST 271. Anal. Chim. Acta 2006, 556, 444–449. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.; Muntau, H.; Gripink, B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under auspicies of the BCR of the Commision of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geol. J. 1969, 2, 109–118. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1101. [Google Scholar] [CrossRef]
- Perin, G.; Craboledda, L.; Lucchese, M.; Cirillo, R.; Dotta, L.; Zanetta, M.L.; Oro, A.A. Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. In Heavy Metals in the Environment; Lakkas, T.D., Ed.; CEP Consultants: Edinburgh, Scotland, 1985; Volume 2, pp. 454–456. [Google Scholar]
- Zhang, J.; Tian, Y.; Zhang, J.; Li, N.; Kong, L.; Yu, M.; Zuo, W. Distribution and risk assessment of heavy metals in sewage sludge after ozonation. Environ. Sci. Pollut. Res. 2017, 24, 5118–5125. [Google Scholar] [CrossRef]
- Xiao, Z.; Yuan, X.; Leng, L.; Jiang, L.; Chen, X.; Zhibin, W.; Xin, P.; Jiachao, Z.; Zeng, G. Risk assessment of heavy metals from combustion of pelletized municipal sewage sludge. Environ. Sci. Pollut. Res. 2016, 23, 3934–3942. [Google Scholar] [CrossRef]
- Tytła, M.; Widzewicz, K.; Zielewicz, E. Heavy metals and its chemical speciation in sewage sludge at different stages of processing. Environ. Technol. 2016, 37, 899–908. [Google Scholar] [CrossRef]
- Kowalik, R.; Latosińska, J.; Gawdzik, J. Risk Analysis of Heavy Metal Accumulation from Sewage Sludge of Selected Wastewater Treatment Plants in Poland. Water 2021, 13, 2070. [Google Scholar] [CrossRef]
- Kowalik, R.; Latosińska, J.; Metryka-Telka, M.; Porowski, R.; Gawdzik, J. Comparison of the Possibilities of Environmental Usage of Sewage Sludge from Treatment Plants Operating with MBR and SBR Technology. Membranes 2021, 11, 722. [Google Scholar] [CrossRef]
Metal | Limit Values for Heavy Metals in Sewage Sludge Intended for Natural Use | |||||
---|---|---|---|---|---|---|
Poland Regulation [14] | EU Directive 86/278/EEC [15] | Chinese Regulation GB 18918-2002 [16] | USA Regulation 40 CFR Part 503, 503.13 [17] | South African Guideline (Pollutant Class a) [18] | ||
pH < 6.5 | pH > 6.5 | |||||
Cd | 20 | 20–40 | 5 | 20 | 39 | 40 |
Ni | 300 | 300–400 | 100 | 200 | 420 | 420 |
Zn | 2500 | 2500–4000 | 500 | 1000 | 2800 | 2800 |
Cu | 1000 | 1000–1750 | 250 | 500 | 1500 | 1500 |
Cr | 500 | - | 600 | 1000 | - | 1200 |
Pb | 750 | 750–1200 | 300 | 1000 | 300 | 300 |
Wastewater Treatment Plant | ||||
---|---|---|---|---|
WWTP1 | WWTP2 | WWTP3 | WWTP4 | |
Location of WWTP | Opatow | Kornica | Mniow | Ozarow |
Type of WWTP | Mech.-biol. | Mech.-biol. | Mech.-biol. | Mech.-biol. |
Equivalent Number of Residents | 15,240 | 21,594 | 9550 | 9660 |
SS treatment | Internal digester fermentation | Imhoff fermentation | Oxygen stab. | Dewatering on belt press |
Distance of the WWTP from the point use of SS (km) | 56 | 61 | 32 | 80 |
Igeo | Pollution Value |
---|---|
<0 | No pollution |
0–1 | No pollution, moderate pollution |
1–2 | Moderate pollution |
2–3 | moderate pollution or high |
3–4 | High pollution |
RAC | Risk Value |
---|---|
<1 | No risk |
1–10 | Low risk |
11–30 | Medium risk |
31–50 | High risk |
>50 | Very high risk |
PERI | Risk Value | |
---|---|---|
<40 | <150 | Low |
40–80 | 150–300 | Medium |
80–320 | 300–600 | High |
>320 | >600 | Very high |
ERD | Risk Value |
---|---|
0 < ERD ≤ 0.35 | Low risk |
0.35 < ERD ≤ 0.6 | Medium risk |
0.6 < ERD ≤ 0.8 | High risk |
0.8 < ERD | Very high risk |
Heavy Metal (mg/kg s.m.) | ||||||
---|---|---|---|---|---|---|
Fraction | Cu | Cr | Cd | Ni | Pb | Zn |
Sewage sludge—S1 | ||||||
Fraction I | 3.3 ± 0.2 | 2.0 ± 0.3 | 0.3 ± 0.1 | 3.5 ± 0.1 | 5.2 ± 0.1 | 79.4 ± 0.7 |
Fraction II | 1.8 ± 0.1 | 1.1 ± 0.1 | 0.3 ± 0.1 | 1.4 ± 0.1 | 0.5 ± 0.2 | 122.8 ± 2.6 |
Fraction III | 57.1 ± 1.1 | 16.1 ± 0.7 | 1.9 ± 0.1 | 5.9 ± 0.1 | 7.8 ± 0.1 | 323.8 ± 1.5 |
Fraction IV | 22.8 ± 0.7 | 22.0 ± 0.7 | 1.1 ± 0.8 | 9.2 ± 0.3 | 54.7 ± 9.4 | 170.8 ± 1.3 |
ΣFI…IV | 85.0 ± 2.3 | 41.2 ± 0.9 | 3.6 ± 0.9 | 20.0 ± 0.5 | 68.2 ± 11.3 | 696.8 ± 2.6 |
Sewage sludge—S2 | ||||||
Fraction I | 0.2 ± 0.1 | 5.2 ± 0.2 | 0.1 ± 0.1 | 0.0 ± 0.1 | 0.1 ± 0.1 | 161.3 ± 2.0 |
Fraction II | 1.1 ± 0.1 | 0.8 ± 0.2 | 0.6 ± 0.1 | 0.4 ± 0.1 | 0.6 ± 0.2 | 71.7 ± 0.7 |
Fraction III | 47.4 ± 0.8 | 12.1 ± 0.3 | 0.5 ± 0.1 | 0.3 ± 0.1 | 7.4 ± 0.8 | 356.0 ± 3.5 |
Fraction IV | 18.3 ± 0.4 | 18.9 ± 0.4 | 0.6 ± 0.1 | 2.1 ± 0.3 | 9.1 ± 0.8 | 899.0 ± 9.2 |
ΣFI…IV | 67.0 ± 0.9 | 37.0 ± 2.4 | 1.8 ± 0.5 | 2.8 ± 0.5 | 17.2 ± 3.1 | 1488 ± 8.0 |
Sewage sludge—S3 | ||||||
Fraction I | 3.3 ± 0.2 | 1.6 ± 0.1 | 0.4 ± 0.1 | 2.6 ± 0.2 | 9.4 ± 0.9 | 99.2 ± 2.2 |
Fraction II | 1.6 ± 0.1 | 1.5 ± 0.1 | 0.3 ± 0.1 | 6.1 ± 0.5 | 11.1 ± 1.3 | 123.2 ± 2.9 |
Fraction III | 36.1 ± 0.3 | 14.3 ± 0.3 | 1.7 ± 0.1 | 9.1 ± 0.7 | 9.9 ± 1.1 | 499.9 ± 8.2 |
Fraction IV | 22.1 ± 0.3 | 19.1 ± 0.4 | 1.4 ± 0.1 | 4.3 ± 0.3 | 98.5 ± 9.9 | 324.5 ± 8.1 |
ΣFI…IV | 63.1 ± 0.9 | 36.5 ± 0.5 | 3.8 ± 0.2 | 22.1 ± 0.7 | 128.9 ± 3.7 | 1047 ± 19.6 |
Sewage sludge—S4 | ||||||
Fraction I | 2.1 ± 0.2 | 4.9 ± 0.3 | 1.1 ± 0.1 | 1.6 ± 0.2 | 4.2 ± 0.5 | 121.2 ± 1.1 |
Fraction II | 3.7 ± 0.1 | 0.1 ± 0.05 | 1.6 ± 0.1 | 3.8 ± 0.5 | 3.7 ± 0.4 | 111.2 ± 1.4 |
Fraction III | 33.2 ± 0.2 | 16.1 ± 0.2 | 0.8 ± 0.1 | 0.2 ± 0.1 | 4.6 ± 0.5 | 329.0 ± 3.1 |
Fraction IV | 2.3 ± 0.3 | 17.1 ± 0.5 | 0.9 ± 0.1 | 8.1 ± 0.6 | 58.0 ± 6.1 | 350.5 ± 2.1 |
ΣFI…IV | 41.3 ± 1.2 | 38.2 ± 1.3 | 4.4 ± 0.6 | 13.7 ± 0.7 | 70.5 ± 11.7 | 911.9 ± 7.7 |
WWTP * | Igeo | RAC | PERI | ERD |
---|---|---|---|---|
WWTP1 | Ni, Zn, Cu, Cr, Cd | Ni, Zn | Cu, Cd | - |
WWTP2 | Zn, Cu, Cr, Cd, | Cr | Cu, Cd, Zn | - |
WWTP3 | Ni, Zn, Pb, Cu, Cr, Cd, | Ni | Cu, Cd, Pb, Zn | - |
WWTP4 | Zn, Cu, Cd, Cr, | Cr, Cd, Ni, Zn | Cu, Cd, Zn | Cd, Cu |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalik, R.; Gawdzik, J.; Bąk-Patyna, P.; Ramiączek, P.; Jurišević, N. Risk Analysis of Heavy Metals Migration from Sewage Sludge of Wastewater Treatment Plants. Int. J. Environ. Res. Public Health 2022, 19, 11829. https://doi.org/10.3390/ijerph191811829
Kowalik R, Gawdzik J, Bąk-Patyna P, Ramiączek P, Jurišević N. Risk Analysis of Heavy Metals Migration from Sewage Sludge of Wastewater Treatment Plants. International Journal of Environmental Research and Public Health. 2022; 19(18):11829. https://doi.org/10.3390/ijerph191811829
Chicago/Turabian StyleKowalik, Robert, Jarosław Gawdzik, Paulina Bąk-Patyna, Piotr Ramiączek, and Nebojša Jurišević. 2022. "Risk Analysis of Heavy Metals Migration from Sewage Sludge of Wastewater Treatment Plants" International Journal of Environmental Research and Public Health 19, no. 18: 11829. https://doi.org/10.3390/ijerph191811829
APA StyleKowalik, R., Gawdzik, J., Bąk-Patyna, P., Ramiączek, P., & Jurišević, N. (2022). Risk Analysis of Heavy Metals Migration from Sewage Sludge of Wastewater Treatment Plants. International Journal of Environmental Research and Public Health, 19(18), 11829. https://doi.org/10.3390/ijerph191811829