Coronary Heart Disease in Type 2 Diabetes Mellitus: Genetic Factors and Their Mechanisms, Gene-Gene, and Gene-Environment Interactions in the Asian Populations
Abstract
:1. Introduction
2. Genetic Factors Associated with CHD Risk in T2D Asian Populations
2.1. Genes Related to Energy and Lipoprotein Metabolisms
2.2. Genes Related to Vascular and Endothelial Pathology
2.3. Genes Related to Antioxidation
2.4. Genes Related to Cell Cycle Regulation
2.5. Genes Related to DNA Damage Repair
2.6. Genes Related to Hormonal Regulation of Glucose Metabolism
2.7. Genes Related to Cytoskeletal Function and Intracellular Transport
3. Genetic Interaction Associated with CHD Risk in T2D Asians Populations
3.1. Gene-Gene Interaction
3.2. SNP-SNP Interaction in a Single Gene
3.3. Gene-Environment Interaction
4. Perspectives and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.; Liu, B.; Sun, Y.; Du, Y.; Snetselaar, L.G.; Hu, F.B.; Bao, W. Prevalence of Diagnosed Type 1 and Type 2 Diabetes among US Adults in 2016 and 2017: Population Based Study. BMJ 2018, 362, k1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skyler, J.S.; Bakris, G.L.; Bonifacio, E.; Darsow, T.; Eckel, R.H.; Groop, L.; Groop, P.H.; Handelsman, Y.; Insel, R.A.; Mathieu, C.; et al. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes 2017, 66, 241–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosiborod, M.; Gomes, M.B.; Nicolucci, A.; Pocock, S.; Rathmann, W.; Shestakova, M.V.; Watada, H.; Shimomura, I.; Chen, H.; Cid-Ruzafa, J.; et al. Vascular Complications in Patients with Type 2 Diabetes: Prevalence and Associated Factors in 38 Countries (the DISCOVER Study Program). Cardiovasc. Diabetol. 2018, 17, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Population Review Continent and Region Populations 2020. Available online: https://worldpopulationreview.com/continents (accessed on 21 July 2020).
- De Lapertosa, S.G.; de Moura, A.F.; Decroux, C.; Duke, L.; Hammond, L.; Jacobs, E.; Kaundal, A.; Li, J.; Liu, J.; Ohlrogge, A.W.; et al. IDF Diabetes Atlas, 9th ed.; Karuranga, S., Malanda, B., Saeedi, P., Salpea, P., Eds.; International Diabetes Federation: Brussels, Belgium, 2019; ISBN 9782930229874. [Google Scholar]
- Ramachandran, A.; Chamukuttan, S.; Shetty, S.A.; Arun, N.; Susairaj, P. Obesity in Asia—Is It Different from Rest of the World. Diabetes Metab. Res. Rev. 2012, 28, 47–51. [Google Scholar] [CrossRef]
- Murphy, C.; Kanaganayagam, G.S.; Jiang, B.; Chowienczyk, P.J.; Zbinden, R.; Saha, M.; Rahman, S.; Shah, A.M.; Marber, M.S.; Kearney, M.T. Vascular Dysfunction and Reduced Circulating Endothelial Progenitor Cells in Young Healthy UK South Asian Men. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 936–942. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.R.; Brancati, F.L.; Yeh, H.-C. Trends in the Prevalence of Type 2 Diabetes in Asians versus Whites. Diabetes Care 2011, 34, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Gobardhan, S.N.; Dimitriu-Leen, A.C.; van Rosendael, A.R.; van Zwet, E.W.; Roos, C.J.; Oemrawsingh, P.V.; Kharagjitsingh, A.V.; Jukema, J.W.; Delgado, V.; Schalij, M.J.; et al. Prevalence by Computed Tomographic Angiography of Coronary Plaques in South Asian and White Patients with Type 2 Diabetes Mellitus at Low and High Risk Using Four Cardiovascular Risk Scores (UKPDS, FRS, ASCVD, and JBS3). Am. J. Cardiol. 2017, 119, 705–711. [Google Scholar] [CrossRef]
- Sanchis-Gomar, F.; Perez-Quilis, C.; Leischik, R.; Lucia, A. Epidemiology of Coronary Heart Disease and Acute Coronary Syndrome. Ann. Transl. Med. 2016, 4, 256. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Esteghamati, A.; Mansournia, N.; Nakhjavani, M.; Mansournia, M.A.; Nikzamir, A.; Abbasi, M. Association of +45(T/G) and +276(G/T) Polymorphisms in the Adiponectin Gene with Coronary Artery Disease in a Population of Iranian Patients with Type 2 Diabetes. Mol. Biol. Rep. 2012, 39, 3791–3797. [Google Scholar] [CrossRef]
- Duan, J.G.; Chen, X.Y.; Wang, L.; Lau, A.; Wong, A.; Thomas, G.N.; Tomlinson, B.; Liu, R.; Chan, J.C.N.; Leung, T.W.; et al. Sex Differences in Epidemiology and Risk Factors of Acute Coronary Syndrome in Chinese Patients with Type 2 Diabetes: A Long-Term Prospective Cohort Study. PLoS ONE 2015, 10, e0122031. [Google Scholar] [CrossRef]
- Raza, S.A.; Hassan, M.; Badar, F.; Rasheed, F.; Meerza, F.; Azam, S.; Jawa, A.; Hassan, I.; Qureshi, F.M.; Alvi, Z.; et al. Cardiovascular Disease Risk Factors in Pakistani Population with Newly Diagnosed Type 2 Diabetes Mellitus: A Cross-Sectional Study of Selected Family Practitioner Clinics in Four Provinces of Pakistan (CardiP Study). J. Pak. Med. Assoc. 2019, 69, 306–312. [Google Scholar]
- Al Khawlani, A.; Atef, Z.A.; Al Ansi, A. Macrovascular Complications and Their Associated Risk Factors in Type 2 Diabetic Patients in Sana’a City, Yemen. East. Mediterr. Health J. 2010, 16, 851–858. [Google Scholar] [CrossRef]
- Wu, G.; Li, G.-B.; Dai, B.; Zhang, D.-Q. Novel KIF6 Polymorphism Increases Susceptibility to Type 2 Diabetes Mellitus and Coronary Heart Disease in Han Chinese Men. J. Diabetes Res. 2014, 2014, 871439. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, R.; Likidlilid, A.; Peerapatdit, T.; Tresukosol, D.; Srisuma, S.; Ratanamaneechat, S.; Sriratanasathavorn, C. Apolipoprotein E Gene Polymorphism: Effects on Plasma Lipids and Risk of Type 2 Diabetes and Coronary Artery Disease. Cardiovasc. Diabetol. 2012, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Banks, E.; Lim, L.; Seubsman, S.-A.; Bain, C.; Sleigh, A. Relationship of Obesity to Physical Activity, Domestic Activities, and Sedentary Behaviours: Cross-Sectional Findings from a National Cohort of over 70,000 Thai Adults. BMC Public Health 2011, 11, 762. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.H.; Lu, L.; Wang, L.J.; Yan, X.X.; Chen, Q.J.; Zhang, Q.; Zhang, R.Y.; Shen, W.F. RAGE Gene Polymorphisms Are Associated with Circulating Levels of Endogenous Secretory RAGE but Not with Coronary Artery Disease in Chinese Patients with Type 2 Diabetes Mellitus. Arch. Med. Res. 2009, 40, 393–398. [Google Scholar] [CrossRef]
- Wang, Y.; Luk, A.O.Y.; Ma, R.C.W.; So, W.Y.; Tam, C.H.T.; Ng, M.C.Y.; Yang, X.; Baum, L.; Lam, V.; Tong, P.C.Y.; et al. Independent Predictive Roles of Eotaxin Ala23Thr, Paraoxonase 2 Ser311Cys and Beta-Adrenergic Receptor Trp64Arg Polymorphisms on Cardiac Disease in Type 2 Diabetes—An 8-Year Prospective Cohort Analysis of 1297 Patients. Diabet. Med. J. Br. Diabet. Assoc. 2010, 27, 376–383. [Google Scholar] [CrossRef]
- Bhaskar, S.; Ganesan, M.; Chandak, G.R.; Mani, R.; Idris, M.M.; Khaja, N.; Gulla, S.; Kumar, U.; Movva, S.; Vattam, K.K.; et al. Association of PON1 and APOA5 Gene Polymorphisms in a Cohort of Indian Patients Having Coronary Artery Disease with and without Type 2 Diabetes. Genet. Test. Mol. Biomark. 2011, 15, 507–512. [Google Scholar] [CrossRef]
- Ramprasath, T.; Senthil Murugan, P.; Prabakaran, A.D.; Gomathi, P.; Rathinavel, A.; Selvam, G.S. Potential Risk Modifications of GSTT1, GSTM1 and GSTP1 (Glutathione-S-Transferases) Variants and Their Association to CAD in Patients with Type-2 Diabetes. Biochem. Biophys. Res. Commun. 2011, 407, 49–53. [Google Scholar] [CrossRef]
- Lei, H.-P.; Chen, H.-M.; Zhong, S.-L.; Yao, Q.-Z.; Tan, H.-H.; Yang, M.; Lin, Q.-X.; Shan, Z.-X.; Zheng, Z.-W.; Zhu, J.-N.; et al. Association between Polymorphisms of the Renin-Angiotensin System and Coronary Artery Disease in Chinese Patients with Type 2 Diabetes. J. Renin-Angiotensin-Aldosterone Syst. JRAAS 2012, 13, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Pereira, N.L.; Rihal, C.S.; So, D.Y.F.; Rosenberg, Y.; Lennon, R.J.; Mathew, V.; Goodman, S.G.; Weinshilboum, R.M.; Wang, L.; Baudhuin, L.M.; et al. Clopidogrel Pharmacogenetics. Circ. Cardiovasc. Interv. 2019, 12, e007811. [Google Scholar] [CrossRef]
- Tsukamoto, K.; Tangirala, R.K.; Chun, S.; Usher, D.; Puré, E.; Rader, D.J. Hepatic Expression of Apolipoprotein E Inhibits Progression of Atherosclerosis without Reducing Cholesterol Levels in LDL Receptor-Deficient Mice. Mol. Ther. 2000, 1, 189–194. [Google Scholar] [CrossRef]
- Mendivil, C.O.; Rimm, E.B.; Furtado, J.; Sacks, F.M. Apolipoprotein E in VLDL and LDL with Apolipoprotein C-III Is Associated with a Lower Risk of Coronary Heart Disease. J. Am. Heart Assoc. 2013, 2, e000130. [Google Scholar] [CrossRef] [Green Version]
- Marais, A.D. Apolipoprotein E in Lipoprotein Metabolism, Health and Cardiovascular Disease. Pathology 2019, 51, 165–176. [Google Scholar] [CrossRef]
- Yamamoto, T.; Choi, H.W.; Ryan, R.O. Apolipoprotein E Isoform-Specific Binding to the Low-Density Lipoprotein Receptor. Anal. Biochem. 2008, 372, 222–226. [Google Scholar] [CrossRef] [Green Version]
- Akanji, A.O.; Suresh, C.G.; Fatania, H.R.; Al-Radwan, R.; Zubaid, M. Associations of Apolipoprotein E Polymorphism with Low-Density Lipoprotein Size and Subfraction Profiles in Arab Patients with Coronary Heart Disease. Metab. Clin. Exp. 2007, 56, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Lo, S.-K.; Wen, M.-S.; Kao, J.-T. Characterization of Apolipoprotein E Genetic Variations in Taiwanese: Association with Coronary Heart Disease and Plasma Lipid Levels. Hum. Biol. 2002, 74, 25–31. [Google Scholar] [CrossRef] [PubMed]
- El-Lebedy, D.; Raslan, H.M.; Mohammed, A.M. Apolipoprotein E Gene Polymorphism and Risk of Type 2 Diabetes and Cardiovascular Disease. Cardiovasc. Diabetol. 2016, 15, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huebbe, P.; Rimbach, G. Evolution of Human Apolipoprotein E (APOE) Isoforms: Gene Structure, Protein Function and Interaction with Dietary Factors. Ageing Res. Rev. 2017, 37, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Gotschy, A.; Bauer, E.; Schrodt, C.; Lykowsky, G.; Ye, Y.-X.; Rommel, E.; Jakob, P.M.; Bauer, W.R.; Herold, V. Local Arterial Stiffening Assessed by MRI Precedes Atherosclerotic Plaque Formation. Circ. Cardiovasc. Imaging 2013, 6, 916–923. [Google Scholar] [CrossRef] [Green Version]
- Dafnis, I.; Tzinia, A.K.; Tsilibary, E.C.; Zannis, V.I.; Chroni, A. An Apolipoprotein E4 Fragment Affects Matrix Metalloproteinase 9, Tissue Inhibitor of Metalloproteinase 1 and Cytokine Levels in Brain Cell Lines. Neuroscience 2012, 210, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Weiss, D.; Kools, J.J.; Taylor, W.R. Angiotensin II-Induced Hypertension Accelerates the Development of Atherosclerosis in ApoE-Deficient Mice. Circulation 2001, 103, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Williams, H.C.; Farmer, B.C.; Piron, M.A.; Walsh, A.E.; Bruntz, R.C.; Gentry, M.S.; Sun, R.C.; Johnson, L.A. APOE Alters Glucose Flux through Central Carbon Pathways in Astrocytes. Neurobiol. Dis. 2020, 136, 104742. [Google Scholar] [CrossRef]
- Li, H.; Dhanasekaran, P.; Alexander, E.T.; Rader, D.J.; Phillips, M.C.; Lund-Katz, S. Molecular Mechanisms Responsible for the Differential Effects of ApoE3 and ApoE4 on Plasma Lipoprotein-Cholesterol Levels. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 687–693. [Google Scholar] [CrossRef] [Green Version]
- The Human Protein Atlas APOE. Available online: https://www.proteinatlas.org/ENSG00000130203-APOE/tissue (accessed on 6 December 2021).
- Koren-Iton, A.; Salomon-Zimri, S.; Smolar, A.; Shavit-Stein, E.; Dori, A.; Chapman, J.; Michaelson, D.M. Central and Peripheral Mechanisms in ApoE4-Driven Diabetic Pathology. Int. J. Mol. Sci. 2020, 21, 1289. [Google Scholar] [CrossRef] [Green Version]
- Vaisi-Raygani, A.; Rahimi, Z.; Tavilani, H.; Pourmotabbed, T. Butyrylcholinesterase K Variant and the APOE-Epsilon 4 Allele Work in Synergy to Increase the Risk of Coronary Artery Disease Especially in Diabetic Patients. Mol. Biol. Rep. 2010, 37, 2083–2091. [Google Scholar] [CrossRef]
- Sapkota, B.; Subramanian, A.; Priamvada, G.; Finely, H.; Blackett, P.R.; Aston, C.E.; Sanghera, D.K. Association of APOE Polymorphisms with Diabetes and Cardiometabolic Risk Factors and the Role of APOE Genotypes in Response to Anti-Diabetic Therapy: Results from the AIDHS/SDS on a South Asian Population. J. Diabetes Complicat. 2015, 29, 1191–1197. [Google Scholar] [CrossRef] [Green Version]
- Corbo, R.M.; Vilardo, T.; Ruggeri, M.; Gemma, A.T.; Scacchi, R. Apolipoprotein E Genotype and Plasma Levels in Coronary Artery Disease. A Case-Control Study in the Italian Population. Clin. Biochem. 1999, 32, 217–222. [Google Scholar] [CrossRef]
- Kuusi, T.; Nieminen, M.S.; Ehnholm, C.; Yki-Järvinen, H.; Valle, M.; Nikkilä, E.A.; Taskinen, M.R. Apoprotein E Polymorphism and Coronary Artery Disease. Increased Prevalence of Apolipoprotein E-4 in Angiographically Verified Coronary Patients. Arteriosclerosis 1989, 9, 237–241. [Google Scholar] [CrossRef] [Green Version]
- van Bockxmeer, F.M.; Mamotte, C.D.S. Apolipoprotein Ε4 Homozygosity in Young Men with Coronary Heart Disease. Lancet 1992, 340, 879–880. [Google Scholar] [CrossRef]
- Eichner, J.E.; Kuller, L.H.; Orchard, T.J.; Grandits, G.A.; McCallum, L.M.; Ferrell, R.E.; Neaton, J.D. Relation of Apolipoprotein E Phenotype to Myocardial Infarction and Mortality from Coronary Artery Disease. Am. J. Cardiol. 1993, 71, 160–165. [Google Scholar] [CrossRef]
- Kalix, B.; Meynet, M.C.; Garin, M.C.; James, R.W. The Apolipoprotein Epsilon2 Allele and the Severity of Coronary Artery Disease in Type 2 Diabetic Patients. Diabet. Med. J. Br. Diabet. Assoc. 2001, 18, 445–450. [Google Scholar] [CrossRef]
- Ukkola, O.; Kervinen, K.; Salmela, P.I.; von Dickhoff, K.; Laakso, M.; Kesäniemi, Y.A. Apolipoprotein E Phenotype Is Related to Macro- and Microangiopathy in Patients with Non-Insulin-Dependent Diabetes Mellitus. Atherosclerosis 1993, 101, 9–15. [Google Scholar] [CrossRef]
- Zhou, H.; Lu, C.-Z.; Gao, Y.; Long, Y.; Tian, H.-M. Relationships between PON1 L55M polymorphism and coronary heart diseases complicated with fasting hyperglycemia in Han populations in Guangdong. J. Sichuan Univ. Med. Sci. Ed. 2009, 40, 68–72. [Google Scholar]
- Wang, W.; Peng, W.; Zhang, X.; Lu, L.; Zhang, R.; Zhang, Q.; Wang, L.; Chen, Q.; Shen, W. Chromosome 9p21.3 Polymorphism in a Chinese Han Population Is Associated with Angiographic Coronary Plaque Progression in Non-Diabetic but Not in Type 2 Diabetic Patients. Cardiovasc. Diabetol. 2010, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Katakami, N.; Kaneto, H.; Matsuoka, T.; Takahara, M.; Imamura, K.; Ishibashi, F.; Kanda, T.; Kawai, K.; Osonoi, T.; Kashiwagi, A.; et al. Accumulation of Gene Polymorphisms Related to Oxidative Stress Is Associated with Myocardial Infarction in Japanese Type 2 Diabetic Patients. Atherosclerosis 2010, 212, 534–538. [Google Scholar] [CrossRef]
- Bae, J.; Kim, I.J.; Hong, S.H.; Sung, J.H.; Lim, S.W.; Cha, D.H.; Cho, Y.W.; Oh, D.; Kim, N.K. Association of Endothelial Nitric Oxide Synthase Polymorphisms with Coronary Artery Disease in Korean Individuals with or without Diabetes Mellitus. Exp. Ther. Med. 2010, 1, 719–724. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Shi, L.; Nie, S.; Wang, F.; Li, X.; Xu, C.; Wang, P.; Yang, B.; Li, Q.; Pan, Z.; et al. The Same Chromosome 9p21.3 Locus Is Associated with Type 2 Diabetes and Coronary Artery Disease in a Chinese Han Population. Diabetes 2011, 60, 680–684. [Google Scholar] [CrossRef] [Green Version]
- Ergun, M.A.; Yurtcu, E.; Demirci, H.; Ilhan, M.N.; Barkar, V.; Yetkin, I.; Menevse, A. PON1 55 and 192 Gene Polymorphisms in Type 2 Diabetes Mellitus Patients in a Turkish Population. Biochem. Genet. 2011, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.S.K.; Germer, S.; Tam, C.H.T.; So, W.-Y.; Martin, M.; Ma, R.C.W.; Chan, J.C.N.; Ng, M.C.Y. Association of the PPARG Pro12Ala Polymorphism with Type 2 Diabetes and Incident Coronary Heart Disease in a Hong Kong Chinese Population. Diabetes Res. Clin. Pract. 2012, 97, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Katakami, N.; Kaneto, H.; Matsuoka, T.; Takahara, M.; Maeda, N.; Shimizu, I.; Ohno, K.; Osonoi, T.; Kawai, K.; Ishibashi, F.; et al. Adiponectin G276T Gene Polymorphism Is Associated with Cardiovascular Disease in Japanese Patients with Type 2 Diabetes. Atherosclerosis 2012, 220, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Saini, V.; Bhatnagar, M.K.; Bhattacharjee, J. Endothelial Nitric Oxide Synthase Glu298Asp (G894T) Gene Polymorphism in Coronary Artery Disease Patients with Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. 2012, 6, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Tong, G.; Wang, N.; Leng, J.; Tong, X.; Shen, Y.; Yang, J.; Ye, X.; Zhou, L.; Zhou, Y. Common Variants in Adiponectin Gene Are Associated with Coronary Artery Disease and Angiographical Severity of Coronary Atherosclerosis in Type 2 Diabetes. Cardiovasc. Diabetol. 2013, 12, 67. [Google Scholar] [CrossRef] [Green Version]
- Narne, P.; Ponnaluri, K.C.; Singh, S.; Siraj, M.; Ishaq, M. Association of the Genetic Variants of Endothelial Nitric Oxide Synthase Gene with Angiographically Defined Coronary Artery Disease and Myocardial Infarction in South Indian Patients with Type 2 Diabetes Mellitus. J. Diabetes Complicat. 2013, 27, 255–261. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, J.; Deng, R.; Ding, S.; Gu, N.; Guo, X. Synergistic Effect of Smoking with Genetic Variants in the AMPKα1 Gene on the Risk of Coronary Artery Disease in Type 2 Diabetes. Diabetes Metab. Res. Rev. 2014, 30, 483–488. [Google Scholar] [CrossRef]
- Wei, X.; Ma, X.; Lu, R.; Bai, G.; Zhang, J.; Deng, R.; Gu, N.; Feng, N.; Guo, X. Genetic Variants in PCSK1 Gene Are Associated with the Risk of Coronary Artery Disease in Type 2 Diabetes in a Chinese Han Population: A Case Control Study. PLoS ONE 2014, 9, e87168. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, J.; Duan, F.; Liu, Z.; Zhan, S.; Hu, Y.; Jiang, J.; Zhang, Y.; Huo, Y.; Chen, D. Interaction of Type 2 Diabetes Mellitus with Chromosome 9p21 Rs10757274 Polymorphism on the Risk of Myocardial Infarction: A Case-Control Study in Chinese Population. BMC Cardiovasc. Disord. 2014, 14, 170. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Pu, L.; Sun, L.; Chen, W.; Nan, N.; Li, H.; Zhu, H.; Yang, X.; Wang, N.; Hui, J.; et al. Identification of Susceptibility Variants in ADIPOR1 Gene Associated with Type 2 Diabetes, Coronary Artery Disease and the Comorbidity of Type 2 Diabetes and Coronary Artery Disease. PLoS ONE 2014, 9, e100339. [Google Scholar]
- Mofarrah, M.; Ziaee, S.; Pilehvar-Soltanahmadi, Y.; Zarghami, F.; Boroumand, M.; Zarghami, N. Association of KALRN, ADIPOQ, and FTO Gene Polymorphism in Type 2 Diabetic Patients with Coronary Artery Disease: Possible Predisposing Markers. Coron. Artery Dis. 2016, 27, 490–496. [Google Scholar] [CrossRef]
- Mohammadzadeh, G.; Ghaffari, M.-A.; Heibar, H.; Bazyar, M. Association of Two Common Single Nucleotide Polymorphisms (+45T/G and +276G/T) of ADIPOQ Gene with Coronary Artery Disease in Type 2 Diabetic Patients. Iran. Biomed. J. 2016, 20, 152–160. [Google Scholar] [CrossRef]
- Wang, X.-B.; Han, Y.; Sabina, S.; Cui, N.-H.; Zhang, S.; Liu, Z.-J.; Li, C.; Zheng, F. HDAC9 Variant Rs2107595 Modifies Susceptibility to Coronary Artery Disease and the Severity of Coronary Atherosclerosis in a Chinese Han Population. PLoS ONE 2016, 11, e0160449. [Google Scholar] [CrossRef]
- Wang, F.; Suo, S.; Sun, L.; Yang, J.; Yang, F.; Zhao, C.; Li, X.; Yuan, L.; Yu, S.; Qi, T.; et al. Analysis of the Relationship between ADIPOR1 Variants and the Susceptibility of Chronic Metabolic Diseases in a Northeast Han Chinese Population. Genet. Test. Mol. Biomark. 2016, 20, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-B.; Han, Y.; Zhang, S.; Cui, N.-H.; Liu, Z.-J.; Huang, Z.-L.; Li, C.; Zheng, F. Associations of Polymorphisms in TXNIP and Gene-Environment Interactions with the Risk of Coronary Artery Disease in a Chinese Han Population. J. Cell. Mol. Med. 2016, 20, 2362–2373. [Google Scholar] [CrossRef] [Green Version]
- Sumi, S.; Ramachandran, S.; RamanKutty, V.; Patel, M.M.; Anand, T.N.; Mullasari, A.S.; Kartha, C.C. ENPP1 121Q Functional Variant Enhances Susceptibility to Coronary Artery Disease in South Indian Patients with Type 2 Diabetes Mellitus. Mol. Cell. Biochem. 2017, 435, 67–72. [Google Scholar] [CrossRef]
- Lu, D.; Huang, J.; Ma, X.; Gu, N.; Zhang, J.; Zhang, H.; Guo, X. Rs46522 in the Ubiquitin-Conjugating Enzyme E2Z Gene Is Associated with the Risk of Coronary Artery Disease in Individuals of Chinese Han Population with Type 2 Diabetes. J. Diabetes Res. 2017, 2017, 4501794. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-B.; Cui, N.-H.; Zhang, S.; Guo, S.-R.; Liu, Z.-J.; Ming, L. PARP-1 Variant Rs1136410 Confers Protection against Coronary Artery Disease in a Chinese Han Population: A Two-Stage Case-Control Study Involving 5643 Subjects. Front. Physiol. 2017, 8, 916. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Rasheed, A.; Tikkanen, E.; Lee, J.-J.; Butterworth, A.S.; Howson, J.M.M.; Assimes, T.L.; Chowdhury, R.; Orho-Melander, M.; Damrauer, S.; et al. Identification of New Susceptibility Loci for Type 2 Diabetes and Shared Etiological Pathways with Coronary Heart Disease. Nat. Genet. 2017, 49, 1450–1457. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Z.; Zhang, Y.; Ding, Y.; Chen, Z.; Wang, L. A Genetic Variant near Adaptor-Related Protein Complex 2 Alpha 2 Subunit Gene Is Associated with Coronary Artery Disease in a Chinese Population. BMC Cardiovasc. Disord. 2018, 18, 161. [Google Scholar] [CrossRef]
- Schaap, F.G.; Rensen, P.C.N.; Voshol, P.J.; Vrins, C.; van der Vliet, H.N.; Chamuleau, R.A.F.M.; Havekes, L.M.; Groen, A.K.; van Dijk, K.W. ApoAV Reduces Plasma Triglycerides by Inhibiting Very Low Density Lipoprotein-Triglyceride (VLDL-TG) Production and Stimulating Lipoprotein Lipase-Mediated VLDL-TG Hydrolysis. J. Biol. Chem. 2004, 279, 27941–27947. [Google Scholar] [CrossRef] [Green Version]
- Garelnabi, M.; Lor, K.; Jin, J.; Chai, F.; Santanam, N. The Paradox of ApoA5 Modulation of Triglycerides: Evidence from Clinical and Basic Research. Clin. Biochem. 2013, 46, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Forte, T.M.; Ryan, R.O. Apolipoprotein A5: Extracellular and Intracellular Roles in Triglyceride Metabolism. Curr. Drug Targets 2015, 16, 1274–1280. [Google Scholar] [CrossRef]
- Nilsson, S.K.; Christensen, S.; Raarup, M.K.; Ryan, R.O.; Nielsen, M.S.; Olivecrona, G. Endocytosis of Apolipoprotein A-V by Members of the Low Density Lipoprotein Receptor and the VPS10p Domain Receptor Families. J. Biol. Chem. 2008, 283, 25920–25927. [Google Scholar] [CrossRef] [Green Version]
- Camporez, J.P.G.; Kanda, S.; Petersen, M.C.; Jornayvaz, F.R.; Samuel, V.T.; Bhanot, S.; Petersen, K.F.; Jurczak, M.J.; Shulman, G.I. ApoA5 Knockdown Improves Whole-Body Insulin Sensitivity in High-Fat-Fed Mice by Reducing Ectopic Lipid Content. J. Lipid Res. 2015, 56, 526–536. [Google Scholar] [CrossRef] [Green Version]
- Chandak, G.R.; Ward, K.J.; Yajnik, C.S.; Pandit, A.N.; Bavdekar, A.; Joglekar, C.V.; Fall, C.H.D.; Mohankrishna, P.; Wilkin, T.J.; Metcalf, B.S.; et al. Triglyceride Associated Polymorphisms of the APOA5 Gene Have Very Different Allele Frequencies in Pune, India Compared to Europeans. BMC Med. Genet. 2006, 7, 76. [Google Scholar] [CrossRef] [Green Version]
- Dorfmeister, B.; Cooper, J.A.; Stephens, J.W.; Ireland, H.; Hurel, S.J.; Humphries, S.E.; Talmud, P.J. The Effect of APOA5 and APOC3 Variants on Lipid Parameters in European Whites, Indian Asians and Afro-Caribbeans with Type 2 Diabetes. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2007, 1772, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Szalai, C.; Keszei, M.; Duba, J.; Prohászka, Z.; Kozma, G.T.; Császár, A.; Balogh, S.; Almássy, Z.; Fust, G.; Czinner, A. Polymorphism in the Promoter Region of the Apolipoprotein A5 Gene Is Associated with an Increased Susceptibility for Coronary Artery Disease. Atherosclerosis 2004, 173, 109–114. [Google Scholar] [CrossRef]
- Hubacek, J.A.; Skodová, Z.; Adámková, V.; Lánská, V.; Poledne, R. The Influence of APOAV Polymorphisms (T-1131>C and S19>W) on Plasma Triglyceride Levels and Risk of Myocardial Infarction. Clin. Genet. 2004, 65, 126–130. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, L.; Jin, Z.; Gao, G.; Li, H.; Zhang, L.; Zhang, L.; Lu, X.; Hu, L.; Lu, B.; et al. Nebivolol Protects against Myocardial Infarction Injury via Stimulation of Beta 3-Adrenergic Receptors and Nitric Oxide Signaling. PLoS ONE 2014, 9, e98179. [Google Scholar]
- Xiao, C.; Goldgof, M.; Gavrilova, O.; Reitman, M.L. Anti-Obesity and Metabolic Efficacy of the Β3-Adrenergic Agonist, CL316243, in Mice at Thermoneutrality Compared to 22 °C. Obesity 2015, 23, 1450–1459. [Google Scholar] [CrossRef] [Green Version]
- Daghestani, M.; Daghestani, M.; Daghistani, M.; Eldali, A.; Hassan, Z.K.; Elamin, M.H.; Warsy, A. ADRB3 Polymorphism Rs4994 (Trp64Arg) Associates Significantly with Bodyweight Elevation and Dyslipidaemias in Saudis but Not Rs1801253 (Arg389Gly) Polymorphism in ARDB1. Lipids Health Dis. 2018, 17, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, H.; Hosokawa, M.; Sashima, T.; Murakami-Funayama, K.; Miyashita, K. Anti-Obesity and Anti-Diabetic Effects of Fucoxanthin on Diet-Induced Obesity Conditions in a Murine Model. Mol. Med. Rep. 2009, 2, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liao, Y.; Sun, S.; Lin, F.; Li, R.; Lan, S.; Zhao, X.; Qin, J.; Rao, S. Stratified Meta-Analysis by Ethnicity Revealed That ADRB3 Trp64Arg Polymorphism Was Associated with Coronary Artery Disease in Asians, but Not in Caucasians. Medicine 2020, 99, e18914. [Google Scholar] [CrossRef] [PubMed]
- Büettner, R.; Schäffler, A.; Arndt, H.; Rogler, G.; Nusser, J.; Zietz, B.; Enger, I.; Hügl, S.; Cuk, A.; Schölmerich, J.; et al. The Trp64Arg Polymorphism of the Beta 3-Adrenergic Receptor Gene Is Not Associated with Obesity or Type 2 Diabetes Mellitus in a Large Population-Based Caucasian Cohort. J. Clin. Endocrinol. Metab. 1998, 83, 2892–2897. [Google Scholar] [CrossRef] [Green Version]
- Zafarmand, M.H.; van der Schouw, Y.T.; Grobbee, D.E.; de Leeuw, P.W.; Bots, M.L. T64A Polymorphism in Β3-Adrenergic Receptor Gene (ADRB3) and Coronary Heart Disease: A Case-Cohort Study and Meta-Analysis. J. Intern. Med. 2008, 263, 79–89. [Google Scholar] [CrossRef]
- Lockridge, O. Review of Human Butyrylcholinesterase Structure, Function, Genetic Variants, History of Use in the Clinic, and Potential Therapeutic Uses. Pharmacol. Ther. 2015, 148, 34–46. [Google Scholar] [CrossRef]
- Dave, K.R.; Katyare, S.S. Effect of Alloxan-Induced Diabetes on Serum and Cardiac Butyrylcholinesterases in the Rat. J. Endocrinol. 2002, 175, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Chen, V.P.; Gao, Y.; Geng, L.; Stout, M.B.; Jensen, M.D.; Brimijoin, S. Butyrylcholinesterase Deficiency Promotes Adipose Tissue Growth and Hepatic Lipid Accumulation in Male Mice on High-Fat Diet. Endocrinology 2016, 157, 3086–3095. [Google Scholar] [CrossRef] [Green Version]
- Hashim, Y.; Shepherd, D.; Wiltshire, S.; Holman, R.R.; Levy, J.C.; Clark, A.; Cull, C.A. Butyrylcholinesterase K Variant on Chromosome 3 q Is Associated with Type II Diabetes in White Caucasian Subjects. Diabetologia 2001, 44, 2227–2230. [Google Scholar] [CrossRef]
- Johansen, A.; Nielsen, E.-M.D.; Andersen, G.; Hamid, Y.H.; Jensen, D.P.; Glümer, C.; Drivsholm, T.; Borch-Johnsen, K.; Jørgensen, T.; Hansen, T.; et al. Large-Scale Studies of the Functional K Variant of the Butyrylcholinesterase Gene in Relation to Type 2 Diabetes and Insulin Secretion. Diabetologia 2004, 47, 1437–1441. [Google Scholar] [CrossRef] [Green Version]
- Scacchi, R.; Ruggeri, M.; Corbo, R.M. Variation of the Butyrylcholinesterase (BChE) and Acetylcholinesterase (AChE) Genes in Coronary Artery Disease. Clin. Chim. Acta 2011, 412, 1341–1344. [Google Scholar] [CrossRef]
- Chen, V.P.; Gao, Y.; Geng, L.; Brimijoin, S. Butyrylcholinesterase Regulates Central Ghrelin Signaling and Has an Impact on Food Intake and Glucose Homeostasis. Int. J. Obes. 2017, 41, 1413–1419. [Google Scholar] [CrossRef] [Green Version]
- Sakata, I.; Sakai, T. Ghrelin Cells in the Gastrointestinal Tract. Int. J. Pept. 2010, 2010, 945056. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Liu, Y.; Guo, Y.; Su, M.; Zhong, Y.; Xu, L.; Guo, F.; Gao, S. Ghrelin Projection from the Lateral Hypothalamus Area to the Dorsal Vagal Complex and Its Regulation of Gastric Motility in Cisplatin-Treated Rats. Neuropeptides 2017, 66, 69–80. [Google Scholar] [CrossRef]
- Chen, V.P.; Gao, Y.; Geng, L.; Brimijoin, S. Butyrylcholinesterase Gene Transfer in Obese Mice Prevents Postdieting Body Weight Rebound by Suppressing Ghrelin Signaling. Proc. Natl. Acad. Sci. USA 2017, 114, 10960–10965. [Google Scholar] [CrossRef] [Green Version]
- Greig, N.H.; Utsuki, T.; Ingram, D.K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q.-S.; Mamczarz, J.; Holloway, H.W.; Giordano, T.; et al. Selective Butyrylcholinesterase Inhibition Elevates Brain Acetylcholine, Augments Learning and Lowers Alzheimer β-Amyloid Peptide in Rodent. Proc. Natl. Acad. Sci. USA 2005, 102, 17213–17218. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.J.; Park, S.B.; Sohn, K.C.; Lee, Y.; Seo, Y.J.; Kim, C.D.; Kim, Y.S.; Lee, J.H.; Im, M. Regulation of Lipid Production by Acetylcholine Signalling in Human Sebaceous Glands. J. Dermatol. Sci. 2013, 72, 116–122. [Google Scholar] [CrossRef]
- Han, Y.; Ma, Y.; Liu, Y.; Zhao, Z.; Zhen, S.; Yang, X.; Xu, Z.; Wen, D. Plasma Cholinesterase Is Associated with Chinese Adolescent Overweight or Obesity and Metabolic Syndrome Prediction. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 685–702. [Google Scholar] [CrossRef] [Green Version]
- Iwabu, M.; Okada-Iwabu, M.; Yamauchi, T.; Kadowaki, T. Adiponectin/Adiponectin Receptor in Disease and Aging. NPJ Aging Mech. Dis. 2015, 1, 15013. [Google Scholar] [CrossRef]
- Skurk, T.; Alberti-Huber, C.; Herder, C.; Hauner, H. Relationship between Adipocyte Size and Adipokine Expression and Secretion. J. Clin. Endocrinol. Metab. 2007, 92, 1023–1033. [Google Scholar] [CrossRef]
- Ryan, A.S.; Berman, D.M.; Nicklas, B.J.; Sinha, M.; Gingerich, R.L.; Meneilly, G.S.; Egan, J.M.; Elahi, D. Plasma Adiponectin and Leptin Levels, Body Composition, and Glucose Utilization in Adult Women with Wide Ranges of Age and Obesity. Diabetes Care 2003, 26, 2383–2388. [Google Scholar] [CrossRef] [Green Version]
- Salehi-Abargouei, A.; Izadi, V.; Azadbakht, L. The Effect of Low Calorie Diet on Adiponectin Concentration: A Systematic Review and Meta-Analysis. Horm. Metab. Res. 2015, 47, 549–555. [Google Scholar] [CrossRef]
- de Vincentis, A.; Pedone, C.; Vespasiani-Gentilucci, U.; Picardi, A.; Derosa, G.; Maffioli, P.; Sahebkar, A. Effect of Sibutramine on Plasma C-Reactive Protein, Leptin and Adiponectin Concentrations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr. Pharm. Des. 2017, 23, 870–878. [Google Scholar] [CrossRef]
- Khosravi-Largani, M.; Nojomi, M.; Aghili, R.; Otaghvar, H.A.; Tanha, K.; Seyedi, S.H.S.; Mottaghi, A. Evaluation of All Types of Metabolic Bariatric Surgery and Its Consequences: A Systematic Review and Meta-Analysis. Obes. Surg. 2019, 29, 651–690. [Google Scholar] [CrossRef]
- Yanai, H.; Yoshida, H. Beneficial Effects of Adiponectin on Glucose and Lipid Metabolism and Atherosclerotic Progression: Mechanisms and Perspectives. Int. J. Mol. Sci. 2019, 20, 1190. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Wattez, J.-S.; Lee, S.; Nguyen, A.; Schaack, J.; Hay, W.W.J.; Shao, J. Adiponectin Deficiency Impairs Maternal Metabolic Adaptation to Pregnancy in Mice. Diabetes 2017, 66, 1126–1135. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Wang, W.-Q.; Zhang, H.; Yang, X.; Fan, Q.; Christopher, T.A.; Lopez, B.L.; Tao, L.; Goldstein, B.J.; Gao, F.; et al. Adiponectin Improves Endothelial Function in Hyperlipidemic Rats by Reducing Oxidative/Nitrative Stress and Differential Regulation of ENOS/INOS Activity. Am. J. Physiol.-Endocrinol. Metab. 2007, 293, E1703–E1708. [Google Scholar] [CrossRef] [Green Version]
- Tsatsanis, C.; Zacharioudaki, V.; Androulidaki, A.; Dermitzaki, E.; Charalampopoulos, I.; Minas, V.; Gravanis, A.; Margioris, A.N. Adiponectin Induces TNF-α and IL-6 in Macrophages and Promotes Tolerance to Itself and Other pro-Inflammatory Stimuli. Biochem. Biophys. Res. Commun. 2005, 335, 1254–1263. [Google Scholar] [CrossRef]
- Basati, G.; Pourfarzam, M.; Movahedian, A.; Samsamshariat, S.Z.; Sarrafzadegan, N. Reduced Plasma Adiponectin Levels Relative to Oxidized Low Density Lipoprotein and Nitric Oxide in Coronary Artery Disease Patients. Clinics 2011, 66, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Gasbarrino, K.; Hafiane, A.; Daskalopoulou, S. The Role of Adiponectin in Macrophage-Mediated Cholesterol Efflux and HDL Biogenesis. Atheroscler. Suppl. 2018, 32, 35. [Google Scholar] [CrossRef]
- Wong, W.T.; Tian, X.Y.; Xu, A.; Yu, J.; Lau, C.W.; Hoo, R.L.C.; Wang, Y.; Lee, V.W.Y.; Lam, K.S.L.; Vanhoutte, P.M.; et al. Adiponectin Is Required for PPARγ-Mediated Improvement of Endothelial Function in Diabetic Mice. Cell Metab. 2011, 14, 104–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.-B.; Jia, L.; Li, B.-R.; Lan, L.-Z.; Ge, Q.; Zhen, H.-T.; Deng, H.-C. Adiponectin Suppresses Inflammatory Responses at the Early Phase of Atherosclerosis in Hyperglycemic Rats. Mol. Med. Rep. 2010, 3, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shu, C.; Li, Q.; Li, M.; Li, X. Adiponectin Affects Vascular Smooth Muscle Cell Proliferation and Apoptosis through Modulation of the Mitofusin-2-Mediated Ras-Raf-Erk1/2 Signaling Pathway. Mol. Med. Rep. 2015, 12, 4703–4707. [Google Scholar] [CrossRef] [Green Version]
- Kajikawa, Y.; Ikeda, M.; Takemoto, S.; Tomoda, J.; Ohmaru, N.; Kusachi, S. Association of Circulating Levels of Leptin and Adiponectin with Metabolic Syndrome and Coronary Heart Disease in Patients with Various Coronary Risk Factors. Int. Heart J. 2011, 52, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Ai, M.; Otokozawa, S.; Asztalos, B.F.; White, C.C.; Cupples, L.A.; Nakajima, K.; Lamon-Fava, S.; Wilson, P.W.; Matsuzawa, Y.; Schaefer, E.J. Adiponectin: An Independent Risk Factor for Coronary Heart Disease in Men in the Framingham Offspring Study. Atherosclerosis 2011, 217, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.; Gupta, M.D.; Meennahalli Palleda, G.; Vyas, A.; Tyagi, S. Relationship of Plasma Adiponectin Levels with Acute Coronary Syndromes and Coronary Lesion Severity in North Indian Population. ISRN Cardiol. 2013, 2013, 854815. [Google Scholar] [CrossRef] [Green Version]
- Riestra, P.; García-Anguita, A.; Lasunción, M.A.; Mangas, A.; de Oya, M.; Garcés, C. Influence of the Interaction between the Adiponectin G276T Polymorphism and Body Mass Index on Lipid Levels in Healthy Children. Mol. Biol. Rep. 2012, 39, 4831–4835. [Google Scholar] [CrossRef]
- Filippi, E.; Sentinelli, F.; Romeo, S.; Arca, M.; Berni, A.; Tiberti, C.; Verrienti, A.; Fanelli, M.; Fallarino, M.; Sorropago, G.; et al. The Adiponectin Gene SNP+276G>T Associates with Early-Onset Coronary Artery Disease and with Lower Levels of Adiponectin in Younger Coronary Artery Disease Patients (Age ≤ 50 Years). J. Mol. Med. 2005, 83, 711–719. [Google Scholar] [CrossRef]
- Bacci, S.; Menzaghi, C.; Ercolino, T.; Ma, X.; Rauseo, A.; Salvemini, L.; Vigna, C.; Fanelli, R.; di Mario, U.; Doria, A.; et al. The +276 G/T Single Nucleotide Polymorphism of the Adiponectin Gene Is Associated with Coronary Artery Disease in Type 2 Diabetic Patients. Diabetes Care 2004, 27, 2015–2020. [Google Scholar] [CrossRef] [Green Version]
- Smetnev, S.; Klimushina, M.; Kutsenko, V.; Kiseleva, A.; Gumanova, N.; Kots, A.; Skirko, O.; Ershova, A.; Yarovaya, E.; Metelskaya, V.; et al. Associations of SNPs of the ADIPOQ Gene with Serum Adiponectin Levels, Unstable Angina, and Coronary Artery Disease. Biomolecules 2019, 9, 537. [Google Scholar] [CrossRef] [Green Version]
- Ruan, H.; Dong, L.Q. Adiponectin Signaling and Function in Insulin Target Tissues. J. Mol. Cell Biol. 2016, 8, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lau, W.B.; Gao, E.; Tao, L.; Yuan, Y.; Li, R.; Wang, X.; Koch, W.J.; Ma, X.-L. Cardiomyocyte-Derived Adiponectin Is Biologically Active in Protecting against Myocardial Ischemia-Reperfusion Injury. Am. J. Physiology. Endocrinol. Metab. 2010, 298, E663–E670. [Google Scholar] [CrossRef]
- Yamauchi, T.; Nio, Y.; Maki, T.; Kobayashi, M.; Takazawa, T.; Iwabu, M.; Okada-Iwabu, M.; Kawamoto, S.; Kubota, N.; Kubota, T.; et al. Targeted Disruption of AdipoR1 and AdipoR2 Causes Abrogation of Adiponectin Binding and Metabolic Actions. Nat. Med. 2007, 13, 332–339. [Google Scholar] [CrossRef]
- Inukai, K.; Nakashima, Y.; Watanabe, M.; Takata, N.; Sawa, T.; Kurihara, S.; Awata, T.; Katayama, S. Regulation of Adiponectin Receptor Gene Expression in Diabetic Mice. Am. J. Physiol.-Endocrinol. Metab. 2005, 288, E876–E882. [Google Scholar] [CrossRef] [PubMed]
- Koentges, C.; König, A.; Pfeil, K.; Hölscher, M.E.; Schnick, T.; Wende, A.R.; Schrepper, A.; Cimolai, M.C.; Kersting, S.; Hoffmann, M.M.; et al. Myocardial Mitochondrial Dysfunction in Mice Lacking Adiponectin Receptor 1. Basic Res. Cardiol. 2015, 110, 37. [Google Scholar] [CrossRef] [PubMed]
- Damcott, C.M.; Ott, S.H.; Pollin, T.I.; Reinhart, L.J.; Wang, J.; O’Connell, J.R.; Mitchell, B.D.; Shuldiner, A.R. Genetic Variation in Adiponectin Receptor 1 and Adiponectin Receptor 2 Is Associated with Type 2 Diabetes in the Old Order Amish. Diabetes 2005, 54, 2245–2250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soccio, T.; Zhang, Y.-Y.; Bacci, S.; Mlynarski, W.; Placha, G.; Raggio, G.; di Paola, R.; Marucci, A.; Johnstone, M.T.; Gervino, E.V.; et al. Common Haplotypes at the Adiponectin Receptor 1 (ADIPOR1) Locus Are Associated with Increased Risk of Coronary Artery Disease in Type 2 Diabetes. Diabetes 2006, 55, 2763–2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adya, R.; Tan, B.K.; Randeva, H.S. Differential Effects of Leptin and Adiponectin in Endothelial Angiogenesis. J. Diabetes Res. 2015, 2015, 648239. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Yang, G.; Kim, Y.; Kim, J.; Ha, J. AMPK Activators: Mechanisms of Action and Physiological Activities. Exp. Mol. Med. 2016, 48, e224. [Google Scholar] [CrossRef] [Green Version]
- Seo, E.; Park, E.-J.; Joe, Y.; Kang, S.; Kim, M.-S.; Hong, S.-H.; Park, M.-K.; Kim, D.K.; Koh, H.; Lee, H.-J. Overexpression of AMPKα1 Ameliorates Fatty Liver in Hyperlipidemic Diabetic Rats. Korean J. Physiol. Pharm. 2009, 13, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Xu, Z.; Zhang, L.; Liu, J.; Feng, J.; Wang, X.; Shan, T.; Wang, Y. Muscle-Specific Deletion of Prkaa1 Enhances Skeletal Muscle Lipid Accumulation in Mice Fed a High-Fat Diet. J. Physiol. Biochem. 2018, 74, 195–205. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, J.; Ma, Q.; Liu, Z.; Sudhahar, V.; Cao, Y.; Wang, L.; Zeng, X.; Zhou, Y.; Zhang, M.; et al. PRKAA1/AMPKα1-Driven Glycolysis in Endothelial Cells Exposed to Disturbed Flow Protects against Atherosclerosis. Nat. Commun. 2018, 9, 4667. [Google Scholar] [CrossRef]
- Boehm, M.; Bonifacino, J.S. Genetic Analyses of Adaptin Function from Yeast to Mammals. Gene 2002, 286, 175–186. [Google Scholar] [CrossRef]
- Montgomery, M.K.; Bayliss, J.; Keenan, S.; Rhost, S.; Ting, S.B.; Watt, M.J. The Role of Ap2a2 in PPARα-Mediated Regulation of Lipolysis in Adipose Tissue. FASEB J. 2019, 33, 13267–13279. [Google Scholar] [CrossRef] [Green Version]
- Azarnia Tehran, D.; López-Hernández, T.; Maritzen, T. Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019, 8, 1345. [Google Scholar] [CrossRef] [Green Version]
- Desikan, R.S.; Schork, A.J.; Wang, Y.; Thompson, W.K.; Dehghan, A.; Ridker, P.M.; Chasman, D.I.; McEvoy, L.K.; Holland, D.; Chen, C.-H.; et al. Polygenic Overlap between C-Reactive Protein, Plasma Lipids, and Alzheimer Disease. Circulation 2015, 131, 2061–2069. [Google Scholar] [CrossRef] [Green Version]
- Forte, L.; Cimmino, G.; Loffredo, F.; de Palma, R.; Abbate, G.; Calabrò, P.; Ingrosso, D.; Galletti, P.; Carangio, C.; Casillo, B.; et al. C-Reactive Protein Is Released in the Coronary Circulation and Causes Endothelial Dysfunction in Patients with Acute Coronary Syndromes. Int. J. Cardiol. 2011, 152, 7–12. [Google Scholar] [CrossRef]
- Kincl, V.; Máchal, J.; Drozdová, A.; Panovský, R.; Vašků, A. The Relation between ENOS-786 C/T, 4 a/b, MMP-13 Rs640198 G/T, Eotaxin 426 C/T, -384 A/G, and 67 G/A Polymorphisms and Long-Term Outcome in Patients with Coronary Artery Disease. Dis. Markers 2015, 2015, 232048. [Google Scholar] [CrossRef] [Green Version]
- Amerio, P.; Frezzolini, A.; Feliciani, C.; Verdolini, R.; Teofoli, P.; de Pità, O.; Puddu, P. Eotaxins and CCR3 Receptor in Inflammatory and Allergic Skin Diseases: Therapeutical Implications. Curr. Drug Targets. Inflamm. Allergy 2003, 2, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Raghuraman, G.; Hsiung, J.; Zuniga, M.C.; Baughman, B.D.; Hitchner, E.; Guzman, R.J.; Zhou, W. Eotaxin Augments Calcification in Vascular Smooth Muscle Cells. J. Cell. Biochem. 2017, 118, 647–654. [Google Scholar] [CrossRef]
- Kodali, R.B.; Kim, W.J.H.; Galaria, I.I.; Miller, C.; Schecter, A.D.; Lira, S.A.; Taubman, M.B. CCL11 (Eotaxin) Induces CCR3-Dependent Smooth Muscle Cell Migration. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1211–1216. [Google Scholar] [CrossRef] [Green Version]
- Hessner, M.J.; Wang, X.; Meyer, L.; Geoffrey, R.; Jia, S.; Fuller, J.; Lernmark, A.; Ghosh, S. Involvement of Eotaxin, Eosinophils, and Pancreatic Predisposition in Development of Type 1 Diabetes Mellitus in the BioBreeding Rat. J. Immunol. 2004, 173, 6993–7002. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, A.R.; Wu, H.; Xydakis, A.M.; Jones, P.H.; Smith, E.O.; Sweeney, J.F.; Corry, D.B.; Ballantyne, C.M. Eotaxin and Obesity. J. Clin. Endocrinol. Metab. 2006, 91, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Zee, R.Y.L.; Cook, N.R.; Cheng, S.; Erlich, H.A.; Lindpaintner, K.; Lee, R.T.; Ridker, P.M. Threonine for Alanine Substitution in the Eotaxin (CCL11) Gene and the Risk of Incident Myocardial Infarction. Atherosclerosis 2004, 175, 91–94. [Google Scholar] [CrossRef]
- Siragusa, M.; Fleming, I. The ENOS Signalosome and Its Link to Endothelial Dysfunction. Pflügers Arch. Eur. J. Physiol. 2016, 468, 1125–1137. [Google Scholar] [CrossRef]
- Gentile, C.; Kesteven, S.; Wu, J.; Bursill, C.; Davies, M.; Feneley, M.; Figtree, G. Endothelial Nitric Oxide Synthase Plays a Protective Role against Myocardial Infarction. Free. Radic. Biol. Med. 2018, 128, S26. [Google Scholar] [CrossRef]
- Roth, L.; van der Donckt, C.; Emini Veseli, B.; van Dam, D.; de Deyn, P.P.; Martinet, W.; Herman, A.G.; de Meyer, G.R.Y. Nitric Oxide Donor Molsidomine Favors Features of Atherosclerotic Plaque Stability and Reduces Myocardial Infarction in Mice. Vasc. Pharmacol. 2019, 118–119, 106561. [Google Scholar] [CrossRef]
- Lacraz, G.; Giroix, M.-H.; Kassis, N.; Coulaud, J.; Galinier, A.; Noll, C.; Cornut, M.; Schmidlin, F.; Paul, J.-L.; Janel, N.; et al. Islet Endothelial Activation and Oxidative Stress Gene Expression Is Reduced by IL-1Ra Treatment in the Type 2 Diabetic GK Rat. PLoS ONE 2009, 4, e6963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vecoli, C.; Novelli, M.; Pippa, A.; Giacopelli, D.; Beffy, P.; Masiello, P.; L’Abbate, A.; Neglia, D. Partial Deletion of ENOS Gene Causes Hyperinsulinemic State, Unbalance of Cardiac Insulin Signaling Pathways and Coronary Dysfunction Independently of High Fat Diet. PLoS ONE 2014, 9, e104156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granath, B.; Taylor, R.R.; van Bockxmeer, F.M.; Mamotte, C.D. Lack of Evidence for Association between Endothelial Nitric Oxide Synthase Gene Polymorphisms and Coronary Artery Disease in the Australian Caucasian Population. J. Cardiovasc. Risk 2001, 8, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Jeerooburkhan, N.; Jones, L.C.; Bujac, S.; Cooper, J.A.; Miller, G.J.; Vallance, P.; Humphries, S.E.; Hingorani, A.D. Genetic and Environmental Determinants of Plasma Nitrogen Oxides and Risk of Ischemic Heart Disease. Hypertension 2001, 38, 1054–1061. [Google Scholar] [CrossRef] [Green Version]
- Pulkkinen, A.; Viitanen, L.; Kareinen, A.; Lehto, S.; Vauhkonen, I.; Laakso, M. Intron 4 Polymorphism of the Endothelial Nitric Oxide Synthase Gene Is Associated with Elevated Blood Pressure in Type 2 Diabetic Patients with Coronary Heart Disease. J. Mol. Med. 2000, 78, 372–379. [Google Scholar] [CrossRef]
- Furlong, C.E.; Marsillach, J.; Jarvik, G.P.; Costa, L.G. Paraoxonases-1, -2 and -3: What Are Their Functions? Chem.-Biol. Interact. 2016, 259, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Koren-Gluzer, M.; Aviram, M.; Hayek, T. Paraoxonase1 (PON1) Reduces Insulin Resistance in Mice Fed a High-Fat Diet, and Promotes GLUT4 Overexpression in Myocytes, via the IRS-1/Akt Pathway. Atherosclerosis 2013, 229, 71–78. [Google Scholar] [CrossRef]
- Koren-Gluzer, M.; Aviram, M.; Meilin, E.; Hayek, T. The Antioxidant HDL-Associated Paraoxonase-1 (PON1) Attenuates Diabetes Development and Stimulates β-Cell Insulin Release. Atherosclerosis 2011, 219, 510–518. [Google Scholar] [CrossRef]
- Flekac, M.; Skrha, J.; Zídková, K.; Lacinová, Z.; Hilgertová, J. Paraoxonase 1 Gene Polymorphisms and Enzyme Activities in Diabetes Mellitus. Physiol. Res. 2008, 57, 717–726. [Google Scholar] [CrossRef]
- Fridman, O.; Gariglio, L.; Riviere, S.; Porcile, R.; Fuchs, A.; Potenzoni, M. Paraoxonase 1 Gene Polymorphisms and Enzyme Activities in Coronary Artery Disease and Its Relationship to Serum Lipids and Glycemia. Arch. Cardiol. Mex. 2016, 86, 350–357. [Google Scholar] [CrossRef]
- Pfohl, M.; Koch, M.; Enderle, M.D.; Kühn, R.; Füllhase, J.; Karsch, K.R.; Häring, H.U. Paraoxonase 192 Gln/Arg Gene Polymorphism, Coronary Artery Disease, and Myocardial Infarction in Type 2 Diabetes. Diabetes 1999, 48, 623–627. [Google Scholar] [CrossRef]
- Kussmaul, L.; Hirst, J. The Mechanism of Superoxide Production by NADH:Ubiquinone Oxidoreductase (Complex I) from Bovine Heart Mitochondria. Proc. Natl. Acad. Sci. USA 2006, 103, 7607–7612. [Google Scholar] [CrossRef] [Green Version]
- Heather, L.C.; Carr, C.A.; Stuckey, D.J.; Pope, S.; Morten, K.J.; Carter, E.E.; Edwards, L.M.; Clarke, K. Critical Role of Complex III in the Early Metabolic Changes Following Myocardial Infarction. Cardiovasc. Res. 2010, 85, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Zarkasi, K.A.; Jen-Kit, T.; Jubri, Z. Molecular Understanding of the Cardiomodulation in Myocardial Infarction and the Mechanism of Vitamin E Protections. Mini Rev. Med. Chem. 2019, 19, 1407–1426. [Google Scholar] [CrossRef]
- Devarajan, A.; Bourquard, N.; Hama, S.; Navab, M.; Grijalva, V.R.; Morvardi, S.; Clarke, C.F.; Vergnes, L.; Reue, K.; Teiber, J.F.; et al. Paraoxonase 2 Deficiency Alters Mitochondrial Function and Exacerbates the Development of Atherosclerosis. Antioxid. Redox Signal. 2011, 14, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Shih, D.M.; Meng, Y.; Sallam, T.; Vergnes, L.; Shu, M.L.; Reue, K.; Tontonoz, P.; Fogelman, A.M.; Lusis, A.J.; Reddy, S.T. PON2 Deficiency Leads to Increased Susceptibility to Diet-Induced Obesity. Antioxidants 2019, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, S.; Demirci, F.Y.; Dressen, A.S.; Kao, A.H.; Rhew, E.Y.; Ramsey-Goldman, R.; Manzi, S.; Kammerer, C.M.; Kamboh, M.I. Association Analysis of PON2 Genetic Variants with Serum Paraoxonase Activity and Systemic Lupus Erythematosus. BMC Med. Genet. 2011, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Marchegiani, F.; Spazzafumo, L.; Provinciali, M.; Cardelli, M.; Olivieri, F.; Franceschi, C.; Lattanzio, F.; Antonicelli, R. Paraoxonase2 C311S Polymorphism and Low Levels of HDL Contribute to a Higher Mortality Risk after Acute Myocardial Infarction in Elderly Patients. Mol. Genet. Metab. 2009, 98, 314–318. [Google Scholar] [CrossRef]
- Kuntz, A.N.; Davioud-Charvet, E.; Sayed, A.A.; Califf, L.L.; Dessolin, J.; Arnér, E.S.J.; Williams, D.L. Thioredoxin Glutathione Reductase from Schistosoma Mansoni: An Essential Parasite Enzyme and a Key Drug Target. PLoS Med. 2007, 4, e206. [Google Scholar]
- Mao, Z.; Huang, Y.; Zhang, Z.; Yang, X.; Zhang, X.; Huang, Y.; Sawada, N.; Mitsui, T.; Takeda, M.; Yao, J. Pharmacological Levels of Hydrogen Sulfide Inhibit Oxidative Cell Injury through Regulating the Redox State of Thioredoxin. Free Radic. Biol. Med. 2019, 134, 190–199. [Google Scholar] [CrossRef]
- Chutkow, W.A.; Birkenfeld, A.L.; Brown, J.D.; Lee, H.-Y.; Frederick, D.W.; Yoshioka, J.; Patwari, P.; Kursawe, R.; Cushman, S.W.; Plutzky, J.; et al. Deletion of the Alpha-Arrestin Protein Txnip in Mice Promotes Adiposity and Adipogenesis While Preserving Insulin Sensitivity. Diabetes 2010, 59, 1424–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson, E.; Koren, S.; Razik, F.; Goldberg, H.; Kwan, E.P.; Sheu, L.; Gaisano, H.Y.; Fantus, I.G. High β-Cell Mass Prevents Streptozotocin-Induced Diabetes in Thioredoxin-Interacting Protein-Deficient Mice. Am. J. Physiol.-Endocrinol. Metab. 2009, 296, E1251–E1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao-Qun, W.; Patrizia, N.; Cameron, W.; Keigi, F.; Chen, Y.; Berk, B.C. Thioredoxin Interacting Protein Promotes Endothelial Cell Inflammation in Response to Disturbed Flow by Increasing Leukocyte Adhesion and Repressing Kruppel-Like Factor 2. Circ. Res. 2012, 110, 560–568. [Google Scholar] [CrossRef]
- Connelly, K.A.; Advani, A.; Advani, S.L.; Zhang, Y.; Kim, Y.M.; Shen, V.; Thai, K.; Kelly, D.J.; Gilbert, R.E. Impaired Cardiac Anti-Oxidant Activity in Diabetes: Human and Correlative Experimental Studies. Acta Diabetol. 2014, 51, 771–782. [Google Scholar] [CrossRef]
- Michard, C.; Doublet, P. Post-Translational Modifications Are Key Players of the Legionella Pneumophila Infection Strategy. Front. Microbiol. 2015, 6, 87. [Google Scholar] [CrossRef]
- Jena, K.K.; Kolapalli, S.P.; Mehto, S.; Nath, P.; Das, B.; Sahoo, P.K.; Ahad, A.; Syed, G.H.; Raghav, S.K.; Senapati, S.; et al. TRIM16 Controls Assembly and Degradation of Protein Aggregates by Modulating the P62-NRF2 Axis and Autophagy. EMBO J. 2018, 37, e98358. [Google Scholar] [CrossRef]
- Dreja, T.; Jovanovic, Z.; Rasche, A.; Kluge, R.; Herwig, R.; Tung, Y.C.L.; Joost, H.G.; Yeo, G.S.H.; Al-Hasani, H. Diet-Induced Gene Expression of Isolated Pancreatic Islets from a Polygenic Mouse Model of the Metabolic Syndrome. Diabetologia 2010, 53, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Khamis, A.; Canouil, M.; Siddiq, A.; Crouch, H.; Falchi, M.; von Bulow, M.; Ehehalt, F.; Marselli, L.; Distler, M.; Richter, D.; et al. Laser Capture Microdissection of Human Pancreatic Islets Reveals Novel EQTLs Associated with Type 2 Diabetes. Mol. Metab. 2019, 24, 98–107. [Google Scholar] [CrossRef]
- Abe, S.; Tokoro, F.; Matsuoka, R.; Arai, M.; Noda, T.; Watanabe, S.; Horibe, H.; Fujimaki, T.; Oguri, M.; Kato, K.; et al. Association of Genetic Variants with Dyslipidemia. Mol. Med. Rep. 2015, 12, 5429–5436. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, J.M.; Posadas-Sánchez, R.; Vargas-Alarcón, G.; Blachman-Braun, R.; García-Flores, E.; Cazarín-Santos, B.G.; Castillo-Avila, R.G.; Borgonio-Cuadra, V.M.; Tovilla-Zárate, C.A.; González-Castro, T.B.; et al. The Rs46522 Polymorphism of the Ubiquitin-Conjugating Enzyme E2Z (UBE2Z) Gene Is Associated with Abnormal Metabolic Parameters in Patients with Myocardial Infarction: The Genetics of Atherosclerosis Disease Mexican Study. DNA Cell Biol. 2020, 39, 1155–1161. [Google Scholar] [CrossRef]
- Cleuren, A.C.A.; van der Ent, M.A.; Jiang, H.; Hunker, K.L.; Yee, A.; Siemieniak, D.R.; Molema, G.; Aird, W.C.; Ganesh, S.K.; Ginsburg, D. The In Vivo Endothelial Cell Translatome Is Highly Heterogeneous across Vascular Beds. Proc. Natl. Acad. Sci. USA 2019, 116, 23618–23624. [Google Scholar] [CrossRef]
- Schunkert, H.; König, I.R.; Kathiresan, S.; Reilly, M.P.; Assimes, T.L.; Holm, H.; Preuss, M.; Stewart, A.F.R.; Barbalic, M.; Gieger, C.; et al. Large-Scale Association Analysis Identifies 13 New Susceptibility Loci for Coronary Artery Disease. Nat. Genet. 2011, 43, 333–338. [Google Scholar] [CrossRef]
- Rodriguez, S.; Eiriksdottir, G.; Gaunt, T.R.; Harris, T.B.; Launer, L.J.; Gudnason, V.; Day, I.N.M. IGF2BP1, IGF2BP2 and IGF2BP3 Genotype, Haplotype and Genetic Model Studies in Metabolic Syndrome Traits and Diabetes. Growth Horm. IGF Res. 2010, 20, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Samani, N.J.; Schunkert, H. Chromosome 9p21 and Cardiovascular Disease: The Story Unfolds. Circ. Cardiovasc. Genet. 2008, 1, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Bistulfi, G.; Affronti, H.C.; Foster, B.A.; Karasik, E.; Gillard, B.; Morrison, C.; Mohler, J.; Phillips, J.G.; Smiraglia, D.J. The Essential Role of Methylthioadenosine Phosphorylase in Prostate Cancer. Oncotarget 2016, 7, 14380–14393. [Google Scholar] [CrossRef] [Green Version]
- Rabhi, N.; Hannou, S.A.; Gromada, X.; Salas, E.; Yao, X.; Oger, F.; Carney, C.; Lopez-Mejia, I.C.; Durand, E.; Rabearivelo, I.; et al. Cdkn2a Deficiency Promotes Adipose Tissue Browning. Mol. Metab. 2018, 8, 65–76. [Google Scholar] [CrossRef]
- Krishnamurthy, J.; Ramsey, M.R.; Ligon, K.L.; Torrice, C.; Koh, A.; Bonner-Weir, S.; Sharpless, N.E. P16INK4a Induces an Age-Dependent Decline in Islet Regenerative Potential. Nature 2006, 443, 453–457. [Google Scholar] [CrossRef]
- Zhang, Y.; Herbert, B.-S.; Rajashekhar, G.; Ingram, D.A.; Yoder, M.C.; Clauss, M.; Rehman, J. Premature Senescence of Highly Proliferative Endothelial Progenitor Cells Is Induced by Tumor Necrosis Factor-α via the P38 Mitogen-Activated Protein Kinase Pathway. FASEB J. 2009, 23, 1358–1365. [Google Scholar] [CrossRef] [Green Version]
- Lenis, Y.Y.; Elmetwally, M.A.; Maldonado-Estrada, J.G.; Bazer, F.W. Physiological Importance of Polyamines. Zygote 2017, 25, 244–255. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, J. Diagnostic Value of Circulating LncRNA ANRIL and Its Correlation with Coronary Artery Disease Parameters. Braz. J. Med. Biol. Res. 2019, 52, e8309. [Google Scholar] [CrossRef] [Green Version]
- Holdt, L.M.; Sass, K.; Gäbel, G.; Bergert, H.; Thiery, J.; Teupser, D. Expression of Chr9p21 Genes CDKN2B (P15INK4b), CDKN2A (P16INK4a, P14ARF) and MTAP in Human Atherosclerotic Plaque. Atherosclerosis 2011, 214, 264–270. [Google Scholar] [CrossRef]
- Chen, L.; Qu, H.; Guo, M.; Zhang, Y.; Cui, Y.; Yang, Q.; Bai, R.; Shi, D. ANRIL and Atherosclerosis. J. Clin. Pharm. Ther. 2020, 45, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Gan, W.; Bragg, F.; Walters, R.G.; Millwood, I.Y.; Lin, K.; Chen, Y.; Guo, Y.; Vaucher, J.; Bian, Z.; Bennett, D.; et al. Genetic Predisposition to Type 2 Diabetes and Risk of Subclinical Atherosclerosis and Cardiovascular Diseases among 160,000 Chinese Adults. Diabetes 2019, 68, 2155–2164. [Google Scholar] [CrossRef]
- Vargas, J.D.; Manichaikul, A.; Wang, X.-Q.; Rich, S.S.; Rotter, J.I.; Post, W.S.; Polak, J.F.; Budoff, M.J.; Bluemke, D.A. Detailed Analysis of Association between Common Single Nucleotide Polymorphisms and Subclinical Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis. Data Brief 2016, 7, 229–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, C.J.; Kavousi, M.; Smith, A.V.; Kardia, S.L.R.; Feitosa, M.F.; Hwang, S.-J.; Sun, Y.V.; Province, M.A.; Aspelund, T.; Dehghan, A.; et al. Genome-Wide Association Study for Coronary Artery Calcification with Follow-up in Myocardial Infarction. Circulation 2011, 124, 2855–2864. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, H.M.; Peden, J.F.; Lorkowski, S.; Goel, A.; Ongen, H.; Green, F.; Clarke, R.; Collins, R.; Franzosi, M.G.; Tognoni, G.; et al. Susceptibility to Coronary Artery Disease and Diabetes Is Encoded by Distinct, Tightly Linked SNPs in the ANRIL Locus on Chromosome 9p. Hum. Mol. Genet. 2008, 17, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.-Q.; Rao, S.; Martinelli, N.; Li, L.; Olivieri, O.; Corrocher, R.; Abdullah, K.G.; Hazen, S.L.; Smith, J.; Barnard, J.; et al. Association between Four SNPs on Chromosome 9p21 and Myocardial Infarction Is Replicated in an Italian Population. J. Hum. Genet. 2008, 53, 144–150. [Google Scholar] [CrossRef]
- Angelakopoulou, A.; Shah, T.; Sofat, R.; Shah, S.; Berry, D.J.; Cooper, J.; Palmen, J.; Tzoulaki, I.; Wong, A.; Jefferis, B.J.; et al. Comparative Analysis of Genome-Wide Association Studies Signals for Lipids, Diabetes, and Coronary Heart Disease: Cardiovascular Biomarker Genetics Collaboration. Eur. Heart J. 2012, 33, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, A.; Taliun, D.; Thurner, M.; Robertson, N.R.; Torres, J.M.; Rayner, N.W.; Payne, A.J.; Steinthorsdottir, V.; Scott, R.A.; Grarup, N.; et al. Fine-Mapping Type 2 Diabetes Loci to Single-Variant Resolution Using High-Density Imputation and Islet-Specific Epigenome Maps. Nat. Genet. 2018, 50, 1505–1513. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Lu, R.; Gu, N.; Wei, X.; Bai, G.; Zhang, J.; Deng, R.; Feng, N.; Li, J.; Guo, X. Polymorphisms in the Glucagon-like Peptide 1 Receptor (GLP-1R) Gene Are Associated with the Risk of Coronary Artery Disease in Chinese Han Patients with Type 2 Diabetes Mellitus: A Case-Control Study. J. Diabetes Res. 2018, 2018, 1054192. [Google Scholar] [CrossRef] [Green Version]
- Caldecott, K.W. XRCC1 Protein; Form and Function. DNA Repair 2019, 81, 102664. [Google Scholar] [CrossRef]
- Mathews, M.T.; Berk, B.C. PARP-1 Inhibition Prevents Oxidative and Nitrosative Stress-Induced Endothelial Cell Death via Transactivation of the VEGF Receptor 2. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Kim, S.H.; Honbo, N.; Karliner, J.S.; Alano, C.C. Minocycline Protects Cardiac Myocytes against Simulated Ischemia–Reperfusion Injury by Inhibiting Poly(ADP-Ribose) Polymerase-1. J. Cardiovasc. Pharmacol. 2010, 56, 659–668. [Google Scholar] [CrossRef]
- Zakaria, E.M.; El-Bassossy, H.M.; El-Maraghy, N.N.; Ahmed, A.F.; Ali, A.A. PARP-1 Inhibition Alleviates Diabetic Cardiac Complications in Experimental Animals. Eur. J. Pharmacol. 2016, 791, 444–454. [Google Scholar] [CrossRef]
- Li, B.; Luo, C.; Chowdhury, S.; Gao, Z.-H.; Liu, J.-L. Parp1 Deficient Mice Are Protected from Streptozotocin-Induced Diabetes but Not Caerulein-Induced Pancreatitis, Independent of the Induction of Reg Family Genes. Regul. Pept. 2013, 186, 83–91. [Google Scholar] [CrossRef]
- Devalaraja-Narashimha, K.; Padanilam, B.J. PARP1 Deficiency Exacerbates Diet-Induced Obesity in Mice. J. Endocrinol. 2010, 205, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Szántó, M.; Bai, P. The Role of ADP-Ribose Metabolism in Metabolic Regulation, Adipose Tissue Differentiation, and Metabolism. Genes Dev. 2020, 34, 321–340. [Google Scholar] [CrossRef]
- Arimochi, H.; Sasaki, Y.; Kitamura, A.; Yasutomo, K. Differentiation of Preadipocytes and Mature Adipocytes Requires PSMB8. Sci. Rep. 2016, 6, 26791. [Google Scholar] [CrossRef]
- Rowlands, J.; Heng, J.; Newsholme, P.; Carlessi, R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front. Endocrinol. 2018, 9, 672. [Google Scholar] [CrossRef] [Green Version]
- Monnier, L.; Hanefeld, M.; Schnell, O.; Colette, C.; Owens, D. Insulin and Atherosclerosis: How Are They Related? Diabetes Metab. 2013, 39, 111–117. [Google Scholar] [CrossRef]
- Rizzo, M.; Nikolic, D.; Patti, A.M.; Mannina, C.; Montalto, G.; McAdams, B.S.; Rizvi, A.A.; Cosentino, F. GLP-1 Receptor Agonists and Reduction of Cardiometabolic Risk: Potential Underlying Mechanisms. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 2814–2821. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, A.; Dey, A.; Norrbom, C.; Carroll, R.; Zhang, C.; Laurent, V.; Lindberg, I.; Ugleholdt, R.; Holst, J.J.; et al. Disruption of PC1/3 Expression in Mice Causes Dwarfism and Multiple Neuroendocrine Peptide Processing Defects. Proc. Natl. Acad. Sci. USA 2002, 99, 10293–10298. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, D.J.; Bohan, S.; Gekakis, N. Obesity, Hyperphagia and Increased Metabolic Efficiency in Pc1 Mutant Mice. Hum. Mol. Genet. 2006, 15, 1884–1893. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-C.; Chiu, Y.-F.; Shih, K.-C.; Lin, M.-W.; Sheu, W.H.-H.; Donlon, T.; Curb, J.D.; Jou, Y.-S.; Chang, T.-J.; Li, H.-Y.; et al. Common PCSK1 Haplotypes Are Associated with Obesity in the Chinese Population. Obesity 2010, 18, 1404–1409. [Google Scholar] [CrossRef]
- Strawbridge, R.J.; Dupuis, J.; Prokopenko, I.; Barker, A.; Ahlqvist, E.; Rybin, D.; Petrie, J.R.; Travers, M.E.; Bouatia-Naji, N.; Dimas, A.S.; et al. Genome-Wide Association Identifies Nine Common Variants Associated with Fasting Proinsulin Levels and Provides New Insights into the Pathophysiology of Type 2 Diabetes. Diabetes 2011, 60, 2624–2634. [Google Scholar] [CrossRef] [Green Version]
- Roberts, F.; Zhu, D.; Farquharson, C.; Macrae, V.E. ENPP1 in the Regulation of Mineralization and Beyond. Trends Biochem. Sci. 2019, 44, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Ciociola, E.; Saraf, M.; Tumurbaatar, B.; Tuvdendorj, D.; Prasad, S.; Chandalia, M.; Abate, N. Metabolic Consequences of ENPP1 Overexpression in Adipose Tissue. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E901–E911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Anumeha, S.; Ashmita, S.; Susan, F.; Zhiliang, C.; Kim, A.; Andre, M. Abstract P292: ENPP1-Fc Protein Inhibits Proliferation of Human Vascular Smooth Muscle Cells. Hypertension 2016, 68, AP292. [Google Scholar] [CrossRef]
- Stolerman, E.S.; Manning, A.K.; McAteer, J.B.; Dupuis, J.; Fox, C.S.; Cupples, L.A.; Meigs, J.B.; Florez, J.C. Haplotype Structure of the ENPP1 Gene and Nominal Association of the K121Q Missense Single Nucleotide Polymorphism with Glycemic Traits in the Framingham Heart Study. Diabetes 2008, 57, 1971–1977. [Google Scholar] [CrossRef] [Green Version]
- Di, J.-Y.; Dai, M.-L.; Zhang, Z.-X. ENPP1 K121Q (Rs1044498 C > A) Genetic Polymorphism Confers a High Risk of Susceptibility to Coronary Heart Disease: A PRISMA-Compliant Article. Medicine 2018, 97, e11236. [Google Scholar] [CrossRef]
- Hsiao, T.-J.; Lin, E. The ENPP1 K121Q Polymorphism Is Associated with Type 2 Diabetes and Related Metabolic Phenotypes in a Taiwanese Population. Mol. Cell. Endocrinol. 2016, 433, 20–25. [Google Scholar] [CrossRef]
- Miki, H.; Okada, Y.; Hirokawa, N. Analysis of the Kinesin Superfamily: Insights into Structure and Function. Trends Cell Biol. 2005, 15, 467–476. [Google Scholar] [CrossRef]
- Angelini, S.; Rosticci, M.; Massimo, G.; Musti, M.; Ravegnini, G.; Consolini, N.; Sammarini, G.; D’Addato, S.; Rizzoli, E.; Botbayev, D.; et al. Relationship between Lipid Phenotypes, Overweight, Lipid Lowering Drug Response and KIF6 and HMG-CoA Genotypes in a Subset of the Brisighella Heart Study Population. Int. J. Mol. Sci. 2017, 19, 49. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Li, G.-B.; Dai, B. Association of KIF6 Variant with Lipid Level and Angiographic Coronary Artery Disease Events Risk in the Han Chinese Population. Molecules 2012, 17, 11269–11280. [Google Scholar] [CrossRef]
- Li, Y.; Sabatine, M.S.; Tong, C.H.; Ford, I.; Kirchgessner, T.G.; Packard, C.J.; Robertson, M.; Rowland, C.M.; Bare, L.A.; Shepherd, J.; et al. Genetic Variants in the KIF6 Region and Coronary Event Reduction from Statin Therapy. Hum. Genet. 2011, 129, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Shiffman, D.; Sabatine, M.S.; Louie, J.Z.; Kirchgessner, T.G.; Iakoubova, O.A.; Campos, H.; Devlin, J.J.; Sacks, F.M. Effect of Pravastatin Therapy on Coronary Events in Carriers of the KIF6 719Arg Allele from the Cholesterol and Recurrent Events Trial. Am. J. Cardiol. 2010, 105, 1300–1305. [Google Scholar] [CrossRef]
- Shiffman, D.; Chasman, D.I.; Zee, R.Y.L.; Iakoubova, O.A.; Louie, J.Z.; Devlin, J.J.; Ridker, P.M. A Kinesin Family Member 6 Variant Is Associated with Coronary Heart Disease in the Women’s Health Study. J. Am. Coll. Cardiol. 2008, 51, 444–448. [Google Scholar] [CrossRef] [Green Version]
- Iakoubova, O.A.; Tong, C.H.; Rowland, C.M.; Kirchgessner, T.G.; Young, B.A.; Arellano, A.R.; Shiffman, D.; Sabatine, M.S.; Campos, H.; Packard, C.J.; et al. Association of the Trp719Arg Polymorphism in Kinesin-like Protein 6 with Myocardial Infarction and Coronary Heart Disease in 2 Prospective Trials: The CARE and WOSCOPS Trials. J. Am. Coll. Cardiol. 2008, 51, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Hameed, A.; Bennett, E.; Ciani, B.; Hoebers, L.P.C.; Milner, R.; Lawrie, A.; Francis, S.E.; Grierson, A.J. No Evidence for Cardiac Dysfunction in Kif6 Mutant Mice. PLoS ONE 2013, 8, e54636. [Google Scholar] [CrossRef] [Green Version]
- The Human Protein Atlas KIF6. Available online: https://www.proteinatlas.org/ENSG00000164627-KIF6/tissue (accessed on 8 March 2021).
- Shroff, N.; Ander, B.P.; Zhan, X.; Stamova, B.; Liu, D.; Hull, H.; Hamade, F.R.; Dykstra-Aiello, C.; Ng, K.; Sharp, F.R.; et al. HDAC9 Polymorphism Alters Blood Gene Expression in Patients with Large Vessel Atherosclerotic Stroke. Transl. Stroke Res. 2019, 10, 19–25. [Google Scholar] [CrossRef]
- Lenoir, O.; Flosseau, K.; Ma, F.X.; Blondeau, B.; Mai, A.; Bassel-Duby, R.; Ravassard, P.; Olson, E.N.; Haumaitre, C.; Scharfmann, R. Specific Control of Pancreatic Endocrine β- and δ-Cell Mass by Class IIa Histone Deacetylases HDAC4, HDAC5, and HDAC9. Diabetes 2011, 60, 2861–2871. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, T.K.; Basford, J.E.; Knoll, E.; Tong, W.S.; Blanco, V.; Blomkalns, A.L.; Rudich, S.; Lentsch, A.B.; Hui, D.Y.; Weintraub, N.L. HDAC9 Knockout Mice Are Protected From Adipose Tissue Dysfunction and Systemic Metabolic Disease During High-Fat Feeding. Diabetes 2014, 63, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, R.; Mauer, A.C.; Lino Cardenas, C.L.; Guo, X.; Yao, J.; Zhang, X.; Wunderer, F.; Smith, A.V.; Wong, Q.; Pechlivanis, S.; et al. HDAC9 Is Implicated in Atherosclerotic Aortic Calcification and Affects Vascular Smooth Muscle Cell Phenotype. Nat. Genet. 2019, 51, 1580–1587. [Google Scholar] [CrossRef]
- Cao, Q.; Rong, S.; Repa, J.J.; St Clair, R.; Parks, J.S.; Mishra, N. Histone Deacetylase 9 Represses Cholesterol Efflux and Alternatively Activated Macrophages in Atherosclerosis Development. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1871–1879. [Google Scholar] [CrossRef] [Green Version]
- Lino Cardenas, C.L.; Kessinger, C.W.; Chou, E.L.; Ghoshhajra, B.; Yeri, A.S.; Das, S.; Weintraub, N.L.; Malhotra, R.; Jaffer, F.A.; Lindsay, M.E. HDAC9 Complex Inhibition Improves Smooth Muscle-Dependent Stenotic Vascular Disease. JCI Insight 2019, 4, e124706. [Google Scholar] [CrossRef] [Green Version]
- Nurnberg, S.T.; Guerraty, M.A.; Wirka, R.C.; Rao, H.S.; Pjanic, M.; Norton, S.; Serrano, F.; Perisic, L.; Elwyn, S.; Pluta, J.; et al. Genomic Profiling of Human Vascular Cells Identifies TWIST1 as a Causal Gene for Common Vascular Diseases. PLoS Genet. 2020, 16, e1008538. [Google Scholar] [CrossRef]
- Nelson, C.P.; Goel, A.; Butterworth, A.S.; Kanoni, S.; Webb, T.R.; Marouli, E.; Zeng, L.; Ntalla, I.; Lai, F.Y.; Hopewell, J.C.; et al. Association Analyses Based on False Discovery Rate Implicate New Loci for Coronary Artery Disease. Nat. Genet. 2017, 49, 1385–1391. [Google Scholar] [CrossRef]
- van der Harst, P.; Verweij, N. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease. Circ. Res. 2018, 122, 433–443. [Google Scholar] [CrossRef]
- Jiang, R. Gene-gene interaction. In Encyclopedia of Behavioral Medicine; Gellman, M.D., Turner, J.R., Eds.; Springer: New York, NY, USA, 2013; pp. 841–842. ISBN 978-1-4419-1005-9. [Google Scholar]
- Choi, J.; Park, T. Multivariate Generalized Multifactor Dimensionality Reduction to Detect Gene-Gene Interactions. BMC Syst. Biol. 2013, 7, S15. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.-M.; Xu, L.-F.; Hou, T.-T.; Luo, L.-F.; Chen, G.-B.; Sun, X.-W.; Lou, X.-Y. GMDR: Versatile Software for Detecting Gene-Gene and Gene-Environ-Ment Interactions Underlying Complex Traits. Curr. Genom. 2016, 17, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Mittal, B.; Prakash, J.; Srivastava, P.; Srivastava, N. Analysis of MC4R Rs17782313, POMC Rs1042571, APOE-Hha1 and AGRP Rs3412352 Genetic Variants with Susceptibility to Obesity Risk in North Indians. Ann. Hum. Biol. 2016, 43, 285–288. [Google Scholar] [CrossRef]
- Ma, X.; Bai, G.; Lu, D.; Huang, L.; Zhang, J.; Deng, R.; Ding, S.; Gu, N.; Guo, X. Association between STK11 Gene Polymorphisms and Coronary Artery Disease in Type 2 Diabetes in Han Population in China. J. Diabetes Res. 2017, 2017, 6297087. [Google Scholar] [CrossRef]
- Ottman, R. Gene–Environment Interaction: Definitions and Study Design. Prev. Med. 1996, 25, 764–770. [Google Scholar] [CrossRef]
- Grimaldi, K.A.; van Ommen, B.; Ordovas, J.M.; Parnell, L.D.; Mathers, J.C.; Bendik, I.; Brennan, L.; Celis-Morales, C.; Cirillo, E.; Daniel, H.; et al. Proposed Guidelines to Evaluate Scientific Validity and Evidence for Genotype-Based Dietary Advice. Genes Nutr. 2017, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doria, A.; Wojcik, J.; Xu, R.; Gervino, E.V.; Hauser, T.H.; Johnstone, M.T.; Nolan, D.; Hu, F.B.; Warram, J.H. Interaction between Poor Glycemic Control and 9p21 Locus on Risk of Coronary Artery Disease in Type 2 Diabetes. JAMA 2008, 300, 2389–2397. [Google Scholar] [CrossRef] [PubMed]
- Rivera, N.V.; Carreras-Torres, R.; Roncarati, R.; Viviani-Anselmi, C.; de Micco, F.; Mezzelani, A.; Koch, W.; Hoppmann, P.; Kastrati, A.; Stewart, A.F.R.; et al. Assessment of the 9p21.3 Locus in Severity of Coronary Artery Disease in the Presence and Absence of Type 2 Diabetes. BMC Med. Genet. 2013, 14, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reisberg, S.; Iljasenko, T.; Läll, K.; Fischer, K.; Vilo, J. Comparing Distributions of Polygenic Risk Scores of Type 2 Diabetes and Coronary Heart Disease within Different Populations. PLoS ONE 2017, 12, e0179238. [Google Scholar]
- Padilla-Martínez, F.; Collin, F.; Kwasniewski, M.; Kretowski, A. Systematic Review of Polygenic Risk Scores for Type 1 and Type 2 Diabetes. Int. J. Mol. Sci. 2020, 21, 1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Source | Population/Sample Size | Country/Region | Genes/Loci | CHD Association | Allele | Model | CHD Risk, OR or HR (95% CI) | p-Value * | |
---|---|---|---|---|---|---|---|---|---|
Yes | No | ||||||||
Zhou et al., 2009 [49] | 194 CHD and 90 healthy controls | China | PON1 L55M (rs854560) | ✓ | |||||
Vaisi-Raygani et al., 2010 [41] | 118 T2D, 162 CHD, 172 T2D + CHD, and 179 healthy controls | Iran | BCHE-K^ G1615A (likely rs1803274) | ✓ | A | Allelic | OR: 2.02 (1.40–3.10) | 0.001 | |
APOE^ (rs7412 and rs429358) | ✓ | E4 | Recessive | OR: 7.80 (1.70–3.60) | 0.008 | ||||
Wang W. et al., 2010 [50] | 2046 CHD | China | 9p21.3 (rs1333049) | ✓ | |||||
Wang Y. et al., 2010 [21] | 1297 T2D | China | SCYA11 Ala23Thr (rs1129844) | ✓ | Ala | Recessive | HR: 1.70 (1.10–2.61) | 0.016 | |
PON2 Ser311Cys (rs7493) | ✓ | Cys | Additive | HR: 1.42 (1.08–1.88) | 0.013 | ||||
ADRB3^ Trp64Arg (rs4994) | ✓ | Arg | Recessive | HR: 3.84 (1.18–12.50) | 0.025 | ||||
Katakami et al., 2010 [51] | 3819 T2D | Japanese | GCLM -588C/T (rs17883901) | ✓ | |||||
SOD2 Val16Ala (rs4880) | ✓ | ||||||||
NOS3 G894T (rs1799983) | ✓ | ||||||||
CYBA C242T (rs4673) | ✓ | ||||||||
MPO-463G/A (rs2333227) | ✓ | ||||||||
Bae et al., 2010 [52] | 192 CHD (54 T2D) and 196 non-CHD controls (35 T2D) | Korea | eNOS-786T/C (rs2070744) | ✓ | C | Dominant | OR: 4.39 (1.80–10.71) | <0.050 | |
eNOS 4a/4b (rs61722009) | ✓ | 4a | Dominant | OR: 4.20 (1.73–10.16) | <0.050 | ||||
eNOS 894G/T (rs1799983) | ✓ | ||||||||
Bhaskar et al., 2011 [22] | 250 CAD (160 T2D), 150 T2D, and 120 healthy controls | India | PON1 Q192R (rs662) | ✓ | R | Allelic | OR: 1.49 (1.04–2.12) | 0.023 | |
APOA5^−1131T/C (rs662799) | ✓ | C | Allelic | OR: 1.50 (1.01–2.22) | 0.034 | ||||
Cheng et al., 2011 [53] | Central China: 379 T2D, 496 CHD, and 849 healthy controls Northern China: 597 CHD and 846 healthy controls | China | 9p21.3 (rs2383208) | ✓ | |||||
9p21.3 (rs10811661) | ✓ | T | Allelic | OR: 1.19 (1.06–1.33) | 0.004 | ||||
9p21.3 (rs10757283) | ✓ | C | Allelic | OR: 1.18 (1.06–1.32) | 0.001 | ||||
Ergun et al., 2011 [54] | 171 T2D and 80 healthy controls | Turkey | PON1 L55M (rs854560) | ✓ | |||||
PON1 Q192R (rs662) | ✓ | ||||||||
Chaudhary et al., 2012 [18] | 147 T2D + CHD, 155 T2D, and 149 healthy controls | Thailand | APOE^ (rs7412 and rs429358) | ✓ | E4 | Allelic | OR: 2.32 (1.17–4.61) | 0.016 | |
Esteghamati et al., 2012 [13] | 114 T2D + CHD and 127 T2D | Iran | ADIPOQ T45G (rs2241766) | ✓ | |||||
ADIPOQ G276T (rs1501299) | ✓ | T | Additive | OR: 0.39 (0.22–0.68) | 0.001 | ||||
Ho et al., 2012 [55] | 1417 T2D | Hong Kong | PPARG (rs1801282 G/C) | ✓ | C | Recessive | HR: 4.38 (1.03–18.57) | 0.045 | |
ADIPOQ (rs1063539 C/G) | ✓ | ||||||||
HNF4A (rs1884614 T/C) | ✓ | ||||||||
Katakami et al. 2012 [56] | 2637 T2D | Japanese | ADIPOQ G276T (rs1501299) | ✓ | G | Recessive | OR: 1.66 (1.13–2.43) | 0.009 | |
Saini et al., 2012 [57] | 28 T2D + CHD, 32 CHD, and 50 healthy controls | India | eNOS Glu298Asp (rs1799983) | ✓ | |||||
Tong et al., 2013 [58] | 560 T2D + CHD and 550 T2D | China | ADIPOQ−11377C/G (rs266729) | ✓ | G | Recessive | OR: 2.18 (1.32–3.46) | 0.001 | |
Narne et al., 2013 [59] | 160 T2D + CHD and 121 T2D | India | eNOS -786T/C (rs2070744) | ✓ | G | Dominant | OR: 1.81 (1.05–3.13) | 0.030 | |
eNOS intron 4a/b (rs61722009) | ✓ | ||||||||
eNOS G894T (rs1799983) | ✓ | ||||||||
Ma et al., 2014 [60] | 260 T2D + CHD and 144 T2D control | China | PRKAA1 (rs3805489) | ✓ | C | Allelic | OR: 0.67 (0.48–0.92) | 0.015 | |
Wei et al., 2014 [61] | 425 T2D + CHD and 258 T2D control | China | PCSK1 (rs6230*T/C) | ✓ | |||||
PCSK1 (rs6233*T/C) | ✓ | ||||||||
PCSK1 (rs6234*C/G) | ✓ | ||||||||
PCSK1 (rs156019*T/A) | ✓ | T | Additive | OR: 1.92 (1.23–3.00) | 0.04 | ||||
PCSK1 (rs3811951*A/G) | ✓ | G | Recessive | OR: 0.43 (0.24–0.77) | 0.004 | ||||
Wu et al., 2014 [17] | 288 T2D + CHD, 312 T2D, and 346 healthy controls | China | KIF6 Trp719Arg (rs20455) | ✓ | Arg | Dominant | OR: 5.21 (1.01–27.01) | <0.01 | |
Zhang et al., 2014 [62] | 502 MI (194 T2D) and 308 angiographic normal (75 T2D) controls | China | 9p21 (rs10757274) ^ | ✓ | G | Dominant | OR: 4.38 (2.56–7.47) | <0.0001 | |
6p24 (rs6903956) | ✓ | ||||||||
Jin et al., 2014 [63] | 165 T2D, 173 CHD, 174 T2D + CHD, and 145 healthy controls | China | ADIPOR1 (rs7539542) | ✓ | |||||
ADIPOR1 (rs3737884) | ✓ | G | Additive | OR: 2.42 (1.51–3.89) | 2.49 × 10−4 | ||||
ADIPOR1 (rs1342387) | ✓ | ||||||||
ADIPOR1 (rs16850797) | ✓ | C | Additive | OR: 1.71 (1.11–2.62) | 0.014 | ||||
ADIPOR1 (rs12045862) | ✓ | ||||||||
ADIPOR1 (rs7514221) | ✓ | ||||||||
Sapkota et al., 2015 [42] | 1956 T2D (723 CHD), 1608 non-T2D (1212 non-CHD) | US (Indian ancestry) | APOE (rs7412 and rs429358) | ✓ | |||||
Mofarrah et al., 2016 [64] | 152 T2D + angiographic CHD and 72 T2D controls | Iran | ADIPOQ T45G (rs2241766*T/G) ^ | ✓ | G | Dominant | OR: 7.21 (2.02–25.73) | 0.002 | |
KALRN (rs9289231*T/G) | ✓ | G | Dominant | OR: 5.02 (1.07–23.70) | 0.041 | ||||
FTO (rs9939609*A/T) | ✓ | ||||||||
Mohammadzadeh et al., 2016 [65] | 100 T2D + CHD and 100 T2D controls | Iran | ADIPOQ T45G (rs2241766) | ✓ | |||||
ADIPOQ G276T (rs1501299) | ✓ | T | Additive | OR: 5.16 (1.02–26.18) | 0.048 | ||||
Wang et al., 2016 [66] | 2317 CAD and 2404 healthy controls | China | HDAC9 (rs2107595*G/A) | ✓ | A | Dominant | OR: 1.23 (1.09–1.39) | 0.001 | |
Wang F. et al., 2016 [67] | 295 T2D, 316 CHD, 302 T2D + CHD, and 268 healthy controls | China | ADIPOR1 (rs7539542) | ✓ | |||||
ADIPOR1 (rs3737884) | ✓ | G | Dominant | OR: 2.69 (1.43–5.07) | 0.002 | ||||
ADIPOR1 (rs1342387) | ✓ | ||||||||
ADIPOR1 (rs16850797) | ✓ | C | Dominant | OR: 1.44 (1.03–1.99) | 0.032 | ||||
ADIPOR1 (rs12045862) | ✓ | ||||||||
ADIPOR1 (rs7514221) | ✓ | C | Dominant | OR: 1.75 (1.19–2.56) | 0.004 | ||||
Wang X. et al., 2016 [68] | 595 T2D + CHD and 519 T2D | China | TXNIP (rs7212) | ✓ | G | Dominant | OR: 1.53 (1.18–1.99) | 0.022 | |
TXNIP (rs7211) | ✓ | ||||||||
TXNIP (rs9245) | ✓ | ||||||||
Sumi et al., 2017 [69] | 198 CHD, 284 T2D + CHD, 160 T2D, and 271 healthy controls | India | ENPP1 K121Q (rs1044498) | ✓ | C | Dominant | OR: 12.8 (4.97–37.18) | <0.01 | |
Lu et al., 2017 [70] | 390 T2D + CHD and 275 T2D | China | UBE2Z ^ (rs46522) | ✓ | T | Additive | OR: 1.67 (1.09–2.57) | 0.019 | |
Wang et al., 2017 [71] | 903 T2D + CAD and 726 T2D | China | PARP1 (rs1136410) | ✓ | G | Recessive | OR: 1.02 (0.76–1.35) | 0.010 | |
Zhao et al., 2017 [72] | 265,678 T2D and 260,365 CHD | Multiple countries including the Eastern and Southern Asian ancestries | TCF7L2 (rs7903146) | ✓ | T | Allelic | OR: 1.04 (1.02–1.05) | 2.6 × 10−212 | |
HNF1A I27L (rs1169288) | ✓ | A | Allelic | OR: 1.04 (1.03–1.06) | 2.0 × 10−12 | ||||
CTRB1/2 (rs7202877) | ✓ | T | Allelic | OR: 1.06 (1.04–1.09) | 1.0 × 10−8 | ||||
MRAS (rs2306374) | ✓ | C | Allelic | OR: 1.06 (1.04–1.08) | 9.8 × 10−9 | ||||
ZC3HC1 R342H (rs11556924) | ✓ | C | Allelic | OR: 1.08 (1.06–1.10) | 1.4 × 10−19 | ||||
MIR17HG (rs7985179) | ✓ | A | Allelic | OR: 1.05 (1.02–1.08) | 1.5 × 10−9 | ||||
CCDC92 (rs825476) | ✓ | T | Allelic | OR: 1.03 (1.02–1.05) | 2.7 × 10−9 | ||||
APOE^ (rs4420638) | ✓ | A | Allelic | OR: 0.89 (0.85–0.93) | 2.6 × 10−13 | ||||
Wang et al., 2018 [73] | 335 CHD and 372 non-CHD | China | AP2A2 (rs7396366) | ✓ | T | Dominant | OR: 2.33 (1.24–4.38) | 0.009 | |
BZRAP1 (rs2526378) | ✓ |
Source | Population/ Sample Size | Country/ Region | Genes/Loci | Gene-Gene Interaction | CHD Risk, OR or HR (95% CI) | p-Value | Other Information | |
---|---|---|---|---|---|---|---|---|
Yes | No | |||||||
Vaisi-Raygani et al., 2010 [41] | 118 T2D, 162 CHD, 172 T2D + CHD, and 179 healthy controls | Iran | BCHE-K G1615A (likely rs1803274) APOE4 (rs7412 and rs429358) | ✓ | BCHE-K only: OR: 2.10 (1.30–3.60) | 0.003 * | The presence of both BCHE-K and APOE4 variants was significantly associated with a higher LDL, TG, and TC, and lower HDL. | |
APOE4 only: OR: 2.10 (1.21–4.45) | 0.022 * | |||||||
BCHE-K and APOE4: OR: 4.50 (1.40–14.50) | 0.011 * | |||||||
Wang Y. et al., 2010 [21] | 1297 T2D | China | SCYA11 Ala23Thr (rs1129844) PON2 Ser311Cys (rs7493) ADRB3 Trp64Arg (rs4994) | ✓ | ≤1 risk allele: Ref. | - | ||
2 risk alleles: HR: 1.99 (1.09–3.66) | 0.026 * | |||||||
3 risk alleles: HR: 2.74 (1.42–5.26) | 0.003 * | |||||||
4 risk alleles: HR: 4.11 (1.65–10.23) | 0.002 * | |||||||
Katakami et al., 2010 [51] | 3819 T2D | Japan | GCLM –588C/T (rs17883901) SOD2 Val16Ala (rs4880) NOS3 G894T (rs1799983) CYBA C242T (rs4673) MPO–463G/A (rs2333227) | ✓ | Individual polymorphism did not associate with higher CHD prevalence. | Prevalence of MI: ≤3 risk alleles (2.0%), 8–10 risk alleles (8.5%); (ptrend = 0.018). | ||
≤4 combined risk alleles: Ref. | - | |||||||
5–7 combined risk alleles: OR: 1.70 (0.94–3.07) | 0.081 | |||||||
≥8 combined risk alleles: OR: 2.43 (1.10–5.37) | 0.029 * | |||||||
Bhaskar et al., 2011 [22] | 250 CAD (160 T2D), 150 T2D, and 120 healthy controls | India | PON1 Q192R (rs662) APOA5 –1131T/C (rs662799) | ✓ | rs662 only: OR: 1.49 (1.04–2.12) | 0.023 * | The only significant interaction was between rs662*RR homozygote and rs662799*TC heterozygote. | |
rs662799 only: OR: 1.50 (1.01–2.22) | 0.034 * | |||||||
rs662 and rs662799: OR: 4.38 (1.08–17.71) | 0.038 * | |||||||
Lei et al., 2012 [24] | 538 T2D | China | ACE I/D (rs4646994) AT2R G1675A (rs1403543) | ✓ | ||||
Ho et al., 2012 [55] | 1417 T2D | Hong Kong | PPARG (rs1801282*G/C) ADIPOQ (rs1063539*C/G) HNF4A (rs1884614*T/C) | ✓ |
Source | Population /Sample Size | Country/ Region | Genes/Loci | SNP-SNP Interaction | CHD Risk, OR or HR (95% CI) | p-Value | Other Information | |
---|---|---|---|---|---|---|---|---|
Yes | No | |||||||
Esteghamati et al., 2012 [13] | 114 T2D + CHD and 127 T2D | Iran | ADIPOQ T45G (rs2241766) ADIPOQ G276T (rs1501299) | ✓ | 45G: OR and 95% CI not reported | NS | ||
276T: OR: 0.39 (0.22–0.68) | 0.001 * | |||||||
TT haplotype: OR: 0.47 (0.32–0.94) | 0.03 * | |||||||
GT haplotype: OR: 0.33 (0.13–0.83) | 0.02 * | |||||||
Tong et al., 2013 [58] | 560 T2D + CHD and 550 T2D | China | ADIPOQ C/G (rs266729) ADIPOQ G/A (rs182052) ADIPOQ G/T (rs1501299) | ✓ | rs266729*G: OR: 1.64 (1.35–2.01) | 9.5 × 10−4 * | Each polymorphism was also associated with lower adiponectin levels. | |
rs182052*A: OR: 1.18 (0.98–1.52) | 0.113 | |||||||
rs1501299*T: OR: 0.83 (0.67–1.03) | 0.102 | |||||||
CGG/GAG diplotype: OR: 2.13 (1.40–3.60) | 0.001 * | |||||||
CAG/GAG diplotype: OR: 2.26 (1.40–4.10) | 0.005 * | |||||||
GGG/GAG diplotype: OR: 3.39 (1.75–6.50) | 1 × 10−4 * | |||||||
Narne et al., 2013 [59] | 160 T2D + CHD and 121 T2D | India | eNOS –786T/C (rs2070744) eNOS intron 4a/b (rs61722009) eNOS G894T (rs1799983) | ✓ | –786C: OR: 1.84 (1.22–2.76) | 0.004 * | ||
intron 4b: OR: 0.98 (0.63–1.54) | 1.00 | |||||||
894T: OR: 1.35 (0.86–2.14) | 0.19 | |||||||
TbG haplotype: OR: 0.68 (0.49–0.96) | 0.03 * | |||||||
Wei et al., 2014 [61] | 425 T2D + CHD and 258 T2D controls | China | PCSK1 (rs6234*C/G) PCSK1 (rs6233*T/C) PCSK1 (rs156019*T/A) PCSK1 (rs3811951*A/G) | ✓ | rs6234G: OR: 0.85 (0.67–1.07) | 0.17 | ||
rs6233C: OR: 1.11 (0.86–1.42) | 0.44 | |||||||
rs156019A: OR: 1.21 (0.97–1.52) | 0.09 | |||||||
rs3811951G: OR: 0.75 (0.59–0.94) | 0.01 * | |||||||
CTAG haplotype: OR: 0.69 (0.54–0.88) | 0.02 * | |||||||
Jin et al., 2014 [63] | 165 T2D, 173 CHD, 174 T2D + CHD, and 145 healthy controls | China | ADIPOR1 (rs3737884) ADIPOR1 (rs16850797) | ✓ | ≤1 risk allele: Ref. | - | These effects were reported for T2D + CHD. | |
2 risk alleles: OR: 2.44 (1.38–4.31) | 0.002 * | |||||||
≥3 risk alleles: OR: 3.38 (1.95–5.87) | 1.14 × 10−5 * | |||||||
Mohammadzadeh et al., 2016 [65] | 100 T2D + CHD and 100 T2D controls | Iran | ADIPOQ T45G (rs2241766) ADIPOQ G276T (rs1501299) | ✓ | 45G: OR: 0.59 (0.28–1.28) | 0.1852 | ||
276G: OR: 0.58 (0.31–1.08) | 0.0864 | |||||||
GG haplotype: OR: 0.37 (0.16–0.86) | 0.022 * | |||||||
Wang F. et al., 2016 [67] | 295 T2D, 316 CHD, 302 T2D + CHD, and 268 healthy controls | China | ADIPOR1 (rs3737884) ADIPOR1 (rs16850797) ADIPOR1 (rs7514221) | ✓ | rs3737884*G: OR: 1.84 (1.41–2.41) | 6.54 × 10−6 * | ||
rs16850797*C: OR: 1.57 (1.22–2.03) | 0.001 * | |||||||
rs7514221*C: OR: 1.70 (1.22–2.38) | 0.002 * | |||||||
AGT haplotype: OR: 0.49 (0.37–0.65) | 1.10 × 10−6 * | |||||||
GCT haplotype: OR: 1.61 (1.21–2.13) | 8.74 × 10−4 * | |||||||
Ma et al., 2017 [245] | 159 T2D and 288 T2D + CHD | China | STK11 (rs35369365) STK11 (rs9282860) STK11 (rs12977689) | ✓ |
Source | Population/ Sample Size | Country/Region | Genes/Loci | Environment | Gene-Environment Interaction | CHD Risk, OR or HR (95% CI) | p-Value | Other Information | |
---|---|---|---|---|---|---|---|---|---|
Yes | No | ||||||||
Chaudhary et al., 2012 [18] | 147 T2D + CHD, 155 T2D, and 149 healthy controls | Thailand | APOE | Smoking | ✓ | E3/E3 only: Ref. | - | ||
E3/E3 + smoking/obesity: OR: 2.24 (1.15–4.35) | 0.018 * | ||||||||
Obesity | ✓ | E3/E4 only: OR: 1.02 (0.34–3.06) | 0.970 | ||||||
E3/E4 + smoking/obesity: OR: 10.48 (3.56–30.79) | <0.0001 * | ||||||||
Esteghamati et al., 2012 [13] | 114 T2D + CHD and 127 T2D | Iran | ADIPOQ G276T (rs1501299) | Age | ✓ | ||||
Gender | ✓ | ||||||||
Katakami et al., 2012 [56] | 2637 T2D | Japan | ADIPOQ G276T (rs1501299) | Obesity | ✓ | ||||
Gender | ✓ | 276GG only: OR: 1.66 (1.13–2.43) | 0.0098 * | ||||||
Age | ✓ | 276GT/TT + obesity: OR: 1.17 (0.73–1.89) | NS | ||||||
Smoking | ✓ | 276GG + obesity: OR: 1.67 (1.14–2.44) | 0.0090 * | ||||||
T2D years | ✓ | 276GG + HTN: OR: 1.25 (0.80–1.93) | NS | ||||||
HbA1c | ✓ | 276GT/TT + HTN: OR: 2.33 (1.23–4.41) | 0.0095 * | ||||||
HTN | ✓ | ||||||||
Dyslipidemia | ✓ | ||||||||
Ma et al., 2014 [60] | 260 T2D + CHD and 144 T2D | China | PRKAA1 (rs3805489) | Smoking | ✓ | AC/CC + never smoked: Ref. | - | ||
AA + never smoked: OR: 0.96 (95% CI not reported) | 0.895 | ||||||||
AC/CC + ever smoked: OR: 1.18 (95% CI not reported) | 0.664 | ||||||||
AA + ever smoked: OR: 3.02 (1.39–6.57) | 0.005 * | ||||||||
Wu et al., 2014 [17] | 288 T2D + CHD, 312 T2D, and 346 healthy controls | China | KIF6 Trp719Arg (rs20455) | Gender | ✓ | 719Trp/Arg + Arg/Arg: OR: 1.70 (0.71–7.30) | 0.4083 | Trp/Arg + Arg/Arg in male T2D + CHD is also associated with lower TG than healthy controls. | |
719Trp/Arg + Arg/Arg in male: OR: 5.21 (1.01–27.01) | <0.01 * | ||||||||
719Trp/Arg + Arg/Arg in female: OR: 0.99 (0.56–1.72) | 0.9582 | ||||||||
Zhang et al., 2014 [62] | 502 MI and 308 angiographic normal controls | China | 9p21 (rs10757274) | T2D | ✓ | AA: Ref. | - | ||
GG/GA: OR: 1.60 (1.04–2.46) | 0.0329 * | ||||||||
AA + T2D: OR: 1.68 (0.92–3.08) | 0.0943 | ||||||||
GG/GA + T2D: OR: 4.38 (2.56–7.47) | 0.0001 * | ||||||||
Wang et al., 2016 [66] | 2317 CAD and 2404 healthy controls | China | HDAC9 (rs2107595 *G/A) | T2D | ✓ | - | - | Using MDR: rs2107595 only (0.30%), T2D only (0.58%), BMI only (0.36%), hyperlipidemia only (0.31%), rs2107595 + T2D (3.66%), rs2107595 + hyperlipidemia (0.81%), and rs2107595 + BMI (1.10%). | |
BMI | ✓ | ||||||||
Hyperlipidemia | ✓ | ||||||||
Wang X. et al., 2016 [68] | 1818 CHD and 1963 healthy controls | China | TXNIP (rs7212) | Smoking (1): OR: 1.37 (1.14–1.64) | <0.05 * | ||||
Alcohol (2): OR: 1.33 (1.10–1.61) | <0.05 * | ||||||||
Smoking | T2D (3): OR: 1.10 (0.89–1.35) | NS | |||||||
Alcohol intake | ✓ | CG + GG (4): OR: 1.26 (1.10–1.46) | 0.001 * | ||||||
T2D | (1) + (2): OR: 1.64 (1.22–2.18) | <0.05 * | |||||||
(1) + (2) + (3): OR: 1.83 (1.04–3.23) | <0.05 * | ||||||||
(1) + (2) + (3) + (4): OR: 3.70 (2.29–5.60) | <0.05 * | ||||||||
Sumi et al., 2017 [69] | 198 CHD, 284 T2D + CHD, 160 T2D, and 271 healthy controls | India | ENPP1 K121Q (rs1044498) | T2D | ✓ | AC + CC: OR: 4.15 (2.61–6.73) | <0.01 * | ||
AC + CC with T2D: OR: 12.81 (4.97–37.18) | <0.01 * | ||||||||
Lu et al., 2017 [70] | 390 T2D + CHD and 275 T2D | China | UBE2Z (rs46522) | BMI | ✓ | TT only: OR: 1.28 (1.04–1.57) | 0.020 * | rs46522 with overweight/obesity increased CHD risk (β = 0.012, pinteraction = 0.028). | |
TT + overweight/obesity: OR: 1.54 (1.08–2.19) | 0.018 * | ||||||||
Lu et al., 2017 [70] | 390 T2D + CHD and 275 T2D | China | UBE2Z (rs46522) | Smoking | ✓ | TC/CC + non-smoker: Ref. | - | ||
TT + non-smoker: OR: 0.89 (0.59–1.35) | 0.611 | ||||||||
TC/CC + smoker: OR: 1.67 (1.09–2.56) | 0.019 * | ||||||||
TT + smoker: OR: 3.00 (1.88–4.79) | <0.001 * | ||||||||
Wang et al., 2017 [71] | 2803 CAD and 2840 healthy controls | China | PARP1 (rs1136410) | Smoking | ✓ | GG only: OR: 0.73 (0.63–0.85) | 6.45 × 10−5 * | ||
Hyperlipidemia | ✓ | GG + smoking: OR: 0.94 (0.71–1.22) | 0.031 * | ||||||
T2D | ✓ | GG + hyperlipidemia: OR: 0.96 (0.72–1.28) | 0.025 * | ||||||
GG + T2D: OR: 1.02 (0.76–1.35) | 0.01 * | ||||||||
Wang et al., 2018 [73] | 335 CHD and 372 non-CHD | China | AP2A2 (rs7396366) | T2D | ✓ | GG only: OR: 0.68 (0.46–0.99) | 0.042 * | ||
GG + T2D: OR: 0.91 (0.50–1.64) | 0.748 | ||||||||
GT/TT only: OR: 1.13 (0.77–1.65) | 0.545 | ||||||||
GT/TT + T2D: OR: 2.33 (1.24–4.38) | 0.009 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarkasi, K.A.; Abdul Murad, N.A.; Ahmad, N.; Jamal, R.; Abdullah, N. Coronary Heart Disease in Type 2 Diabetes Mellitus: Genetic Factors and Their Mechanisms, Gene-Gene, and Gene-Environment Interactions in the Asian Populations. Int. J. Environ. Res. Public Health 2022, 19, 647. https://doi.org/10.3390/ijerph19020647
Zarkasi KA, Abdul Murad NA, Ahmad N, Jamal R, Abdullah N. Coronary Heart Disease in Type 2 Diabetes Mellitus: Genetic Factors and Their Mechanisms, Gene-Gene, and Gene-Environment Interactions in the Asian Populations. International Journal of Environmental Research and Public Health. 2022; 19(2):647. https://doi.org/10.3390/ijerph19020647
Chicago/Turabian StyleZarkasi, Khairul Anwar, Nor Azian Abdul Murad, Norfazilah Ahmad, Rahman Jamal, and Noraidatulakma Abdullah. 2022. "Coronary Heart Disease in Type 2 Diabetes Mellitus: Genetic Factors and Their Mechanisms, Gene-Gene, and Gene-Environment Interactions in the Asian Populations" International Journal of Environmental Research and Public Health 19, no. 2: 647. https://doi.org/10.3390/ijerph19020647
APA StyleZarkasi, K. A., Abdul Murad, N. A., Ahmad, N., Jamal, R., & Abdullah, N. (2022). Coronary Heart Disease in Type 2 Diabetes Mellitus: Genetic Factors and Their Mechanisms, Gene-Gene, and Gene-Environment Interactions in the Asian Populations. International Journal of Environmental Research and Public Health, 19(2), 647. https://doi.org/10.3390/ijerph19020647