City Size and Permanent Settlement Intention: Evidence from Rural-Urban Migrants in China
Abstract
:1. Introduction
2. Theoretical Analysis Framework
3. Data and Methodology
3.1. Data
3.2. Empirical Framework
3.2.1. Binary Probit Model
3.2.2. IV Probit Model
4. Results
4.1. The Spatial Pattern of Migrants’ Urban Settlement Intention
4.2. The Inverted U-Shaped Relationship of City Size and Urban Settlement Intention
4.3. Endogeneity Bias
4.4. The Robustness Checks and Heterogeneity Test
4.5. Why Do Migrants Not Tend to Settle Permanently in Megacities?
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boris, A.P. The Effect of Housing on Migrations in Israel: 1988–1994. J. Popul. Econ. 1998, 11, 379–394. [Google Scholar]
- Chan, K.W.; Wan, G. The size distribution and growth pattern of cities in China, 1982–2010: Analysis and policy implications. J. Asia Pac. Econ. 2018, 22, 136–155. [Google Scholar] [CrossRef]
- Buch, T.; Hamann, S.; Niebuhr, A.; Rossen, A. What Makes Cities Attractive? The Determinants of Urban Labour Migration in Germany. Urban Stud. 2014, 51, 1960–1978. [Google Scholar] [CrossRef]
- Xing, C.B.; Zhang, J.F. The preference for larger cities in China: Evidence from rural-urban migrants. China Econ. Rev. 2017, 43, 72–90. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, J. Social integration of new-generation migrants in Shanghai China. Habitat Int. 2015, 49, 419–425. [Google Scholar] [CrossRef]
- Chunyu, M.D.; Liang, Z.; Wu, Y. Interprovincial Return Migration in China: Individual and Contextual Determinants in Sichuan Province in the 1990S. Environ. Plan. A 2013, 45, 2939–2958. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Ye, C.; Xu, J. Land-Use Change and Health Risks in the Process of Urbanization: A Spatiotemporal Interpretation of a Typical Case in Changzhou, China. Land 2021, 10, 820. [Google Scholar] [CrossRef]
- Combes, P.P.; Démurger, S.; Li, S. Migration externalities in Chinese cities. Eur. Econ. Rev. 2015, 76, 152–167. [Google Scholar] [CrossRef] [Green Version]
- Wu, W. Sources of migrant housing disadvantage in urban China. Environ. Plan. A 2004, 36, 1285–1304. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, J. The changing prevalence of housing overcrowding in post-reform China: The case of Shanghai, 2000–2010. Habitat Int. 2014, 42, 214–223. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Chen, S. Does formal housing encourage settlement intention of rural migrants in Chinese cities? A structural equation model analysis. Urban Stud. 2017, 54, 1834–1850. [Google Scholar] [CrossRef]
- Helpman, E. The Size of Regions; Pines, D., Sadka, E., Zilcha, I., Eds.; Topics in Public Economics; Cambridge University Press: London, UK, 1998. [Google Scholar]
- Potepan, M.J. Intermetropolitan Migration and Housing Prices: Simultaneously Determined? J. Hous. Econ. 1994, 3, 77–91. [Google Scholar] [CrossRef]
- Jeanty, P.W.; Partridge, E. Irwin Estimation of a spatial simultaneous equation model of population migration and housing price dynamics. Reg. Sci. Urban Econ. 2010, 40, 343–352. [Google Scholar] [CrossRef]
- Saiz, A. Immigration and Housing Rents in American Cities. J. Urban Econ. 2007, 61, 345–371. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Wang, J.; Chen, J.; Ritakallio, V.M. The effect of health on urban-settlement intention of rural-urban migrants in China. Health Place 2017, 47, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wickramage, K.; Vearey, J.; Zwi, A.B.; Robinson, C.; Knipper, M. Migration and health: A global public health research priority. BMC Public Health 2018, 18, 987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tao, L. Barriers to the Acquisition of Urban Hukou in Chinese Cities. Environ. Plan. A. 2012, 44, 2883–2900. [Google Scholar] [CrossRef]
- Zhang, L. Economic Migration and Urban Citizenship in China: The Role of Points Systems. Popul. Dev. Rev. 2012, 38, 503–533. [Google Scholar] [CrossRef]
- Zhang, L.; Hui, C.M.; Wen, H. Housing price–volume dynamics under the regulation policy: Difference between Chinese coastal and inland cities. Habitat Int. 2015, 47, 29–40. [Google Scholar] [CrossRef]
- Tiebout, C.M. A pure theory of local expenditures. J. Polit. Econ. 1956, 64, 416–424. [Google Scholar] [CrossRef]
- Xia, Y.R.; Lu, M. The “three migration of Mencius” between cities: Empirical Research on the impact of public services on labor flow. Manag. World. 2015, 10, 78–90. [Google Scholar]
- Zhao, X.B.; Zhang, L. Urban Performance and the Control of Urban Size in China. Urban Stud. 1995, 32, 813–846. [Google Scholar] [CrossRef]
- Moretti, E. Human Capital Externalities in Cities. In Handbook of Regional and Urban Economics; Henderson, J.V., Thisse, J.F., Eds.; Elsevier-North Holland: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Glaeser, E.L.; Maré, D.C. Cities and Skills. J. Labor Econ. 2001, 19, 316–342. [Google Scholar] [CrossRef]
- Baum, S.N.; Pavan, R. Understanding the City Size Wage Gap. Rev. Econ. Stud. 2012, 79, 88–127. [Google Scholar] [CrossRef]
- Combes, P.; Duranton, G.; Gobillon, L. Spatial Wage Disparities: Sorting Matters. J. Urban Econ. 2008, 63, 723–742. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhou, Q. City size and urban labor productivity in China: New evidence from spatial city-level panel data analysis. Econ. Syst. 2017, 41, 165–178. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Resseger, M.G. The Complementarity between Cities and Skills. J. Reg. Sci. 2010, 50, 221–244. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Wang, J. Bringing city size in understanding the permanent settlement intention of rural–urban migrants in China. Popul. Space Place. 2020, 26, e2295. [Google Scholar] [CrossRef]
- Chen, J.; Hu, M.; Lin, Z. Does Housing Unaffordability Crowd Out Elites in Chinese Superstar Cities. Soc. Sci. Electron. Publ. 2019, 45, 101571. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, C. City size and housing purchase intention: Evidence from rural–urban migrants in China. Urban Stud. 2020, 57, 1866–1886. [Google Scholar] [CrossRef]
- Ravenstein, E.G. The Laws of Migration. J. R. Stat. Soc. 1889, 52, 241–305. [Google Scholar] [CrossRef]
- Lewis, W.A. Economic Development with Unlimited Supplies of Labour. Manch. Sch. 1954, 22, 139–191. [Google Scholar] [CrossRef]
- Lee, E.S. A Theory of Migration. Demography. 1966, 3, 47–57. [Google Scholar] [CrossRef]
- Krugman, P. Increasing returns and economic geography. J. Polit. Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Fujita, M.; Krugman, P.; Venables, A.J. The Spatial Economy: Cities, Regions, and International Trade; Mit Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Dustmann, C.; Okatenko, A. Out-migration, wealth constraints, and the quality of local amenities. J. Dev. Econ. 2014, 110, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Knapp, T.; Gravest, P. On the role of amenities in models of migration and reginal development. J. Reg. Sci. 1989, 29, 71–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, S. Wage-Based Indexes of Urban Quality of Life. In Current Issues in Urban Economics; Mieszkowski, P., Straszheim, M., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 1979. [Google Scholar]
- Roback, J. Wages, rents, and the quality of life. J. Polit. Econ. 1982, 90, 1257–1278. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Resseger, M.; Tobio, K. Inequality in cities. J. Reg. Sci. 2009, 49, 617–646. [Google Scholar] [CrossRef]
- Shi, T.; Zhu, W.; Fu, S. Quality of life in Chinese cities. China Econ. Rev. 2021, 69, 101682. [Google Scholar] [CrossRef]
- Rappaport, J. Moving to nice weather. Reg. Sci. Urban Econ. 2007, 37, 375–398. [Google Scholar] [CrossRef]
- Albouy, D. Are big cities bad places to live? Estimating quality of life across metropolitan areas. NBER WorkPap 2008. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1299733 (accessed on 19 November 2021).
- Albouy, D.; Graf, W.; Kellogg, R.; Wolff, H. Climate amenities, climate change, and American quality of life. J. Assoc. Environ. Resour. Econ. 2016, 3, 205–246. [Google Scholar] [CrossRef] [Green Version]
- Imbert, C.; Papp, J. Costs and benefits of rural-urban migration: Evidence from India. J. Dev. Econ. 2020, 146, 102473. [Google Scholar] [CrossRef] [Green Version]
- Stock, J.H.; Yogo, M. Testing for weak instruments in linear iv regression. NBER Tech. Work. Pap. 2005, 14, 80–108. [Google Scholar]
- Johnes, G.; Hyclak, T. House Prices, Migration, and Regional Labor Markets. Ann. Reg. Sci. 1999, 33, 33–49. [Google Scholar] [CrossRef]
- Nathan, M. The wider economic impacts of high-skilled migrants: A survey of the literature for receiving countries. IZA J. Migr. 2014, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Dang, Y.; Chen, Y.; Dong, G. Settlement intention of migrants in the yangtze river delta, China: The importance of city-scale contextual effects. Popul. Space Place 2019, 25, e2270. [Google Scholar] [CrossRef]
- Lin, G.C. High-skilled immigration and native task specialization in U.S. cities. Reg. Sci. Urban Econ. 2019, 77, 289–305. [Google Scholar] [CrossRef]
- Bacolod, M.; Blum, B.S.; Strange, W.C. Skills in the city. J. Urban Econ. 2009, 65, 136–153. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Wang, Z. Price anomalies and effectiveness of macro control policies: Evidence from Chinese housing markets. Land Use Policy 2014, 39, 96–109. [Google Scholar] [CrossRef]
Variables | Description | |
---|---|---|
Dependent variable | Permanent settlement intention | Willingness to settle in the city in the next five years or more |
Independent variable | City size | Resident population of the city in the urban area |
Control variables | Age | 15–59 years old |
Gender | 1 = male; 0 = female | |
Education level | Formal education (1 = illiteracy; 2 = primary, junior middle school level; 3 = high school level and above) | |
Married status | Marriage status (0 = single, including divorced and widowed; 1 = married) | |
Employment | Form of employment (1 = be employed;0 = self-employment) | |
Wage | The wage level of last month (Dollars) | |
Flow duration | The duration of moving to the city | |
Rural homestead | Having a homestead in your hometown (1 = yes; 0 = no) | |
Social network | The group with the most contacts in your spare time (1 = Fellow countrymen from the same registered residence; 2 = nobody; 3 = The registered residents of the local city) | |
Rent | The average monthly rental cost in the city (Dollars) | |
Housing price | The average housing price per square meter in the city (Dollars) | |
Road congestion | Length of road per 10,000 people in the urban area | |
Green garden | The Green Park area per 10,000 people in the urban area | |
Air pollution | average PM2.5 of the city | |
Health | In the last year, you have been in good health without illness, injury, or physical discomfort (1 = yes; 0 = no) | |
Health archives | Has the local government of the city established a resident health record for you? (1 = yes; 0 = no) | |
Temperature | Annual temperature (°C) | |
Precipitation | Annual precipitation (mm) |
Whole Sample | Category of Permanent Settlement | ||||||||
---|---|---|---|---|---|---|---|---|---|
Yes | No | ||||||||
Var | Observation | Mean | std | Min | Max | Mean | std | Mean | std |
City size | 99,829 | 486.62 | 588. | 14.81 | 2418.33 | 519.76 | 618.78 | 489.66 | 591.55 |
Permanent settlement intention | 81,435 | 0.45 | 0.50 | 0 | 1 | 1 | 0 | 0 | 0 |
Age | 99,829 | 35.23 | 9.45 | 15 | 59 | 35.91 | 8.52 | 34.59 | 9.67 |
Gender | 99,829 | 0.57 | 0.49 | 0 | 1 | 0.57 | 0.50 | 0.56 | 0.49 |
Education | 99,829 | 2.31 | 0.51 | 1 | 3 | 0.89 | 0.31 | 0.79 | 0.41 |
Married status | 98,925 | 0.83 | 0.38 | 0 | 1 | 2.37 | 0.53 | 2.28 | 0.51 |
Employment | 91,456 | 0.60 | 0.49 | 0 | 1 | 0.55 | 0.49 | 0.63 | 0.48 |
Wage | 91,456 | 653.02 | 442.78 | 0 | 3149.61 | 730.65 | 535.35 | 609.29 | 373.80 |
Flow duration | 99,829 | 6.01 | 5.76 | 0 | 41 | 7.57 | 6.20 | 5.12 | 5.20 |
Rural homestead | 99321 | 0.75 | 0.43 | 0 | 1 | 0.70 | 0.46 | 0.80 | 0.40 |
Social network with local people | 99,829 | 0.27 | 0.45 | 0 | 1 | 0.37 | 0.49 | 0.22 | 0.43 |
Rent | 98,248 | 122.61 | 170.27 | 0 | 7874.02 | 158.84 | 211.22 | 101.47 | 136.63 |
Housing price | 98,248 | 1565.10 | 1179.21 | 396.38 | 7109.76 | 1576.68 | 1207.00 | 1558.35 | 1162.61 |
Road | 98,248 | 15.75 | 6.94 | 4 | 55 | 15.59 | 7.41 | 15.67 | 6.90 |
Green garden | 98,248 | 13.79 | 4.06 | 6 | 45 | 13.82 | 4.17 | 13.72 | 3.91 |
PM2.5 | 99,829 | 79.57 | 14.22 | 20 | 119 | 79.08 | 14.65 | 79.91 | 13.98 |
Health | 99,829 | 0.52 | 0.50 | 0 | 1 | 0.50 | 0.50 | 0.53 | 0.50 |
Health archives | 99,829 | 0.29 | 0.45 | 0 | 1 | 0.32 | 0.47 | 0.26 | 0.44 |
Temperature | 99,829 | 15.40 | 4.87 | −0.35 | 24.67 | 15.06 | 4.89 | 15.63 | 4.85 |
Precipitation | 99,829 | 1287.41 | 705.41 | 110.46 | 2778.80 | 1215.61 | 680.65 | 1336.50 | 717.75 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
dx/dy | dx/dy | Probit | Logit | OLS | |
City size | 0.127 *** | 0.276 *** | 0.373 *** | 0.133 *** | 0.618 *** |
(4.78) | (10.39) | (12.18) | (12.11) | (12.15) | |
City size square | −0.051 *** | −0.072 *** | −0.093 *** | −0.034 *** | −0.156 *** |
(−4.29) | (−6.18) | (−7.64) | (−7.80) | (−7.80) | |
age | 0.074 *** | 0.067 *** | 0.067 *** | 0.021 *** | 0.110 *** |
(16.66) | (15.22) | (15.15) | (14.21) | (14.95) | |
Age square | −0.001 *** | −0.001 *** | −0.001 *** | −0.000 *** | −0.002 *** |
(−17.28) | (−16.34) | (−16.31) | (−15.48) | (−16.09) | |
Gender (base group: female) | 0.019 * | 0.031 *** | 0.030 *** | 0.012 *** | 0.046 *** |
(1.96) | (3.22) | (3.14) | (3.48) | (2.91) | |
Marital status (base group: single) | 0.350 *** | 0.413 *** | 0.412 *** | 0.140 *** | 0.690 *** |
(22.13) | (25.67) | (25.63) | (25.42) | (25.43) | |
Primary and junior (base group: illiteracy) | 0.012 | 0.032 | 0.026 | 0.008 | 0.046 |
(0.34) | (0.89) | (0.73) | (0.68) | (0.77) | |
High school and above (base group: illiteracy) | 0.425 *** | 0.407 *** | 0.399 *** | 0.142 *** | 0.655 *** |
(11.61) | (11.03) | (10.82) | (11.07) | (10.69) | |
Rural homestead | −0.304 *** | −0.229 *** | −0.226 *** | −0.081 *** | −0.369 *** |
(−27.51) | (−21.28) | (−20.96) | (−21.11) | (−20.87) | |
Flow duration | 0.042 *** | 0.037 *** | 0.038 *** | 0.014 *** | 0.061 *** |
(46.45) | (41.91) | (42.61) | (44.17) | (42.23) | |
Employment (base group: unemployment) | −0.118 *** | −0.073 *** | −0.059 *** | −0.020 *** | −0.093 *** |
(−11.94) | (−7.43) | (−6.05) | (−5.84) | (−5.81) | |
Wage | 0.049 *** | 0.059 *** | 0.063 *** | 0.022 *** | 0.108 *** |
(9.30) | (11.57) | (12.12) | (12.38) | (12.01) | |
Interaction with nobody (base group: Social network with fellow-townsman) | −0.072 *** | −0.079 *** | −0.028 *** | −0.133 *** | |
(−5.95) | (−6.50) | (−6.51) | (−6.64) | ||
Social network with local people (base group: Social network with fellow-townsman) | 0.330 *** | 0.314 *** | 0.115 *** | 0.511 *** | |
(30.52) | (28.29) | (29.01) | (28.20) | ||
Rent | −0.006 *** | ||||
(−3.76) | |||||
Housing price | −0.084 *** | −0.029 *** | −0.138 *** | ||
(−6.92) | (−6.68) | (−6.94) | |||
Road | 0.004 *** | 0.004 *** | 0.002 *** | 0.007 *** | |
(4.68) | (4.60) | (4.95) | (4.75) | ||
Green land | −0.001 | −0.000 | −0.000 | −0.001 | |
(−1.23) | (−0.44) | (−0.65) | (−0.67) | ||
Air pollution | −0.002 *** | −0.001 *** | −0.001 *** | −0.002 *** | |
(−4.43) | (−4.08) | (−4.08) | (−4.13) | ||
Health | −0.088 *** | −0.091 *** | −0.032 *** | −0.150 *** | |
(−9.50) | (−9.83) | (−9.88) | (−9.87) | ||
Health archives | 0.137 *** | 0.138 *** | 0.050 *** | 0.227 *** | |
(13.44) | (13.54) | (13.70) | (13.59) | ||
LnPrecipitation | −0.156 *** | −0.153 *** | −0.265 *** | −0.058 *** | |
(−11.30) | (−10.99) | (−11.40) | (−11.57) | ||
Temperature | 0.006 *** | 0.006 *** | 0.0116 *** | 0.002 *** | |
(3.19) | (3.27) | (3.59) | (3.81) | ||
_cons | −2.004 *** | −2.284 *** | −1.632 *** | −0.042 | −2.731 *** |
(−21.40) | (−23.08) | (−11.80) | (−0.86) | (−11.77) | |
N | 76273 | 75185 | 75185 | 75185 | 75185 |
Model 5 | Model 6 | Model 7 | |
---|---|---|---|
Variables | OLS | IVreg2 | IVProbit 2SLS |
First-stage regressions | |||
citysize_2002 | - | 1.986 *** | 1.738 *** |
(259.87) | (117.52) | ||
citysize_2002_square | - | 0.340 *** | 0.305 *** |
(42.38) | (40.72) | ||
Second-stage regressions | |||
City size | 0.618 *** | 0.208 *** | 0.597 *** |
(12.15) | (16.18) | (16.58) | |
City size square | −0.156 *** | −0.055 *** | −0.156 *** |
(−7.80) | (−11.59) | (−11.77) | |
Ln (wage) | 0.108 *** | 0.025 *** | 0.069 *** |
(12.01) | (13.06) | (11.20) | |
Social network | −0.133 *** | −0.027 *** | −0.076 *** |
(−6.64) | (−6.03) | (−6.02) | |
0.511 *** | 0.111 *** | 0.301 *** | |
(28.20) | (27.01) | (26.28) | |
Ln (housing price) | −0.138 *** | −0.058 *** | −0.172 *** |
(−6.94) | (−11.50) | (−12.07) | |
Air pollution | −0.002 *** | −0.001 *** | −0.002 *** |
(−4.13) | (−4.50) | (−4.43) | |
Health | −0.150 *** | −0.030 *** | −0.083 *** |
(−9.87) | (−8.77) | (−8.69) | |
Health archives | 0.227 *** | 0.052 *** | 0.143 *** |
(13.59) | (13.52) | (13.36) | |
Demographic variables | Yes | Yes | Yes |
Family variables | Yes | Yes | Yes |
Natural amenity | Yes | Yes | Yes |
_cons | 0.202 *** | 0.176 *** | −0.954 *** |
(3.93) | (3.28) | (−6.16) | |
N | 75185 | 69597 | 69597 |
Adj-R2 | 0.101 | 0.460 | 0.460 |
Cragg-Donald Wald F statistic | - | 960 | |
Stock-Yogo bias critical value | 10% (7.03) | ||
Wald test of exogeneity(chi2(2)) | - | 217.59 | |
p-value | 0.000 |
Variables | Model 8 | Model 9 |
---|---|---|
Independent Variable: Area Square | Dependent Variable: Citizen Identity | |
l_living | ||
Urban Area | 0.086 *** | |
(16.51) | ||
Urban Area square | −0.004 *** | |
(−12.70) | ||
City size | 0.302 *** | |
(9.07) | ||
Citysize_square | −0.064 *** | |
(−4.96) | ||
Ln (wage) | 0.062 *** | 0.019 *** |
(12.07) | (3.50) | |
Social network | −0.078 *** | −0.001 |
(−6.48) | (−0.05) | |
0.320 *** | 0.392 *** | |
(28.83) | (31.27) | |
Ln (housing price) | −0.101 *** | −0.487 *** |
(−8.56) | (−37.81) | |
Air pollution | −0.002 *** | −0.000 |
(−6.86) | (−1.16) | |
Health | −0.091 *** | 0.211 *** |
(−9.84) | (21.52) | |
Health archives | 0.130 *** | 0.223 *** |
(12.78) | (19.71) | |
Demographic variables | Yes | Yes |
Family variables | Yes | Yes |
Natural amenity | Yes | Yes |
_cons | −1.451 *** | 4.035 *** |
(−10.37) | (27.47) | |
N | 75,185 | 75,185 |
Variables | Model 10 | Model 11 |
---|---|---|
High-Skilled Migrants | Low-Skilled Migrants | |
City size | 0.359 *** | 0.475 *** |
(4.05) | (13.99) | |
City size_ square | −0.106 *** | −0.123 *** |
(−3.08) | (−9.30) | |
Ln (wage) | 0.105 *** | 0.061 *** |
(6.01) | (11.39) | |
Social network | −0.138 *** | −0.083 *** |
(−3.38) | (−6.53) | |
Excellent air quality | 0.279 *** | 0.311 *** |
(9.48) | (25.87) | |
Ln (housing price) | −0.094 *** | −0.123 *** |
(−2.86) | (−9.14) | |
Good weather(air quality ≤ 50) | 0.214 ** | 0.358 *** |
(2.36) | (9.89) | |
Health | −0.112 *** | −0.087 *** |
(−4.18) | (−8.85) | |
Health archives | 0.140 *** | 0.145 *** |
(4.91) | (13.30) | |
Demographic variables | Yes | Yes |
Family variables | Yes | Yes |
Natural amenity | Yes | Yes |
_cons | −2.521 *** | −1.059 *** |
(−6.05) | (−7.34) | |
N | 9843 | 65342 |
Variables | Model 12 | Model 13 |
---|---|---|
dx/dy | dx/dy | |
City size | 0.535 *** | 0.499 *** |
(14.26) | (11.47) | |
Citysize_square | −0.125 *** | −0.100 *** |
(−4.91) | (−3.38) | |
City_size × Ln (wage) | 0.110 *** | 0.042 *** |
(14.26) | (4.63) | |
City_size × Social_network | 0.152 *** | 0.083 *** |
(9.80) | (4.16) | |
City_size × Ln (housing_price) | 0.176 *** | 0.040 * |
(10.24) | (1.94) | |
City_size ×Air_quality | 0.012 *** | 0.009 *** |
(17.63) | (11.36) | |
City_size ×Health | 0.052 *** | 0.053 *** |
(4.11) | (3.38) | |
City_size ×Health_archives | 0.013 | −0.059 *** |
(0.73) | (−2.80) | |
Ln (wage) | 0.114 *** | 0.068 *** |
(25.05) | (12.88) | |
Urban social network | 0.427 *** | 0.324 *** |
(44.96) | (28.82) | |
Ln (Housing_ price) | −0.067 *** | −0.105 *** |
(−6.14) | (−8.32) | |
Air pollution | −0.000 | −0.001 ** |
(−1.53) | (−2.44) | |
Health | −0.097 *** | −0.094 *** |
(−12.00) | (−10.11) | |
Health archives | 0.172 *** | 0.142 *** |
(19.10) | (13.57) | |
Demographic variables | No | Yes |
Family variables | No | Yes |
Natural amenity | No | Yes |
_cons | −0.673 *** | −1.673 *** |
(−6.88) | (−11.82) | |
N | 75185 | 75185 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zhu, N.; Luo, F. City Size and Permanent Settlement Intention: Evidence from Rural-Urban Migrants in China. Int. J. Environ. Res. Public Health 2022, 19, 676. https://doi.org/10.3390/ijerph19020676
Song Y, Zhu N, Luo F. City Size and Permanent Settlement Intention: Evidence from Rural-Urban Migrants in China. International Journal of Environmental Research and Public Health. 2022; 19(2):676. https://doi.org/10.3390/ijerph19020676
Chicago/Turabian StyleSong, Yanjiao, Nina Zhu, and Feng Luo. 2022. "City Size and Permanent Settlement Intention: Evidence from Rural-Urban Migrants in China" International Journal of Environmental Research and Public Health 19, no. 2: 676. https://doi.org/10.3390/ijerph19020676
APA StyleSong, Y., Zhu, N., & Luo, F. (2022). City Size and Permanent Settlement Intention: Evidence from Rural-Urban Migrants in China. International Journal of Environmental Research and Public Health, 19(2), 676. https://doi.org/10.3390/ijerph19020676