Comparison of the Cardiovascular Effects of Extreme Psychological and Physical Stress Tests in Male Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Design
2.2. Ethics
2.3. Testing Protocols
2.4. Data Dollection
2.5. Statistical Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANS | Autonomic nervous system |
BP | Blood pressure |
ECG | Electrocardiogram |
HF | High-frequency band |
HRV | Heart rate variability |
LF | Low-frequency band |
LF/HF | Ratio of low- and high-frequency bands |
NNmax | Longest normal heart cycle during the measured period |
NNmean | Average length of normal heart cycles during the measured period |
NNmin | Shortest normal heart cycle during the measured period |
PHY | Physical stress test |
pNN50 | Ratio of consecutive NN interval pairs with a greater difference than 50 ms |
PSY | Psychological stress test |
PTSD | Post-traumatic stress disorder |
rMSSD | Root mean square of successive differences |
SDNN | Standard deviation of normal heart cycles during the measured period |
TP | Total power |
VLF | Very-low-frequency band |
VO2peak | Peak oxygen uptake |
References
- Puzserova, A.; Bernatova, I. Blood Pressure Regulation in Stress: Focus on Nitric Oxid-Dependent Mechanisms. Physiol. Res. 2016, 65, 309–342. [Google Scholar] [CrossRef] [PubMed]
- Rajendra Acharya, U.; Paul Joseph, K.; Kannathal, N.; Min Lim, C.; Suri, J. Heart rate variability: A review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef] [PubMed]
- Alyan, E.; Combe, T.; Awang Rambli, D.R.; Sulaiman, S.; Merienne, F.; Diyana, N. The Influence of Virtual Forest Walk on Physiological and Psychological Responses. Int. J. Environ. Res. Public Health 2021, 18, 11420. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Ahs, F.; Fredrikson, M.; Sollers, J.J.; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Esch, T.; Stefano, G.B.; Fricchione, G.L.; Benson, H. Stress in cardiovascular diseases. Med. Sci. Monit. 2002, 8, 101. [Google Scholar]
- Clemente-Suárez, V.J.; Robles-Pérez, J.J.; Fernández-Lucas, J. Psychophysiological response in parachute jumps, the effect of experience and type of jump. Physiol. Behav. 2017, 179, 178–183. [Google Scholar] [CrossRef]
- Carnevali, L.; Koenig, J.; Sgoifo, A.; Ottaviani, C. Autonomic and brain morphological predictors of stress resilience. Front. Neurosci. 2018, 12, 228. [Google Scholar] [CrossRef]
- Hye-Geum, K.; Eun-Jin, C.; Dai-Seg, B.; Young Hwan, L.; Bon-Hoon, K. Stress and heart rate variability: A Meta-Analysis and Review of the Literature. Psychiat. Invest. 2018, 15, 235–245. [Google Scholar]
- Sloan, R.P.; Shapiro, P.A.; Bagiella, E.; Boni, S.M.; Paik, M.; Bigger, J.T., Jr. Effect of mental stress throughout the day on cardiac autonomic control. Biol. Psychol. 1994, 37, 89–99. [Google Scholar] [CrossRef]
- Clays, E.; De Bacquer, D.; Crasset, V.; Kittel, F.; de Smet, P.; Kornitzer, M. The perception of work stressors is related to reduced parasympathetic activity. Int. Arch. Occup. Environ. Health 2011, 84, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Punita, P.; Saranya, K.; Kumar, S.S. Gender difference in heart rate variability in medical students and association with the level of stress. Natl. J. Physiol. Pharm. Pharmacol. 2016, 6, 431–437. [Google Scholar] [CrossRef]
- Mateo, M.; Blasco-Lafarga, C.; Martinez-Navarro, I.; Guzman, J.F.; Zabala, M. Heart rate variability and pre-competitive anxiety in BMX discipline. Eur. J. Appl. Physiol. 2012, 112, 113–123. [Google Scholar] [CrossRef]
- Oliveira-Silva, I.; Silva, V.A.; Cunha, R.M.; Foster, C. Autonomic changes induced by pre-competitive stress in cyclists in relation to physical fitness and anxiety. PLoS ONE 2018, 13, e0209834. [Google Scholar] [CrossRef]
- Morales, J.; Garcia, V.; Garcia-Masso, X.; Salvá, P.; Escobar, R.; Buscá, B. The use of heart rate variability in assessing precompetitive stress in high-standard judo athletes. Int. J. Sports Med. 2013, 34, 144–151. [Google Scholar] [CrossRef]
- Almási, G.; Bosnyák, E.; Móra, Á.; Zsákai, A.; Fehér, P.V.; Annár, D.; Nagy, N.; Sziráki, Z.; Kemper, H.C.G.; Szmodis, M. Physiological and Psychological Responses to a Maximal Swimming Exercise Test in Adolescent Elite Athletes. Int. J. Environ. Res. Public Health 2021, 18, 9270. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suarez, V.J.; Robles-Perez, J.J. Psycho-physiological response of soldiers in urban combat. An. Psicol. 2013, 29, 598–603. [Google Scholar]
- Tornero-Aguilera, J.F.; Robles-Pérez, J.J.; Clemente-Suárez, V.J. Use of Psychophysiological Portable Devices to Analyse Stress Response in Different Experienced Soldiers. J. Med. Syst. 2018, 42, 75. [Google Scholar] [CrossRef]
- Kellerová, E. Variability and reactive changes of the peripheral blood flow, blood pressure and of the electrical behavior of the heart. Act. Nerv. Super. Rediviva 2013, 55, 113–124. [Google Scholar]
- Pyne, J.M.; Constans, J.I.; Wiederhold, M.D.; Gibson, D.P.; Kimbrell, T.; Kramer, T.L.; Pitcock, J.A.; Han, X.; Williams, D.K.; Chartrand, D.; et al. Heart rate variability: Pre-deployment predictor of post-deployment PTSD symptoms. Biol. Psychol. 2016, 121, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Park, J.E.; Lee, J.Y.; Kang, S.H.; Choi, J.H.; Kim, T.Y.; So, H.S.; Yoon, I.Y. Heart rate variability of chronic posttraumatic stress disorder in the Korean veterans. Psychiat. Res. 2017, 255, 72–77. [Google Scholar] [CrossRef]
- Thome, J.; Densmore, M.; Frewen, P.A.; McKinnon, M.C.; Théberge, J.; Nicholson, A.A.; Koenig, J.; Thayer, J.F.; Lanius, R.A. Desynchronization of autonomic response and central autonomic network connectivity in posttraumatic stress disorder. Hum. Brain. Mapp. 2017, 38, 27–40. [Google Scholar] [CrossRef]
- Grupe, D.W.; Imhoff-Smith, T.; Wielgosz, J.; Nitschke, J.B.; Davidson, R.J. A common neural substrate for elevated PTSD symptoms and reduced pulse rate variability in combat-exposed veterans. Psychophysiology 2019, 22, e13352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancia, G.; Grassi, G. The Autonomic Nervous System and Hypertension. Circ. Res. 2014, 114, 1804–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.Y.L.; Jelinek, H.F.; McLachlan, C.S. Systolic blood pressure but not electrocardiogram QRS duration is associated with heart rate variability (HRV): A cross-sectional study in rural Australian non-diabetics. Clin. Hypertens. 2017, 23, 9. [Google Scholar] [CrossRef] [Green Version]
- Holland, D.J.; Sacre, J.W.; McFarlane, S.J.; Coombes, J.S.; Sharman, J.E. Pulse wave analysis is a reproducible technique for measuring central blood pressure during hemodynamic perturbations induced by exercise. Am. J. Hypertens. 2008, 21, 1100–1106. [Google Scholar] [CrossRef] [Green Version]
- Instebø, A.; Helgheim, V.; Greve, G. Repeatability of blood pressure measurements during treadmill exercise. Blood. Press. Monit. 2012, 17, 69–72. [Google Scholar] [CrossRef]
- Schultz, M.G.; Sharman, J.E. Exercise Hypertension. Pulse 2013, 1, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Perna, G.; Riva, A.; Defillo, A.; Sangiorgio, E.; Nobile, M.; Caldirola, D. Heart rate variability: Can it serve as a marker of mental health resilience?: Special Section on “Translational and Neuroscience Studies in Affective Disorders” Section Editor, Maria Nobile MD, PhD. J. Affect. Disord. 2020, 263, 754–761. [Google Scholar] [CrossRef]
- Howley, E.T.; Bassett, D.R., Jr.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27, 1292. [Google Scholar] [CrossRef] [PubMed]
- Farkas, I.; Végh, J. A lélektaktikai képzés elvei, módszerei és gyakorlati tapasztalatai. Új Honvédségi. Szemle. 2004, 58, 63–75. [Google Scholar]
- Haller, J.; Raczkevy-Deak, G.; Gyimesine, P.K.; Szakmary, A.; Farkas, I.; Vegh, J. Cardiac autonomic functions and the emergence of violence in a highly realistic model of social conflict in humans. Front. Behav. Neurosci. 2014, 8, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 1996, 17, 354–381. Available online: https://pubmed.ncbi.nlm.nih.gov/8737210/ (accessed on 3 January 2021). [CrossRef] [Green Version]
- Hedelin, R.; Bjerle, P.; Henriksson-Larsén, K. Heart rate variability in athletes: Relationship with central and peripheral performance. Med. Sci. Sports Exerc. 2001, 33, 1394–1398. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, B.; Xie, L.; Yu, X.; Li, M.; Zhang, J. Cerebral and neural regulation of cardiovascular activity during mental stress. Biomed. Eng. Online 2016, 15, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Cavarretta, E.; D’Angeli, I.; Giammarinaro, M.; Gervasi, S.; Fanchini, M.; Causarano, A.; Costa, V.; Manara, M.; Terribili, N.; Sciarra, L.; et al. Cardiovascular effects of COVID-19 lockdown in professional Football players. Panminerva. Med. 2021. [Google Scholar] [CrossRef]
Test Protocol | HRV Parameter | Pre- vs. Post-Test Differences | |||||
---|---|---|---|---|---|---|---|
Mean ± Standard Deviation | 95% Confidence Interval of the Difference | Cohen’s d | Effect Size r | p | |||
Lower | Upper | ||||||
Physical test | NNmax | 320.51 ± 180.19 | 275.13 | 365.89 | 1.85 | 0.68 | <0.001 |
NNmin | 44.86 ± 144.19 | 8.54 | 81.17 | 0.38 | 0.19 | 0.016 | |
NNmean | 185.22 ± 96.22 | 160.99 | 209.45 | 1.63 | 0.63 | <0.001 | |
SDNN | 50.41 ± 29.32 | 43.03 | 57.80 | 1.99 | 0.71 | <0.001 | |
pNN50 | 26.11 ± 16.85 | 21.87 | 30.35 | 2.04 | 0.71 | <0.001 | |
rMSSD | 47.17 ± 30.90 | 39.39 | 54.96 | 1.94 | 0.69 | <0.001 | |
TP | 331,051 ± 3221.81 | 2499.11 | 4121.91 | 1.39 | 0.57 | <0.001 | |
VLF | −6.10 ± 23.46 | −12.00 | −0.19 | −0.34 | −0.17 | 0.043 | |
LF | −8.11 ± 19.84 | −13.11 | −3.11 | −0.54 | −0.26 | 0.002 | |
HF | 13.14 ± 14.25 | 9.56 | 16.73 | 1.20 | 0.51 | <0.001 | |
LF/HF | −4.63 ± 5.60 | −6.04 | −3.22 | −1.14 | −0.49 | <0.001 | |
Psychological test | NNmax | −90.60 ± 198.53 | −140.60 | −40.60 | −0.41 | −0.19 | <0.001 |
NNmin | −38.79 ± 168.84 | −81.32 | 3.73 | −0.29 | −0.15 | 0.073 | |
NNmean | −66.41 ± 84.58 | −87.72 | −45.11 | −0.43 | −0.21 | <0.001 | |
SDNN | −7.46 ± 46.99 | −19.29 | 4.37 | −0.19 | −0.09 | 0.212 | |
pNN50 | −6.46 ± 13.59 | −9.88 | −3.04 | −0.33 | −0.16 | <0.001 | |
rMSSD | −17.83 ± 47.31 | −29.74 | −5.91 | −0.42 | −0.21 | 0.004 | |
TP | −94.97 ± 6212.51 | −1659.57 | 1469.63 | −0.02 | −0.01 | 0.904 | |
VLF | 6.51 ± 20.72 | 1.29 | 11.73 | 0.41 | 0.20 | 0.015 | |
LF | −0.52 ± 13.95 | −4.04 | 2.99 | −0.04 | −0.02 | 0.767 | |
HF | −5.59 ± 14.24 | −9.17 | −2.00 | −0.39 | −0.19 | 0.003 | |
LF/HF | 0.40 ± 1.15 | 0.11 | 0.69 | 0.27 | 0.13 | 0.007 |
Stress Test Protocol and HRV Parameter | Grouping Based on Mean Relative VO2peak | Mean ± SD | p | Mean Difference | Cohen’s d | Effect Size r | 95% Confidence Interval of the Difference | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Physical stress LF/HF Δ | Under | 3.33 ± 3.19 | 0.037 | −3.25 | −0.55 | −0.27 | −6.29 | −0.21 |
Above | 6.58 ± 7.64 | |||||||
Psychological stress VLF Δ | Under | 0.79 ± 0.38 | 0.021 | −0.29 | −0.63 | −0.30 | −0.54 | −0.046 |
Above | 1.09 ± 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Móra, Á.; Komka, Z.; Végh, J.; Farkas, I.; Kocsisné, G.S.; Bosnyák, E.; Szmodis, M.; Ligetvári, R.; Csöndör, É.; Almási, G.; et al. Comparison of the Cardiovascular Effects of Extreme Psychological and Physical Stress Tests in Male Soccer Players. Int. J. Environ. Res. Public Health 2022, 19, 715. https://doi.org/10.3390/ijerph19020715
Móra Á, Komka Z, Végh J, Farkas I, Kocsisné GS, Bosnyák E, Szmodis M, Ligetvári R, Csöndör É, Almási G, et al. Comparison of the Cardiovascular Effects of Extreme Psychological and Physical Stress Tests in Male Soccer Players. International Journal of Environmental Research and Public Health. 2022; 19(2):715. https://doi.org/10.3390/ijerph19020715
Chicago/Turabian StyleMóra, Ákos, Zsolt Komka, József Végh, István Farkas, Gyöngyi Szilágyi Kocsisné, Edit Bosnyák, Márta Szmodis, Roland Ligetvári, Éva Csöndör, Gábor Almási, and et al. 2022. "Comparison of the Cardiovascular Effects of Extreme Psychological and Physical Stress Tests in Male Soccer Players" International Journal of Environmental Research and Public Health 19, no. 2: 715. https://doi.org/10.3390/ijerph19020715
APA StyleMóra, Á., Komka, Z., Végh, J., Farkas, I., Kocsisné, G. S., Bosnyák, E., Szmodis, M., Ligetvári, R., Csöndör, É., Almási, G., Oláh, A., Kemper, H. C. G., Tóth, M., & Ács, P. (2022). Comparison of the Cardiovascular Effects of Extreme Psychological and Physical Stress Tests in Male Soccer Players. International Journal of Environmental Research and Public Health, 19(2), 715. https://doi.org/10.3390/ijerph19020715