Bioaccessibility of Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Meat: The Effects of Meat Doneness and Fat Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Meat Sample Preparation and Marination
2.3. Charcoal Grilling of Marinated Meat Samples
2.4. Bioaccessibility Test of PAHs Using In Vitro Human Digestion Model
2.5. Extraction of PAHs and Clean-Up
2.6. Preparation of Standard Solutions of PAHs
2.7. Determination of PAHs in the Sample Using HPLC
2.8. Method Validation
2.9. Determination of Fat Content in Grilled Meat Samples
2.10. Dietary Intake of PAHs through Grilled Beef and Chicken Consumption
2.11. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of Analysis Procedure Performance
3.2. Bioaccessibility of PAHs in Grilled Meat in Different Parts of Digestive System
3.3. Bioaccessibility of PAHs in Grilled Meat at Different Degree of Doneness
3.4. Effect of Fat Content on the Bioaccessibility of PAHs in Grilled Beef and Chicken
3.5. Estimation of Daily Dietary Intake (DI) of PAHs via Consumption of Grilled Beef and Chicken
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Portet-Koltalo, F.; Gardes, T.; Debret, M.; Copard, Y.; Marcotte, S.; Morin, C.; Laperdrix, Q. Bioaccessibility of polycyclic aromatic compounds (PAHs, PCBs) and trace elements: Influencing factors and determination in a river sediment core. J. Hazard. Mater. 2020, 384, 121499. [Google Scholar] [CrossRef]
- Lee, J.G.; Kim, S.Y.; Moon, J.S.; Kim, S.H.; Kang, D.H.; Yoon, H.J. Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chem. 2016, 199, 632–638. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC monographs on the evaluation of carcinogenic risks to humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 92, 773. [Google Scholar]
- Hu, Y.J.; Bao, L.J.; Huang, C.L.; Li, S.M.; Liu, P.; Zeng, E.Y. Assessment of airborne polycyclic aromatic hydrocarbons in a megacity of South China: Spatiotemporal variability, indoor-outdoor interplay and potential human health risk. Environ. Pollut. 2018, 238, 431–439. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Parada, H., Jr.; Steck, S.E.; Bradshaw, P.T.; Engel, L.S.; Conway, K.; Teitelbaum, S.L.; Neugut, A.I.; Santella, R.M.; Gammon, M.D. Grilled, barbecued, and smoked meat intake and survival following breast cancer. J. Natl. Cancer Inst. 2017, 109, djw299. [Google Scholar] [CrossRef] [PubMed]
- Duedahl-Olesen, L.; Aaslyng, M.; Meinert, L.; Christensen, T.; Jensen, A.H.; Binderup, M.L. Polycyclic aromatic hydrocarbons (PAH) in Danish barbecued meat. Food Control 2015, 57, 169–176. [Google Scholar] [CrossRef]
- Sahin, S.; Ulusoy, H.I.; Alemdar, S.; Erdogan, S.; Agaoglu, S. The presence of polycyclic aromatic hydrocarbons (PAHs) in grilled beef, chicken and fish by considering dietary exposure and risk assessment. Food Sci. Anim. Resour. 2020, 40, 675. [Google Scholar] [CrossRef]
- Onopiuk, A.; Kołodziejczak, K.; Szpicer, A.; Wojtasik-Kalinowska, I.; Wierzbicka, A.; Półtorak, A. Analysis of factors that influence the PAH profile and amount in meat products subjected to thermal processing. Trends Food Sci. Technol. 2021, 115, 366–379. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.X. In vivo oral bioavailability of fish mercury and comparison with in vitro bioaccessibility. Sci. Total Environ. 2019, 683, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Oleszczuk, P. Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in historically contaminated soils after lab incubation with sewage sludge-derived biochars. Chemosphere 2016, 163, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.L.; Banks, L.D.; Mantey, J.A.; Huderson, A.C.; Ramesh, A. Bioaccessibility of polycyclic aromatic hydrocarbons: Relevance to toxicity and carcinogenesis. Expert Opin. Drug Metab. Toxicol. 2013, 9, 1465–1480. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Cheng, X.; Meng, H.; Kumar, K.; Li, H.; He, H.; Zhang, L. Past, present, and future perspectives on the assessment of bioavailability/bioaccessibility of polycyclic aromatic hydrocarbons: A 20-year systemic review based on scientific econometrics. Sci. Total Environ. 2021, 774, 145585. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Yuan, D.; Lin, Q.; Ouyang, T. Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in topsoils from different urban functional areas using an in vitro gastrointestinal test. Environ. Monit. Assess. 2010, 166, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.S.; Man, Y.B.; Wu, F.Y.; Zhao, Y.G.; Wong, C.K.C.; Wong, M.H. Oral bioaccessibility of Polycyclic Aromatic Hydrocarbons (PAHs) through fish consumption, based on an in vitro digestion model. J. Agric. Food Chem. 2010, 58, 11517–11524. [Google Scholar] [CrossRef]
- dos Santos Fogaça, F.H.; Soares, C.; Oliveira, M.; Alves, R.N.; Maulvault, A.L.; Barbosa, V.L.; Anacleto, P.; Magalhães, J.A.; Bandarra, N.M.; Ramalhosa, M.J.; et al. Polycyclic aromatic hydrocarbons bioaccessibility in seafood: Culinary practices effects on dietary exposure. Environ. Res. 2018, 164, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.X.; Chen, L.; Yang, D.; Pang, Y.P.; Zhang, S.H.; Zhang, X.Y.; Yu, Z.Q.; Wu, M.H.; Fu, J.M. Polycyclic aromatic hydrocarbons in animal-based foods from Shanghai: Bioaccessibility and dietary exposure. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2012, 29, 1465–1474. [Google Scholar] [CrossRef]
- Tian, K.; Bao, H.; Zhang, X.; Shi, T.; Liu, X.; Wu, F. Residuals, bioaccessibility and health risk assessment of PAHs in winter wheat grains from areas influenced by coal combustion in China. Sci. Total Environ. 2018, 618, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Jinap, S.; Mohd-Mokhtar, M.S.; Farhadian, A.; Hasnol, N.D.S.; Jaafar, S.N.; Hajeb, P. Effects of varying degrees of doneness on the formation of Heterocyclic Aromatic Amines in chicken and beef satay. Meat Sci. 2013, 94, 202–207. [Google Scholar] [CrossRef]
- Maulvault, A.L.; Machado, R.; Afonso, C.; Lourenço, H.M.; Nunes, M.L.; Coelho, I.; Langerholc, T.; Marques, A. Bioaccessibility of Hg, Cd and As in cooked black scabbard fish and edible crab. Food Chem. Toxicol. 2011, 49, 2808–2815. [Google Scholar] [CrossRef]
- Janoszka, B.; Warzecha, L.; Błaszczyk, U.; Bodzek, D. Organic compounds formed in thermally treated high-protein food. Part II: Azaarenes. Acta Chromatogr. 2004, 14, 129–141. [Google Scholar]
- European Commission. Guidance Document on Analytical Quality Control and Validation Procedures for Pesticide Residues Analysis in Food and Feed; SANCO/12571/2013; EC: Brussels, Belgium, 2013. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analytical of AOAC International, 17th ed.; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- Nasher, E.; Heng, L.Y.; Zakaria, Z.; Surif, S. Health risk assessment of polycyclic aromatic hydrocarbons through aquaculture fish consumption, Malaysia. Environ. Forensics 2016, 17, 97–106. [Google Scholar] [CrossRef]
- Lage Yusty, M.A.; Cortizo Daviña, J.L. Supercritical fluid extraction and high-performance liquid chromatography–fluorescence detection method for polycyclic aromatic hydrocarbons investigation in vegetable oil. Food Control 2005, 16, 59–64. [Google Scholar] [CrossRef]
- Viegas, O.; Novo, P.; Pinto, E.; Pinho, O.; Ferreira, I.M.P.L.V.O. Effect of charcoal types and grilling conditions on formation of heterocyclic aromatic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled muscle foods. Food Chem. Toxicol. 2012, 50, 2128–2134. [Google Scholar] [CrossRef] [PubMed]
- Purcaro, G.; Moret, S.; Conte, L.S. Overview on polycyclic aromatic hydrocarbons: Occurrence, legislation and innovative determination in foods. Talanta 2013, 105, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Cao, Y. Optimization of pretreatment procedures for analysis of polycyclic aromatic hydrocarbons in charcoal-grilled pork. Anal. Lett. 2009, 43, 97–109. [Google Scholar] [CrossRef]
- Purcaro, G.; Moret, S.; Conte, L.S. Optimisation of microwave assisted extraction (MAE) for polycyclic aromatic hydrocarbon (PAH) determination in smoked meat. Meat Sci. 2009, 81, 275–280. [Google Scholar] [CrossRef]
- Farhadian, A.; Jinap, S.; Hanifah, H.N.; Zaidul, I.S. Effects of meat preheating and wrapping on the levels of polycyclic aromatic hydrocarbons in charcoal-grilled meat. Food Chem. 2011, 124, 141–146. [Google Scholar] [CrossRef]
- Ma, J.; Xiao, R.; Li, J.; Yu, J.; Zhang, Y.; Chen, L. Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography–mass spectrometry. J. Chromatogr. A 2010, 1217, 5462–5469. [Google Scholar] [CrossRef]
- Farhadian, A.; Jinap, S.; Abas, F.; Sakar, Z.I. Determination of polycyclic aromatic hydrocarbons in grilled meat. Food Control 2010, 21, 606–610. [Google Scholar] [CrossRef]
- Kulp, K.S.; Fortson, S.L.; Knize, M.G.; Felton, J.S. An in vitro model system to predict the bioaccessibility of heterocyclic amines from a cooked meat matrix. Food Chem. Toxicol. 2003, 41, 1701–1710. [Google Scholar] [CrossRef]
Ingredient | Amount (g) |
---|---|
Cumin | 50 |
Shallots | 150 |
Coriander powder | 100 |
Lemongrass | 100 |
Turmeric powder | 50 |
Sugar | 100 |
Salt | 10 |
Cooking oil | 10 |
Standards | Concentration Range (ng/g) | Linear Equation | Regression Coefficient (R2) | LOD (ng/g) | LOQ (ng/g) |
---|---|---|---|---|---|
Naphthalene | 0.1–100 | y = 6.4792 x + 4.7790 | 0.981405 | 1.5 | 4.5 |
Acenaphthene | 0.1–100 | y = 1.7493 x − 3.4145 | 0.987578 | 0.6 | 1.8 |
Fluorene | 0.1–100 | y = 1.8027 x − 2.8453 | 0.987042 | 0.7 | 2.1 |
Phenanthrene | 0.1–100 | y = 8.882 x − 6.6481 | 0.965233 | 5 | 15 |
Anthracene | 0.1–100 | y = 6.2336 x − 2.5416 | 0.984748 | 0.7 | 2.1 |
Fluoranthene | 0.1–100 | y = 5.3291 x − 2.1768 | 0.981000 | 0.8 | 2.4 |
Pyrene | 0.1–100 | y = 7.4040 x − 3.8008 | 0.979026 | 0.6 | 1.8 |
Benzo(a)anthracene | 0.1–100 | y = 1.4339 x − 3.8190 | 0.977714 | 0.2 | 0.6 |
Chrysene | 0.1–100 | y = 4.6118 x − 1.4542 | 0.970663 | 1 | 3 |
Benzo(b)fluoranthene | 0.1–100 | y = 1.4982 x − 1.6602 | 0.987029 | 0.8 | 2.4 |
Benzo(k)fluoranthene | 0.1–100 | y = 6.2506 x − 2.1473 | 0.983345 | 0.025 | 0.075 |
Benzo(a)pyrene | 0.1–100 | y = 4.2828 x − 7.3741 | 0.986418 | 0.5 | 1.5 |
Dibenzo(ah)anthracene | 0.1–100 | y = 4.4584 x − 6.9380 | 0.986124 | 0.04 | 0.12 |
Benzo(ghi)perylene | 0.1–100 | y = 1.4985 x − 1.2393 | 0.977307 | 0.03 | 0.09 |
Indeno(1,2,3-cd) pyrene | 0.1–100 | y = 2.0460 x − 1.3854 | 0.983383 | 3 | 9 |
Standards | Replication | Spiked Concentration (ng/g) | Recovery of PAHs (%) | |
---|---|---|---|---|
Grilled Beef | Grilled Chicken | |||
Naphthalene | 7 | 8 | 94.82 ± 6.37 | 60.85 ± 0.11 |
Acenaphthene | 7 | 8 | 94.83 ± 1.46 | 94.83 ± 6.24 |
Fluorene | 7 | 8 | 13.68 ± 0.16 | 98.85 ± 1.79 |
Phenanthrene | 7 | 8 | 89.54 ± 8.65 | 80.69 ± 5.56 |
Anthracene | 7 | 8 | 97.98 ± 4.10 | 74.98 ± 0.39 |
Fluoranthene | 7 | 8 | 57.88 ± 3.13 | 81.1 ± 3.13 |
Pyrene | 7 | 8 | 80.35 ± 9.56 | 85.21 ± 1.47 |
Benzo(a)anthracene | 7 | 8 | 74.96 ± 2.67 | 48.79 ± 1.80 |
Chrysene | 7 | 8 | 43.37 ± 0.93 | 64.13 ± 1.20 |
Benzo(b)fluoranthene | 7 | 8 | 68.47 ± 2.81 | 56.89 ± 0.35 |
Benzo(k)fluoranthene | 7 | 8 | 94.61 ± 2.87 | 75.07 ± 3.53 |
Benzo(a)pyrene | 7 | 8 | 91.31 ± 8.15 | 91.31 ± 8.15 |
Dibenzo(ah)anthracene | 7 | 8 | 132.64 ± 3.14 | 64.34 ± 2.90 |
Benzo(ghi)perylene | 7 | 8 | 87.84 ± 1.69 | 68.88 ± 9.79 |
Indeno(1,2,3-cd) pyrene | 7 | 8 | 79.42 ± 1.39 | 81.35 ± 1.27 |
PAH | Dietary Daily Intake (DI, µg/day) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mouth | Stomach | Small Intestine | |||||||
Rare | Medium | Well-Done | Rare | Medium | Well-Done | Rare | Medium | Well-Done | |
Acenaphthene | 0.04 | 0.27 | 0.19 | 0.19 | 0.34 | 0.22 | 0.52 | 0.62 | 0.57 |
Phenanthrene | 0.28 | 0.39 | 0.31 | 0.40 | 0.47 | 0.44 | 0.42 | 0.62 | 0.52 |
Anthracene | 0.04 | 0.04 | 0.03 | 0.07 | 0.10 | 0.09 | 0.08 | 0.13 | 0.11 |
Pyrene | 0.13 | 0.16 | 0.35 | 0.45 | 0.64 | 0.38 | 0.59 | 0.81 | 0.67 |
Benzo(k)fluoranthene | 0.05 | 0.18 | 0.06 | 0.46 | 1.13 | 0.82 | 0.82 | 1.31 | 1.09 |
Benzo(a)pyrene | 0.11 | 0.41 | 0.59 | 0.69 | 1.07 | 0.86 | 0.75 | 1.10 | 0.9 |
PAH | Dietary Daily Intake (DI, µg/day) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mouth | Stomach | Small intestine | |||||||
Rare | Medium | Well-Done | Rare | Medium | Well-Done | Rare | Medium | Well-Done | |
Acenaphthene | 0.17 | 0.34 | 0.78 | 4.56 | 6.18 | 9,13 | 3.83 | 4.30 | 6.90 |
Phenanthrene | 1.25 | 0.30 | 4.38 | 1.96 | 3.63 | 8.81 | 1.97 | 2.21 | 6.73 |
Anthracene | 0.21 | 1.02 | 2.21 | 0.50 | 1.94 | 3.97 | 0.33 | 1.67 | 2.79 |
Pyrene | 0.87 | 2.26 | 3.49 | 4.36 | 5.24 | 7.24 | 3.23 | 4.73 | 5.75 |
Benzo(k)fluoranthene | 2.36 | 5.62 | 5.78 | 3.14 | 8.59 | 23.22 | 2.96 | 7.41 | 9.42 |
Benzo(a)pyrene | 1.85 | 2.24 | 2.85 | 2.64 | 3.76 | 11.48 | 2.46 | 3.27 | 5.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamidi, E.N.; Hajeb, P.; Selamat, J.; Lee, S.Y.; Abdull Razis, A.F. Bioaccessibility of Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Meat: The Effects of Meat Doneness and Fat Content. Int. J. Environ. Res. Public Health 2022, 19, 736. https://doi.org/10.3390/ijerph19020736
Hamidi EN, Hajeb P, Selamat J, Lee SY, Abdull Razis AF. Bioaccessibility of Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Meat: The Effects of Meat Doneness and Fat Content. International Journal of Environmental Research and Public Health. 2022; 19(2):736. https://doi.org/10.3390/ijerph19020736
Chicago/Turabian StyleHamidi, Elliyana Nadia, Parvaneh Hajeb, Jinap Selamat, Soo Yee Lee, and Ahmad Faizal Abdull Razis. 2022. "Bioaccessibility of Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Meat: The Effects of Meat Doneness and Fat Content" International Journal of Environmental Research and Public Health 19, no. 2: 736. https://doi.org/10.3390/ijerph19020736
APA StyleHamidi, E. N., Hajeb, P., Selamat, J., Lee, S. Y., & Abdull Razis, A. F. (2022). Bioaccessibility of Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Meat: The Effects of Meat Doneness and Fat Content. International Journal of Environmental Research and Public Health, 19(2), 736. https://doi.org/10.3390/ijerph19020736