Modulation of Sleep Architecture by Whole-Body Static Magnetic Exposure: A Study Based on EEG-Based Automatic Sleep Staging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Exposure System and Simulations
2.2. Subjects
2.3. Experimental Protocol
2.4. Automatic Sleep Staging by Machine Learning
2.4.1. EEG Preprocessing
2.4.2. Classifier Training
- Feature extraction
- 2.
- Feature selection by DT
- 3.
- Individual sleep EEG classification
2.4.3. Sleep Staging
- Total sleep time (TST): N1d + N2d + N3d + REMd (N1d~N3d, REMd represents the duration of N1~N3, REM);
- N1% = N1d/TST × 100% (N2% and N3% are similar as N1%);
- Sleep efficiency (SE): TST/TSC × 100% (TSC represents the total sleep EEG collection time, 9 h in our experiment);
- Sleep onset latency (SOL): duration of switching off the lights to the beginning of first N2;
- REM latency (RL): duration of the beginning of N1 to the beginning of first REM;
- RL%: RL/TST × 100%.
2.4.4. Verification of Staging Results
2.5. Statistical Comparison
3. Results
3.1. Simulated Magnetic Field Distribution
3.2. Selected EEG Features for Sleep Staging
3.3. Changes in Sleep Quality during the Experiment
3.3.1. PSQI and SRSS Rating
3.3.2. Sleep Staging
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medic, G.; Wille, M.; Hemels, M. Short- and long-term health consequences of sleep disruption. Nat. Sci. Sleep 2017, 9, 151–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, D.; Steinberg, J.; Patel, P. Insomnia in the Elderly: A Review. J. Clin. Sleep Med. 2018, 14, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Gillin, I.C.; Byerley, W.E. Drug therapy: The diagnosis and managementof insomnia. N. Engl. J. Med. 1990, 322, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.; Frank, E.; Lowe, K.; Cherry, C.; Kupfer, D. Electroencephalographic sleep correlates of episode and vulnerability to recurrence in depression. Biol. Psychiat. 1997, 41, 406–418. [Google Scholar] [CrossRef]
- Joynt, R.I. National Institute of Health consensus developmentconference statement: The treatment of sleep disorders of older people. Sleep 1990, 14, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Herrero, B.A.; Bellemare, A.; Beetz, G.; Vinet, S.A.; Martel, M.O.; Lavigne, G.J.; De Beaumont, L. The effects of non-invasive brain stimulation on sleep disturbances among different neurological and neuropsychiatric conditions: A systematic review. Sleep Med. Rev. 2020, 55, 101381. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Y.; Deng, H.; Tang, X.P.; Lu, Y.X.; Zhou, J.Y.; Wang, X.F.; Zhao, Y.Y.; Huang, B.; Shi, Y.G. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc. Natl. Acad. Sci. USA 2021, 118, e2105838118. [Google Scholar] [CrossRef]
- Colbert, A.P.; Markov, M.S.; Banerji, M.; Pilla, A.A. Magnetic mattress pad use in patients with fibromyalgia: A randomized double-blind pilot study. J. Back Musculoskelet. 1999, 13, 19–31. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Li, J. Introduction of Self-Rating Scale of sleep. Chin. J. Health Psychol. 2012, 20, 1851. [Google Scholar]
- Richard, B.B.; Rita, B.; Charlene, E.G.; Susan, M.H.; Robin, M.L.; Carole, L.M.; Bradley, V.V. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Westchester, IL, USA, 2015. [Google Scholar]
- Dijk, D.J. Regulation and functional correlates of slow wave sleep. J. Clin. Sleep Med. 2009, 15, S6–S15. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, Q.; Lv, B.; Wu, T. Long-Term Evolution Electromagnetic Fields Exposure Modulates the Resting State EEG on Alpha and Beta Bands. Clin. EEG Neurosci. 2016, 48, 168–175. [Google Scholar] [CrossRef]
- Lv, B.; Su, C.; Yang, L.; Wu, T. Effects of stimulus mode and ambient temperature on cerebral responses to local thermal stimulation: An EEG study. Int. J. Psychophysiol. 2017, 113, 17–22. [Google Scholar] [CrossRef]
- Fuster, J.M. Chapter 6-Neurophysiology, 5th ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 237–308. [Google Scholar]
- Lowden, A.; Åkerstedt, T.; Ingre, M.; Wiholm, C.; Hillert, L.; Kuster, N.; Nilsson, J.P.; Arnetz, B. Sleep after mobile phone exposure in subjects with mobile phone-related symptoms. Bioelectromagnetics 2010, 32, 4–14. [Google Scholar] [CrossRef]
- Zhang, B.; Lei, T.; Liu, H.; Cai, H. EEG-Based Automatic Sleep Staging Using Ontology and Weighting Feature Analysis. Comput. Math. Methods Med. 2018, 6534041, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.C.; Lee, P.L.; Liu, Y.T.; Chiang, A.A.; Lai, F.P. Support Vector Machine Prediction of Obstructive Sleep Apnea in a Large-Scale Chinese Clinical Sample. Sleep 2020, 43, zsz295. [Google Scholar] [CrossRef]
- Kaplan, R.; Wang, Y.; Loparo, K.; Kelly, M. Evaluation of an automated single-channel sleep staging algorithm. Nat. Sci. Sleep 2015, 7, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Tăuţan, A.M.; Rossi, A.C.; de Francisco, R.; Ionescu, B. Dimensionality reduction for EEG-based sleep stage detection: Comparison of autoencoders, principal component analysis and factor analysis. Biomed. Eng./Biomed. Tech. 2020, 66, 125–136. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, M.; Lu, X.S.; Yao, C. Weighted Gini index feature selection method for imbalanced data. In Proceedings of the 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Zhuhai, China, 27–29 March 2018. [Google Scholar] [CrossRef]
- Huang, W.; Guo, B.; Shen, Y.; Tang, X.; Zhang, T.; Li, D.; Jiang, Z. Sleep staging algorithm based on multichannel data adding and multifeature screening. Comput. Methods Programs Biomed. 2019, 187, 105253. [Google Scholar] [CrossRef]
- Low, F.Z.; Chua, M.C.H.; Lim, P.Y.; Yeow, C.H. Effects of Mattress Material on Body Pressure Profiles in Different Sleeping Postures. J. Chiropr. Med. 2017, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, X.D. A Magnetic Block with Three Polarities; 201110121297.3; China National Intellectual Property Administration: Beijing, China, 2011. [Google Scholar]
- Caddick, Z.A.; Gregory, K.; Arsintescu, L.; Flynn-Evans, E.E. A review of the environmental parameters necessary for an optimal sleep environment. Build. Environ. 2018, 132, 11–20. [Google Scholar] [CrossRef]
- Hese, P.V.; Philips, W.; Koninck, J.D.; Van de Walle, R.; Lemahieu, I. Automatic detection of sleep stages using the EEG. In 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25–28 October 2001; pp. 25–28. [Google Scholar]
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol-Heart C 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 02–06. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Friedman, J.H.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees, 1st ed.; Belmont: Wadsworth, OH, USA, 1984. [Google Scholar]
- Li, Z.; Wang, Y.; Quan, W.; Wu, T.; Lv, B. Evaluation of different classification methods for the diagnosis of schizophrenia based on functional near-infrared spectroscopy. J. Neurosci. Meth. 2015, 241, 101–110. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; John Wiley: New York, NY, USA, 2001. [Google Scholar]
- Gelb, D.J. Introduction to Clinical Neurology, 5th ed.; Butterworth-Heinemann: Boston, MA, USA, 1995. [Google Scholar]
- Sun, Q.; Tan, L. Comparing primary insomnia to the insomnia occurring in major depression and general anxiety disorder. Psychiat. Res. 2019, 282, 112514. [Google Scholar] [CrossRef]
- Bouchard, M.; Lina, J.M.; Gaudreault, P.O.; Dubé, J.; Gosselin, N.; Carrier, J. EEG connectivity across sleep cycles and age. Sleep 2019, 43, zsz236. [Google Scholar] [CrossRef]
- Janette, D.L.; Kristie, N.T.; Diana, D.S.; Bonnie, M.W. Pharmacological Treatment of Insomnia. Pharm. Ther. 2015, 40, 759–768. [Google Scholar]
- GBT13547-1992. The State Bureau of Quality and Technical Supervision, Human Dimensions in Workspace; The State Bureau of Quality and Technical Supervision: Beijing, China, 1992. [Google Scholar]
- GBT2428-1998. The State Bureau of Quality and Technical Supervision, Head-Face Dimensions of Adults; The State Bureau of Quality and Technical Supervision: Beijing, China, 1998. [Google Scholar]
- McLean, M.J.; Holcomb, R.R.; Wamil, A.W.; Pickett, J.D. Effects of steady magnetic fields on action potentials of sensory neurons in vitro. Environ. Med. 1991, 8, 36–44. [Google Scholar]
- McLean, M.J.; Holcomb, R.R.; Wamil, A.W.; Pickett, J.D.; Cavopol, A.V. Blockade of sensory neuron action potentials by a static magnetic field in the 10 mT range. Bioelectromagnetics 1995, 16, 20–32. [Google Scholar] [CrossRef]
- Nicholas, P.F. Generalanaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 2008, 9, 370–386. [Google Scholar] [CrossRef]
- Atef, M.M.; AbdEi-Baset, M.S.; Ell-Kareem, A.; Aida, S.; Fadel, M.A. Effects of a static magnetic field on haemoglobin structure and function. Int. J. Biol. Macromol. 1995, 17, 105–111. [Google Scholar] [CrossRef]
- Wang, C.X.; Hilburn, I.A.; Wu, D.A.; Mizuhara, Y.; Cousté, C.P.; Abrahams, J.N.H.; Bernstein, S.E.; Matani, A.; Shimojo, S.; Kirschvink, J. Transduction of the Geomagnetic Field as Evidenced from alpha-Band Activity in the Human Brain. eNeuro 2019, 6, ENEURO-0483-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Block, S.M. Biophysical aspects of sensory transduction. In Sensory Transduction; Corey, D.P., Roper, S.D., Eds.; Rockefeller University Press: Woods Hole, MA, USA, 1992; p. 424. [Google Scholar]
- Markov, M.S. Therapeutic application of static magnetic fields. Environmentalist 2007, 27, 457–463. [Google Scholar] [CrossRef]
- Cavopol, A.V.; Wamil, A.W.; Holcomb, R.R.; McLean, M.J. Measurement and analysis of static magnetic fields that block action potentials in cultured neurons. Bioelectromagnetics 1995, 16, 197–206. [Google Scholar] [CrossRef]
- Liboff, R.L. Neuromagnetic thresholds. J. Theor. Biol. 1980, 83, 427–436. [Google Scholar] [CrossRef]
- Morgenthaler, T.I.; Lee-Chiong, T.; Alessi, C.; Friedman, L.; Aurora, R.N.; Boehlecke, B.; Brown, T.; Chesson, A.L.; Kapur, V.; Maganti, R.; et al. Practice Parameters for the Clinical Evaluation and Treatment of Circadian Rhythm Sleep Disorders. Sleep 2007, 30, 1445–1459. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.L.; Pei, C.C.; Fung, C.S.; Ruey, S.L. Residential Exposure to Power Frequency Magnetic Field and Sleep Disorders among Women in an Urban Community of Northern Taiwan. Sleep 2002, 25, 428–432. [Google Scholar] [CrossRef] [Green Version]
No. | Feature | Abbreviation | Description If Needed |
---|---|---|---|
1 | minimum value | MINV | / |
2 | maximum value | MAXV | / |
3 | arithmetic mean | AMV | / |
4 | median value | MNV | |
5 | standard deviation | SD | / |
6 | variance | V | / |
7 | skewness | S | |
8 | kurtosis | K | |
9 | center frequency [26] | fc | / |
10 | bandwidth | fσ | / |
11 | power spectral density of center frequency | pfc | / |
12 | gamma rhythm | γ | density at 25~40 Hz |
13 | beta rhythm | β | density at 13~25 Hz |
14 | alpha rhythm | α | density at 8~13 Hz |
15 | theta rhythm | θ | density at 4~8 Hz |
16 | delta rhythm | δ | density at 1.5~4 Hz |
17 | K complex | Kc | density at 0~1.5 Hz |
18 | fuzzy entropy | FUEN 1 | refer to [27] |
19 | sample entropy | SampEN 2 | refer to [28] |
20 | multiscale entropy | MSES 3 | refer to [29] |
Distance from the Surface of the Magnetic Cylinder (cm) | 0.37 | 5.37 | 10.37 | 20.37 | |
---|---|---|---|---|---|
calculated with Non deformable model (mT) | head | 208.27 | 1.93 | 1.06 | 0.64 |
chest | 204.48 | 1.39 | 0.81 | 0.60 | |
hips | 209.14 | 2.14 | 1.00 | 0.45 | |
calculated with deformable model (mT) | head | 222.2 | 2.08 | 1.12 | 0.68 |
chest | 219.49 | 1.48 | 0.86 | 0.64 | |
hips | 222.33 | 2.30 | 1.07 | 0.47 | |
Measured (mT, mean ± SD) | head | 190.27 ± 4.7 × 10−1 | 1.66 ± 6.5 × 10−3 | 0.92 ± 2.6 × 10−3 | 0.56 ± 4.3 × 10−3 |
chest | 186.49 ± 4.0 × 10−1 | 1.24 ± 4.6 × 10−3 | 0.70 ± 1.8 × 10−3 | 0.52 ± 2.2 × 10−4 | |
hips | 193.18 ± 4.7 × 10−1 | 1.83 ± 1.4 × 10−3 | 0.90 ± 1.2 × 10−3 | 0.51 ± 4.6 × 10−4 |
1st Night | 2nd Night | 3rd Night | 4th Night | |||||
---|---|---|---|---|---|---|---|---|
r_SMFE | s_SMFE | r_SMFE | s_SMFE | r_SMFE | s_SMFE | r_SMFE | s_SMFE | |
N1% | 16.20 ± 4.5 | 16.89 ± 4.5 | 9.50 ± 2.7 | 9.66 ± 2.7 | 5.72 ± 1.5 | 6.01 ± 1.3 | 5.82 ± 1.3 | 6.31 ± 1.1 |
N2% | 59.22 ± 5.2 | 63.52 ± 6.8 | 53.96 ± 3.5 | 56.02 ± 3.5 | 46.11 ± 2.2 | 47.69 ± 1.7 | 45.93 ± 2.3 | 47.9 ± 1.7 |
N3% | 14.08 ± 3.0 | 12.52 ± 4.0 | 19.82 ± 2.9 | 18.45 ± 3.3 | 25.46 ± 2.0 | 23.68 ± 1.2 | 25.45 ± 1.6 | 23.2 ± 1.3 |
REM% | 10.50 ± 3.5 | 8.07 ± 3.9 | 16.73 ± 2.0 | 15.87 ± 1.6 | 22.51 ± 1.4 | 22.62 ± 1.4 | 22.81 ± 1.9 | 22.51 ± 1.5 |
TST (h) 1 | 5.58 ± 0.90 | 5.52 ± 0.87 | 7.46 ± 0.85 | 7.15 ± 0.85 | 7.96 ± 0.58 | 7.61 ± 0.72 | 8.16 ± 0.39 | 7.86 ± 0.67 |
SE 2 % | 62.00 ± 10.0 | 61.31 ± 9.7 | 82.85 ± 9.5 | 79.42 ± 9.5 | 88.47 ± 6.4 | 84.56 ± 8.0 | 90.63 ± 4.3 | 87.33 ± 7.5 |
WN 3 (time) | 1.00 ± 0.7 | 1.40 ± 0.8 | 0.10 ± 0.3 | 0.25 ± 0.4 | 0.00 ± 0.0 | 0.05 ± 0.2 | 0.00 ± 0.0 | 0.00 ± 0.0 |
SOL (min) 4 | 74.24 ± 16.8 | 75.15 ± 17.2 | 58.52 ± 15.4 | 57.89 ± 15.3 | 26.28 ± 5.9 | 28.46 ± 6.2 | 24.32 ± 7.6 | 31.65 ± 9.3 |
RL (h) 5 | 2.58 ± 0.8 | 2.73 ± 0.9 | 1.05 ± 0.3 | 1.20 ± 0.3 | 1.05 ± 0.3 | 1.03 ± 0.3 | 1.09 ± 0.3 | 1.02 ± 0.2 |
r_SMFE (%, Mean ± SD) | s_SMFE (%, Mean ± SD) | Difference (95% CI) * | t Value | p Value | |
---|---|---|---|---|---|
N1% | 5.77 ± 1.4 | 6.16 ± 1.2 | 0.0039(−0.002, 0.01) | 1.37 | 0.174 |
N2% | 46.12 ± 2.2 | 47.8 ± 1.7 | 0.018(0.009,0.03) | 4.03 | <0.001 |
N3% | 25.46 ± 1.8 | 23.48 ± 1.2 | −0.020(−0.03, −0.01) | −5.79 | <0.001 |
REM% | 22.76 ± 1.6 | 22.56 ± 1.4 | −0.0019(−0.009, 0.005) | −0.58 | 0.566 |
SE% | 89.55 ± 4.6 | 85.94 ± 6.6 | −0.036(−0.06, −0.01) | −2.89 | 0.005 |
WT (time) | 0.00 ± 0.0 | 0.03 ± 0.2 | 0.025(−0.02, 0.7) | 1.03 | 0.308 |
SOL (min) | 25.3 ± 6.8 | 30.06 ± 7.9 | 4.74(1.5, 8.0) | 2.93 | 0.004 |
RL % | 1.07 ± 0.3 | 1.03 ± 0.3 | −0.043(−0.2, −0.07) | −0.75 | 0.453 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Jiang, H.; Ding, X.; Liao, Z.; Wei, M.; Li, J.; Wu, T.; Li, C.; Fang, Y. Modulation of Sleep Architecture by Whole-Body Static Magnetic Exposure: A Study Based on EEG-Based Automatic Sleep Staging. Int. J. Environ. Res. Public Health 2022, 19, 741. https://doi.org/10.3390/ijerph19020741
Yang L, Jiang H, Ding X, Liao Z, Wei M, Li J, Wu T, Li C, Fang Y. Modulation of Sleep Architecture by Whole-Body Static Magnetic Exposure: A Study Based on EEG-Based Automatic Sleep Staging. International Journal of Environmental Research and Public Health. 2022; 19(2):741. https://doi.org/10.3390/ijerph19020741
Chicago/Turabian StyleYang, Lei, Haoyu Jiang, Xiaotong Ding, Zhongcai Liao, Min Wei, Juan Li, Tongning Wu, Congsheng Li, and Yanwen Fang. 2022. "Modulation of Sleep Architecture by Whole-Body Static Magnetic Exposure: A Study Based on EEG-Based Automatic Sleep Staging" International Journal of Environmental Research and Public Health 19, no. 2: 741. https://doi.org/10.3390/ijerph19020741
APA StyleYang, L., Jiang, H., Ding, X., Liao, Z., Wei, M., Li, J., Wu, T., Li, C., & Fang, Y. (2022). Modulation of Sleep Architecture by Whole-Body Static Magnetic Exposure: A Study Based on EEG-Based Automatic Sleep Staging. International Journal of Environmental Research and Public Health, 19(2), 741. https://doi.org/10.3390/ijerph19020741