768-km Multi-Stage Ultra-Trail Case Study-Muscle Damage, Biochemical Alterations and Strength Loss on Lower Limbs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Subjects
2.3. Procedures
2.4. Anthropometry
2.5. Physical Performance Assessment
2.6. Lower Limb Strength Assessment
2.7. Blood Samples and Analysis
2.8. Stadistical Analysis
3. Results
4. Discussion
4.1. Increases in Blood Biomarkers
4.2. Neuromuscular Fatigue
4.3. Biomarkers and Strength Loses
4.4. Training Parameters
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheer, V. Participation trends of ultra endurance events. Sports Med. Arthrosc. Rev. 2019, 27, 3–7. [Google Scholar] [CrossRef]
- Sehovic, E.; Knechtle, B.; Rüst, C.A.; Rosemann, T. 12-h ultra-marathons: Increasing worldwide participation and dominance of Europeans. J. Hum. Sport Exerc. 2013, 8, 932–953. [Google Scholar] [CrossRef] [Green Version]
- Urbaneja, J.S.; Farias, E.I. Trail running in Spain. Origin, evolution and current situation; natural areas. Retos 2018, 33, 123–128. [Google Scholar]
- Lecina, M.; López, I.; Castellar, C.; Pradas, F. Extreme ultra-trail race induces muscular damage, risk for acute kidney injury and hyponatremia: A case report. Int. J. Environ. Res. Public Health 2021, 18, 11323. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.; Martin, V.; Temesi, J. The role of the nervous system in neuromuscular fatigue induced by ultra-endurance exercise. Appl. Physiol. Nutr. Metab. 2018, 43, 1151–1157. [Google Scholar] [CrossRef]
- Chlíbková, D.; Knechtle, B.; Rosemann, T.; Tomášková, I.; Novotný, J.; Žákovská, A.; Uher, T. Rhabdomyolysis and exercise-associated hyponatremia in ultra-bikers and ultra-runners. J. Int. Soc. Sports Nutr. 2015, 12, 29. [Google Scholar] [CrossRef] [Green Version]
- Pradas, F.; Falcón, D.; Peñarrubia-Lozano, C.; Toro-Román, V.; Carrasco, L.; Castellar, C. Effects of ultratrail running on neuromuscular function, muscle damage and hydration status. Differences according to training level. Int. J. Environ. Res. Public Health 2021, 18, 5119. [Google Scholar] [CrossRef]
- Skenderi, K.P.; Kavouras, S.A.; Anastasiou, C.A.; Yiannakouris, N.; Matalas, A.L. Exertional rhabdomyolysis during a 246-km continuous running race. Med. Sci. Sports Exerc. 2006, 38, 1054–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giandolini, M.; Vernillo, G.; Samozino, P.; Horvais, N.; Edwards, W.B.; Morin, J.B.; Millet, G.Y. Fatigue associated with prolonged graded running. Eur. J. Appl. Physiol. 2016, 116, 1859–1873. [Google Scholar] [CrossRef] [PubMed]
- Cleary, M.A. Creatine kinase, exertional rhabdomyolysis, and exercise-associated hyponatremia in ultra-endurance athletes: A critically appraised paper. Int. J. Athl. Ther. Train. 2016, 21, 13–15. [Google Scholar] [CrossRef]
- Nance, J.R.; Mammen, A.L. Diagnostic evaluation of rhabdomyolysis. Muscle Nerve 2015, 176, 139–148. [Google Scholar] [CrossRef]
- Knapik, J.J.; O’Connor, F.G. Exertional rhabdomyolysis: Epidemiology, diagnosis, treatment, and prevention. J. Spec. Oper. Med. 2016, 16, 65–71. [Google Scholar]
- Sanchis-Gomar, F.; Alis, R.; Rodríguez-Vicente, G.; Lucia, A.; Casajús, J.A.; Garatachea, N. Blood and urinary abnormalities induced during and after 24-hour continuous running: A case report. Clin. J. Sport Med. 2016, 26, 100–102. [Google Scholar] [CrossRef]
- Bäcker, H.C.; Busko, M.; Krause, F.G.; Exadaktylos, A.K.; Klukowska-Roetzler, J.; Deml, M.C. Exertional rhabdomyolysis and causes of elevation of creatine kinase. Physician Sportsmed. 2020, 48, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Schena, F.; Ceriotti, F. Diagnostic biomarkers of muscle injury and exertional rhabdomyolysis. Clin. Chem. Lab. Med. 2019, 57, 175–182. [Google Scholar] [CrossRef]
- Rojas-Valverde, D.; Sánchez-Ureña, B.; Crowe, J.; Timón, R.; Olcina, G.J. Exertional rhabdomyolysis and acute kidney injury in endurance sports: A systematic review. Eur. J. Sport Sci. 2021, 21, 261–274. [Google Scholar] [CrossRef]
- Koch, A.J.; Pereira, R.; Machado, M. The creatine kinase response to resistance exercise. J. Musculoskelet. Neuronal Interact. 2014, 14, 68–77. [Google Scholar] [PubMed]
- Henares-García, P. Rabdomiólisis secundaria a ejercicio físico en un gimnasio. Semergen 2012, 38, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Kao, W.-F.; Hou, S.-K.; Chiu, Y.-H.; Chou, S.-L.; Kuo, F.-C.; Wang, S.-H.; Chen, J.-J. Effects of 100-km ultramarathon on acute kidney injury. Clin. J. Sport Med. 2015, 25, 49–54. [Google Scholar] [CrossRef]
- Cairns, R.S.; Hew-Butler, T. Proof of concept: Hypovolemic hyponatremia may precede and augment creatine kinase elevations during an ultramarathon. Eur. J. Appl. Physiol. 2016, 116, 647–655. [Google Scholar] [CrossRef]
- Martínez-Navarro, I.; Sanchez-Gómez, J.M.; Aparicio, I.; Priego-Quesada, J.I.; Pérez-Soriano, P.; Collado, E.; Hernando, B.; Hernando, C. Effect of mountain ultramarathon distance competition on biochemical variables, respiratory and lower-limb fatigue. PLoS ONE 2020, 15, e0238846. [Google Scholar] [CrossRef] [PubMed]
- Le Goff, C.; Kaux, J.F.; Dulgheru, R.; Seidel, L.; Pincemail, J.; Cavalier, E.; Melon, P. The impact of an ultra-trail on the dynamic of cardiac, inflammatory, renal and oxidative stress biological markers correlated with electrocardiogram and echocardiogram. Acta Cardiol. 2021, 76, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Schiff, H.B.; MacSearraigh, E.T.M.; Kallmeyer, J.C. Myoglobinuria, rhabdomyolysis and marathon running. QJM Int. J. Med. 1978, 47, 463–472. [Google Scholar]
- Temesi, J.; Besson, T.; Parent, A.; Singh, B.; Martin, V.; Brownstein, C.G.; Espeit, L.; Royer, N.; Rimaud, D.; Lapole, T.; et al. Effect of race distance on performance fatigability in male trail and ultra-trail runners. Scand. J. Med. Sci. Sports 2021, 31, 1809–1821. [Google Scholar] [CrossRef]
- Peake, J.M.; Neubauer, O.; Gatta, P.A.D.; Nosaka, K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.Y.; Lepers, R.; Maffiuletti, N.A.; Babault, N.; Martin, V.; Lattier, G. Alterations of neuromuscular function after an ultramarathon. J. Appl. Physiol. 2002, 92, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Toro, V.; Siquier, J.; Bartolomé, I.; Grijota, F.J.; Muñoz, D.; Maynar-Mariño, M. Valoración de la composición corporal, práctica físico-deportiva y alimentación en estudiantes de secundaria. Ágora Educ. Deporte 2020, 22, 43–63. [Google Scholar]
- Lee, R.C.; Wang, Z.; Heo, M.; Ross, R.; Janssen, I.; Heymsfield, S.B. Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 2000, 72, 796–803. [Google Scholar] [CrossRef]
- Beltz, N.M.; Gibson, A.L.; Janot, J.M.; Kravitz, L.; Mermier, C.M.; Dalleck, L.C. Graded exercise testing protocols for the determination of vo 2 max: Historical perspectives, progress, and future considerations. J. Sports Med. 2016, 2016, 3968393. [Google Scholar] [CrossRef] [Green Version]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A review of countermovement and squat jump testing methods in the context of public health examination in adolescence: Reliability and feasibility of current testing procedures. Front. Physiol. 2019, 7, 1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, J.; Cohen, L.; Jarvis, P. Practical Statistics for Field Biology; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Strømme, J.H.; Rustad, P.; Steensland, H.; Theodorsen, L.; Urdal, P. Reference intervals for eight enzymes in blood of adult females and males measured in accordance with the International Federation of Clinical Chemistry reference system at 37 °C: Part of the Nordic Reference Interval Project. Scand. J. Clin. Lab. Investig. 2004, 64, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Saugy, J.; Place, N.; Millet, G.Y.; Degache, F.; Schena, F.; Millet, G.P. Alterations of neuromuscular function after the World’s most challenging mountain ultra-marathon. PLoS ONE 2013, 8, e65596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pesic, D.; Srejovic, I.; Stefanovic, D.; Djordjevic, D.; Cubrilo, D.; Zivkovic, V. Ten marathons in ten days: Effects on biochemical parameters and redox balance—Case report. Serb. J. Exp. Clin. Res. 2019, 20, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Duff, B.; Schulze, I.; Kohler, G. A multi-stage ultra-endurance run over 1,200 km leads to a continuous accumulation of total body water. J. Sport Sci. Med. 2008, 7, 357–364. [Google Scholar]
- Fallon, K.E.; Sivyer, G.; Sivyer, K.; Dare, A. The biochemistry of runners in a 1600 km ultramarathon. Br. J. Sports Med. 1999, 33, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Nikolaidis, P.T. Physiology and pathophysiology in ultra-marathon running. Front. Physiol. 2018, 9, 634. [Google Scholar] [CrossRef] [Green Version]
- Scheer, V.; Basset, P.; Giovanelli, N.; Vernillo, G.; Millet, G.P.; Costa, R.J.S. Defining off-road running: A position statement from the ultra sports science foundation. Int. J. Sports Med. 2020, 41, 275–284. [Google Scholar] [CrossRef]
- Noakes, T.D.; Carter, J.W. Biochemical parameters in athletes before and after having run 160 kilometres. S. Afr. Med. J. 1976, 50, 1562–1566. [Google Scholar]
- Martínez-Navarro, I.; Montoya-Vieco, A.; Hernando, C.; Hernando, B.; Panizo, N.; Collado, E. The week after running a marathon: Effects of running vs. elliptical training vs resting on neuromuscular performance and muscle damage recovery. Eur. J. Sport Sci. 2021, 21, 1668–1674. [Google Scholar] [CrossRef]
- Balducci, P.; Clémençon, M.; Trama, R.; Blache, Y.; Hautier, C. Performance factors in a mountain ultramarathon. Int. J. Sports Med. 2017, 38, 819–826. [Google Scholar] [CrossRef]
- Besson, T.; Rossi, J.; Le Roux Mallouf, T.; Marechal, M.; Doutreleau, S.; Verges, S.; Millet, G.Y. Fatigue and recovery after single-stage versus multistage ultramarathon running. Med. Sci. Sports Exerc. 2020, 52, 1691–1698. [Google Scholar] [CrossRef]
- Žákovská, A.; Knechtle, B.; Chlíbková, D.; Miličková, M.; Rosemann, T.; Nikolaidis., P.T. The effect of a 100-km ultra-marathon under freezing conditions on selected immunological and hematological parameters. Front. Physiol. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuorimaa, T.; Virlander, R.; Kurkilahti, P.; Vasankari, T.; Häkkinen, K. Acute changes in muscle activation and leg extension performance after different running exercises in elite long-distance runners. Eur. J. Appl. Physiol. 2006, 96, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, H.C.; Housh, T.J.; Dinyer, T.K.; Byrd, M.T.; Jenkins, N.D.M.; Cochrane-Snyman, K.C.; Succi, P.J.; Schidt, R.J.; Johnson, G.O.; Zuniga, J.M. Neuromuscular responses of the superficial quadriceps femoris muscles: Muscle specific fatigue and inter-individual variability during severe intensity treadmill running. J. Musculoskelet. Neuronal Interact. 2020, 20, 77–87. [Google Scholar]
- Hody, S.; Rogister, B.; Leprince, P.; Wang, F.; Croisier, J.L. Muscle fatigue experienced during maximal eccentric exercise is predictive of the plasma creatine kinase (CK) response. Scand. J. Med. Sci. Sports 2013, 23, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Tsatalas, T.; Karampina, E.; Mina, M.A.; Patikas, D.A.; Laschou, V.C.; Pappas, A.; Jamurtas, A.Z.; Koutedakis, Y.; Giakas, G. Altered drop jump landing biomechanics following eccentric exercise-induced muscle damage. Sports 2021, 9, 24. [Google Scholar] [CrossRef]
- Waśkiewicz, Z.; Kápcińska, B.; Sadowska-Krȩpa, E.; Czuba, M.; Kempa, K.; Kimsa, E.; Gerasimuk, D. Acute metabolic responses to a 24-h ultra-marathon race in male amateur runners. Eur. J. Appl. Physiol. 2012, 112, 1679–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landart, A.; Cámara, J.; Urdampilleta, A.; Santos-Concejero, J.; Gómez, J.; Yanci, J. Neuromuscular and cardiovascular fatigue after competing in a mountain marathon. Rev. Int. Cienc. Deport. 2020, 16, 43–56. [Google Scholar] [CrossRef]
- Eston, R.G.; Finney, S.; Baker, S.; Baltzopoulos, V. Muscle tenderness and peak torque changes after downhill running following a prior bout of isokinetic eccentric exercise. J. Sports Sci. 1996, 14, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Muanjai, P.; Mickevicius, M.; Sniečkus, A.; Sipavičienė, S.; Satkunskiene, D.; Kamandulis, S.; Jones, D.A. Low frequency fatigue and changes in muscle fascicle length following eccentric exercise of the knee extensors. Exp. Physiol. 2020, 105, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Lipman, G.S.; Ellis, M.A.; Lewis, E.J.; Waite, B.L.; Lissoway, J.; Chan, G.K.; Krabak, B.J. A prospective randomized blister prevention trial assessing paper tape in endurance distances (Pre-TAPED). Wilderness Environ. Med. 2014, 25, 457–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | MD SD |
---|---|
Age (years) | 38 ± 4.11 |
VO2max (mL/kg/min−1) | 61.17 ± 8.96 |
HRmax (beats·min−1) | 187 ± 8.54 |
Maximal aerobic speed (km·h−1) | 16.91 ± 0.83 |
Height (cm) | 175.72 ± 3.65 |
Weight (kg) | 70.09 ± 9.05 |
BMI | 22.70 ± 2.05 |
Fat mass (%) | 8.13 ± 0.68 |
Muscle mass (%) | 46.75 ± 6.27 |
Experience (years) | 5 ± 1.26 |
Weekly training load (hours) | 11.61 ± 2.22 |
Annual slope accumulated (meters) | 116,615 ± 37,462 |
Stages | Duration (Km) | Positive Elevation (m) | Negative Elevation (m) |
---|---|---|---|
1 | 78.5 | 3136 | 3024 |
2 | 72.3 | 3886 | 3458 |
3 | 72.1 | 4655 | 4044 |
4 | 68.1 | 5660 | 4581 |
5 | 72.6 | 5411 | 6336 |
6 | 76.1 | 5344 | 4788 |
7 | 63.7 | 5492 | 5163 |
8 | 66.1 | 3641 | 4576 |
9 | 66.1 | 3361 | 3841 |
10 | 66.5 | 2958 | 2934 |
11 | 83.4 | 3321 | 4100 |
Total | 784.91 | 46,865 | 46,845 |
MD | 71.35 | 4260.45 | 4258.63 |
SD | ±6.00 | ±1063.26 | ±989.13 |
Parameter Blood (Reference Values for Age and Gender) | Before-Race | Post-Race | ||
---|---|---|---|---|
Pre (Baseline) Value | Post (Post-Exercise) Value (% Difference) | Day 2 (rec2) Value (% Difference) | Day 9 (rec9) Value (% Difference) | |
AST (0–35 UI/L) | 23.75 ± 3.20 | 63.50 ± 9.68 ↑ (+167.00) | 44.50 ± 8.74 ↑ (+87.00) | 48.25 ± 27.45 ↑ (+103.00) |
ALT (0–45 UI/L) | 17.25 ± 3.59 | 44.75 ± 12.44 ↑ (+159.42) | 37.25 ± 8.80 ↑ (+115.94) | 56.25 ± 34.25 ↑ (+226.08) |
CK (20–215 UI/L) | 98.51 ± 24.53 | 974.00 ± 402.66 ↑ (+888.85) | 474.85 ± 1 85.70 ↑ (+382.00) | 88.00 ± 16.27 ↓ (−7.72) |
LDH (66–170 UI/L) | 172.75 ± 14.71 | 470.30 ± 104.80 ↑ (+172.20) | 316.00 ± 70.88 ↑ (+82.90) | 208.00 ± 31.55 ↑ (+20.40) |
Bosco Test | Before-Race | Post-Race | ||
---|---|---|---|---|
Pre (Baseline) Value | Post (Post-Exercise) Value (% Difference) | Day 2 (rec2) Value (% Difference) | Day 9 (rec9) Value (% Difference) | |
SJ (cm) | 30.68 ± 2.46 | 22.05 ± 8.59 ↓ (−28.12) | 27.01 ± 3.12 ↓ (−11.96) | 30.15 ± 2.06 ↓ (−1.72) |
CMJ (cm) | 34.75 ± 3.98 | 22.00 ± 7.30 ↓ (−36.69) | 29.43 ± 5.91 ↓ (−15.30) | 34.00 ± 5.20 ↓ (−2.15) |
ABA (cm) | 39.48 ± 4.95 | 30.93 ± 7.63 ↓ (−21.65) | 36.30 ± 8.69 ↓ (−8.05) | 40.85 ± 4.54 ↑ (3.47) |
Bosco Jumps | CK Post-Pre | LDH Post-Pre | AST Post-Pre | ALT Post-Pre | ||||
---|---|---|---|---|---|---|---|---|
(Rs) | p | (Rs) | p | (Rs) | p | (Rs) | p | |
SJ pre-post | 0.4 | 0.6 | 0.80 ** | 0.2 | 0.80 ** | 0.2 | 0.4 | 0.6 |
CMJ pre-post | 0.2 | 0.8 | 0.4 | 0.6 | 0.4 | 0.6 | 0.2 | 0.8 |
ABA pre-post | 0.4 | 0.6 | 0.80 ** | 0.2 | 0.80 ** | 0.2 | 0.4 | 0.6 |
SJ pre-rec2 | 0.80 ** | 0.2 | 0.2 | 0.8 | 0.4 | 0.6 | 0.80 ** | 0.2 |
CMJ pre-rec2 | −0.60 | 0.4 | 0.4 | 0.6 | 0 | 1 | −0.60 | 0.4 |
ABA pre-rec2 | −0.80 ** | 0.2 | 0.2 | 0.8 | 0.2 | 0.8 | −0.80 ** | 0.2 |
SJ pre-rec9 | −0.31 | 0.69 | −0.31 | 0.69 | −0.63 * | 0.36 | −0.64 * | 0.36 |
CMJ pre-rec9 | 0.4 | 0.6 | 0.2 | 0.8 | 0.4 | 0.6 | 0.4 | 0.6 |
ABA pre-rec9 | −0.80 ** | 0.2 | −0.40 | 0.6 | −0.20 | 0.8 | −0.20 | 0.8 |
Weekly Training Load (Hours/Week) | Accumulated Elevation (Meters) | Experience (Years) | ||||
---|---|---|---|---|---|---|
(Rs) | p | (Rs) | p | (Rs) | p | |
SJ pre-post | −0.31 | 0.68 | −0.40 | 0.6 | 0.63 * | 0.36 |
CMJ pre-post | −0.63 * | 0.36 | −0.20 | 0.8 | 0.31 | 0.68 |
ABA pre-post | 0.31 | 0.68 | −0.40 | 0.6 | 0.63 | 0.36 |
CK post-pre | 0.63 * | 0.36 | 0.60 * | 0.4 | −0.31 | 0.68 |
LDH post-pre | −0.31 | 0.68 | −0.80 ** | 0.2 | 0.95 *** | 0.05 |
AST post-pre | 0.31 | 0.68 | 0 | 1 | 0.31 | 0.68 |
ALT post-pre | 0.63 * | 0.36 | 0.60* | 0.4 | −0.31 | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecina, M.; Castellar, C.; Pradas, F.; López-Laval, I. 768-km Multi-Stage Ultra-Trail Case Study-Muscle Damage, Biochemical Alterations and Strength Loss on Lower Limbs. Int. J. Environ. Res. Public Health 2022, 19, 876. https://doi.org/10.3390/ijerph19020876
Lecina M, Castellar C, Pradas F, López-Laval I. 768-km Multi-Stage Ultra-Trail Case Study-Muscle Damage, Biochemical Alterations and Strength Loss on Lower Limbs. International Journal of Environmental Research and Public Health. 2022; 19(2):876. https://doi.org/10.3390/ijerph19020876
Chicago/Turabian StyleLecina, Miguel, Carlos Castellar, Francisco Pradas, and Isaac López-Laval. 2022. "768-km Multi-Stage Ultra-Trail Case Study-Muscle Damage, Biochemical Alterations and Strength Loss on Lower Limbs" International Journal of Environmental Research and Public Health 19, no. 2: 876. https://doi.org/10.3390/ijerph19020876
APA StyleLecina, M., Castellar, C., Pradas, F., & López-Laval, I. (2022). 768-km Multi-Stage Ultra-Trail Case Study-Muscle Damage, Biochemical Alterations and Strength Loss on Lower Limbs. International Journal of Environmental Research and Public Health, 19(2), 876. https://doi.org/10.3390/ijerph19020876