Post-Stroke Treatment with Neuromuscular Functional Electrostimulation of Antagonistic Muscles and Kinesiotherapy Evaluated with Electromyography and Clinical Studies in a Two-Month Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Clinical Evaluation
2.3. Kinesiotherapy
2.4. Neuromuscular Functional Electrical Stimulation (NMFES) Algorithm Based on Neurophysiological Evaluation
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Langhorne, P.; Coupar, F.; Pollock, A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef]
- Berge, E.; Whiteley, W.; Audebert, H.; De Marchis, G.M.; Fonseca, A.C.; Padiglioni, C.; de la Ossa, N.P.; Strbian, D.; Tsivgoulis, G.; Turc, G. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur. Stroke J. 2021, 6, I–LXII. [Google Scholar] [CrossRef]
- Rabadi, M.H. Review of the randomized clinical stroke rehabilitation trials in 2009. Med. Sci. Monit. 2011, 17, RA25–RA43. [Google Scholar] [CrossRef] [Green Version]
- El-Kafy, E.M.A.; Alshehri, M.A.; El-Fiky, A.A.; Guermazi, M.A. The effect of virtual reality-based therapy on improving upper limb functions in individuals with stroke: A randomized control trial. Front. Aging Neurosci. 2021, 13, 731343. [Google Scholar] [CrossRef]
- Gandhi, D.B.; Pandian, J.D.; Szturm, T.; Kanitkar, A.; Kate, M.P.; Bhanot, K. A computer-game-based rehabilitation platform for individuals with fine and gross motor upper extremity deficits post-stroke (CARE fOR U)—Protocol for a randomized controlled trial. Eur. Stroke J. 2021, 6, 291–301. [Google Scholar] [CrossRef]
- Kern, H.; Salmons, S.; Mayr, W.; Rossini, K.; Carraro, U. Recovery of long-term denervated human muscles induced by electrical stimulation. Muscle Nerve 2005, 31, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Sheffler, L.R.; Chae, J. Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 2007, 35, 562–590. [Google Scholar] [CrossRef] [PubMed]
- Monte-Silva, K.; Piscitelli, D.; Norouzi-Gheidari, N.; Batalla, M.A.P.; Archambault, P.; Levin, M.F. Electromyogram-Related Neuromuscular Electrical Stimulation for Restoring Wrist and Hand Movement in Poststroke Hemiplegia: A Systematic Review and Meta-Analysis. Neurorehabil. Neural Repair. 2019, 33, 96–111. [Google Scholar] [CrossRef]
- Marotta, N.; Demeco, A.; Inzitari, M.T.; Caruso, M.G.; Ammendolia, A. Neuromuscular electrical stimulation and shortwave diathermy in unrecovered Bell palsy: A randomized controlled study. Medicine 2020, 99, e19152. [Google Scholar] [CrossRef] [PubMed]
- Rushton, D. Functional electrical stimulation and rehabilitation: A hypothesis. Med. Eng. Phys. 2003, 25, 75–78. [Google Scholar] [CrossRef]
- Chae, J.; Sheffler, L.; Knutson, J. Neuromuscular electrical stimulation for motor restoration in hemiplegia. Top. Stroke Rehabil. 2008, 15, 412–426. [Google Scholar] [CrossRef]
- Stein, C.; Fritsch, C.G.; Robinson, C.; Sbruzzi, G.; Della, R.; Plentz, M. Effects of Electrical Stimulation in Spastic Muscles After Stroke. Systematic Review and Meta-Analysis of Randomized Controlled Trials. Stroke 2015, 4, 2197–2205. [Google Scholar] [CrossRef] [Green Version]
- Knutson, J.S.; Fu, M.J.; Sheffler, L.R.; Chae, J. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia. Phys. Med. Rehabil. Clin. N Am. 2015, 26, 729–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisiński, P.; Huber, J.; Samborski, W.; Witkowska, A. Neurophysiological assessment of the electrostimulation procedures used in stroke patients during rehabilitation. Int. J. Artif. Organs. 2008, 31, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Hanna-Boutros, B.; Sangari, S.; Giboin, L.S.; El Mendili, M.M.; Lackmy-Vallée, A.; Marchand-Pauvert, V.; Knikou, M. Corticospinal and reciprocal inhibition actions on human soleus motoneuron activity during standing and walking. Physiol. Rep. 2015, 3, e12276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowska, E. Interneuronal relay in spinal pathways from proprioceptors. Prog. Neurobiol. 1992, 38, 335–378. [Google Scholar] [CrossRef]
- Sentandreu-Mañó, T.; Tomás, J.M.; Ricardo Salom Terrádez, J. A randomised clinical trial comparing 35 Hz versus 50 Hz frequency stimulation effects on hand motor recovery in older adults after stroke. Sci. Rep. 2021, 11, 9131. [Google Scholar] [CrossRef] [PubMed]
- Billian, C.; Gorman, P.H. Upper extremity applications of functional neuromuscular stimulation. Assist. Technol. 1992, 4, 31–39. [Google Scholar] [CrossRef]
- Eraifej, J.; Clark, W.; France, B.; Desando, S.; Moore, D. Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: A systematic review and meta-analysis. Syst Rev. 2017, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Sabut, S.K.; Sikdar, C.; Kumar, R.; Mahadevappa, M. Functional electrical stimulation of dorsiflexor muscle: Effects on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients. NeuroRehabilitation 2011, 29, 393–400. [Google Scholar] [CrossRef]
- Jaeger, R.J. Lower extremity applications of functional neuromuscular stimulation. Assist. Technol. 1992, 4, 19–30. [Google Scholar] [CrossRef]
- Floeter, M.K.; Danielian, L.E.; Kim, Y.K. Effects of motor skill learning on reciprocal inhibition. Restor. Neurol. Neurosci. 2013, 31, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Westwater-Wood, S.; Adams, N.; Kerry, R. The use of proprioceptive neuromuscular facilitation in physiotherapy practice. Phys. Rev. 2010, 15, 23–28. [Google Scholar] [CrossRef]
- Hindle, K.B.; Whitcomb, T.J.; Briggs, W.O.; Hong, J. Proprioceptive neuromuscular facilitation (PNF): Its mechanisms and effects on range of motion and muscular function. J. Hum. Kinet. 2013, 31, 105–113. [Google Scholar] [CrossRef]
- Anas, R.; Alashram Alia, A.; Alghwiri, E.P.; Giuseppe, A. Efficacy of proprioceptive neuromuscular facilitation on spasticity in patients with stroke: A systematic review. Phys. Rev. 2021, 26, 168–176. [Google Scholar]
- Guiu-Tula, F.X.; Cabanas-Valdés, R.; Sitjà-Rabert, M.; Urrútia, G.; Gómara-Toldrà, N. The Efficacy of the proprioceptive neuromuscular facilitation (PNF) approach in stroke rehabilitation to improve basic activities of daily living and quality of life: A systematic review and meta-analysis protocol. BMJ Open. 2017, 7, e016739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajewska, E.; Huber, J.; Kulczyk, A.; Lipiec, J.; Sobieska, M. An Attempt to Explain the Vojta Therapy Mechanism of Action Using the Surface Polyelectromyography in Healthy Subjects: A Pilot Study. J. Bodyw. Mov. Ther. 2018, 22, 287–292. [Google Scholar] [CrossRef]
- Sherrington, C.S.; Laslett, E.E. Observations on some spinal reflexes and the interconnection of spinal segments. J. Physiol. 1903, 29, 58–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, J.R.; Graham, B.A.; Galea, M.P.; Callister, R.J. The role of priopiospinal interneurons in recovery from spinal cor injury. Neuropharmacology 2011, 60, 809–822. [Google Scholar] [CrossRef]
- Kraft, G.H.; Fitts, S.S.; Hammond, M.C. Techniques to improve function of the arm and hand in chronic hemiplegia. Arch. Phys. Med. Rehabil. 1992, 73, 220–227. [Google Scholar] [PubMed]
- Schulz, K.F.; Altman, D.G.; Moher, D.; the CONSORT Group. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMJ 2010, c332, c340. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Harb, A.; Kishner, S. Modified Ashworth Scale; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Bohannon, R.W.; Smith, M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, C.T.; Krishnan, R.; Sear, M.; Harrold, J.; Nielsen, D.H. Intra-rater reliability of manual muscle testing and hand-held dynametric muscle testing. Phys. Ther. 1987, 67, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Sharman, M.; Cresswell, A.; Riek, S. Proprioceptive Neuromuscular Facilitation Stretching: Mechanisms and Clinical Implications. Sport Med. 2006, 36, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Huber, J.; Leszczyńska, K.; Wincek, A.; Szymankiewicz-Szukała, A.; Fortuna, W.; Okurowski, S.; Tabakow, P. The Role of Peripheral Nerve Electrotherapy in Functional Recovery of Muscle Motor Units in Patients after Incomplete Spinal Cord Injury. Appl. Scienc. 2021, 11, 9764. [Google Scholar] [CrossRef]
- Huber, J.; Lisiński, P.; Polowczyk, A. Reinvestigation of the dysfunction in neck and shoulder girdle muscles as the reason of cervicogenic headache among office workers. Disabil. Rehabil. 2013, 35, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Lisiński, P.; Huber, J. Evolution of muscles dysfunction from myofascial pain syndrome through cervical disc-root conflict to degenerative spine disease. Spine 2017, 42, 151–159. [Google Scholar] [CrossRef]
- Pollock, A.; Baer, G.; Pomeroy, V.; Langhorne, P. Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke. Cochrane Database Syst Rev. 2007, 1, CD001920. [Google Scholar]
- Hong, Z.; Sui, M.; Zhuang, Z.; Liu, H.; Zheng, X.; Cai, C.; Jin, D. Effectiveness of Neuromuscular Electrical Stimulation on Lower Limbs of Patients With Hemiplegia After Chronic Stroke: A Systematic Review. Arch. Phys. Med. Rehabil. 2018, 99, 1011–1022. [Google Scholar] [CrossRef]
- Guo, X.; Fan, B.; Mao, Y. Effectiveness of neuromuscular electrical stimulation for wrist rehabilitation after acute ischemic stroke. Medicine 2018, 97, 12299. [Google Scholar] [CrossRef] [PubMed]
- Glanz, M.; Klawansky, S.; Stason, W.; Berkey, C.; Chalmers, T.C. Functional electrostimulation in poststroke rehabilitation: A meta-analysis of the randomized controlled trials. Arch. Phys. Med. Rehabil. 1996, 77, 549–553. [Google Scholar] [CrossRef]
- Quandt, F.; Hummel, F.C. The influence of functional electrical stimulation on hand motor recovery in stroke patients: A review. Exp. Transl. Stroke Med. 2014, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- De Kroon, J.R.; Ijzerman, M.J.; Lankhorst, G.J.; Zilvold, G. Electrical stimulation of the upper limb in stroke: Stimulation of the extensors of the hand vs. alternate stimulation of flexors and extensors. Am. J. Phys. Med. Rehabil. 2004, 83, 592–600. [Google Scholar] [CrossRef]
- Côté, M.P.; Murray, L.M.; Knikou, M. Spinal Control of Locomotion: Individual Neurons, Their Circuits and Functions. Front. Physiol. 2018, 9, 784. [Google Scholar] [CrossRef] [Green Version]
- Baldiserra, F.; Hultborn, H.; Illert, M. Integration in spinal neuronal systems. In Handbook of Physiology–The Nervous System II, American Physiological Society, Bethesda; Brooks, V.B., Ed.; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Ferris, J.K.; Neva, J.L.; Francisco, B.A.; Boyd, L.A. Bilateral Motor Cortex Plasticity in Individuals with Chronic Stroke, Induced by Paired Associative Stimulation. Neurorehabil. Neural Rep. 2018, 32, 671–681. [Google Scholar] [CrossRef]
- Sahin, N.; Ugurlu, H.; Albayrak, I. The efficacy of electrical stimulation in reducing the post-stroke spasticity: A randomized controlled study. Disabil. Rehabil. 2012, 34, 151–156. [Google Scholar] [CrossRef]
- Piscitelli, D.; Turpin, N.A.; Subramanian, S.K.; Feldman, A.G.; Levin, M.F. Deficits in corticospinal control of stretch reflex thresholds in stroke: Implications for motor impairment. Clin. Neurophysiol. 2020, 131, 2067–2078. [Google Scholar] [CrossRef] [PubMed]
- Bó, A.P.L.; da Fonseca, L.O.; de Sousa, A.C.C. FES-induced co-activation of antagonist muscles for upper limb control and disturbance rejection. Med. Eng. Phys. 2016, 38, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
Study Group Variable | Healthy Volunteers (Control), N = 60, 41♀, 19♂ | NMFES+K Group Patients, N = 60, 44♀, 16♂ | K Group Patients, N = 60, 45♀, 15♂ | |||
---|---|---|---|---|---|---|
Mean ± SD | Min–Max | Mean ± SD | Min–Max | Mean ± SD | Min–Max | |
Age | 48.6 ± 4.3 | 30–52 | 62 ± 6.1 | 47–70 | 65 ± 5.2 | 56–70 |
Height (cm) | 166.0 ± 4.8 | 161–180 | 163 ± 10.3 | 148–178 | 167 ± 7.2 | 157–180 |
Weight (kg) | 75.3 ± 9.5 | 52–81 | 72 ± 11.1 | 55–95 | 74 ± 11.4 | 52–98 |
Observation time (days) | NA | NA | 62 ± 6 | 50–72 | 63 ± 6 | 50–72 |
Expected stimulation (hours) | NA | NA | 19.2 ± 2.1 | 15–23 | NA | NA |
Detected stimulation (hours) | NA | NA | 18.4 ± 4.3 | 16–24 | NA | NA |
Train stimulation frequency (Hz) | NA | NA | 48.6 ± 6.1 | 35–70 | NA | NA |
Single stimulus duration (ms) | NA | NA | 14.1 ± 15.2 | 12.5–17.5 | NA | NA |
Train duration (s) | NA | NA | 4.1 ± 1.7 | 3–6 | NA | NA |
Interval between trains (s) | NA | NA | 4.3 ± 1.2 | 2–5 | NA | NA |
Session duration (mins) | NA | NA | 19.1 ± 2.2 | 15–20 | NA | NA |
Applied stimulus strength (mA) Upper extremity muscles -flexors -extensors | NA | NA | 25.9 ± 3.1 26.2 ± 3.0 | 27–33 21–35 | NA | NA |
Applied stimulus strength (mA) Lower extremity muscles -flexors -extensors | NA | NA | 25.4 ± 3.1 28.2 ± 3.3 | 21–37 23–32 | NA | NA |
Test or Parameter | Healthy Volunteers N = 60 | T0 Acute Phase (Up to 7 Days after Incident) | T1 Subacute Phase (After 21 Days of Treatment) | T2 (After 62 Days of Rehabilitation Center Treatment) | p Patients T0 vs. T2 Before–After | p Healthy vs. Patients T0 Before | p Healthy vs. Patients T2 After | |||
---|---|---|---|---|---|---|---|---|---|---|
Group NMFES+K Patients N = 60 | Group K Patients N = 60 | Group NMFES+K Patients N = 60 | Group K Patients N = 60 | Group NMFES+K Patients N = 60 | Group K Patients N = 60 | |||||
Ashworth scale (+4–1) | NMFES+K | NMFES+K | NMFES+K NS | |||||||
-upper flexors | [1–1] 1 | [1–2] 1 | [1–2] 1 | [1–1] 1 | [1–2] 1 | [1–1] 1 | [1–2] 1 | p = 0.04 | p = 0.03 | |
-upper flexors | [1–1] 1 | [2–4] 3 | [2–4] 3 | [1–3] 2 | [2–4] 3 | [1–1] 1 | [1–3] 2 | K p = 0.05 | K p = 0.03 | K p = 0.05 |
NMFES+K | NMFES+K | NMFES+K NS | ||||||||
-lower extensors | [1–1] 1 | [1–2] 1 | [1–2] 1 | [1–1] 1 | [1–2] 1 | [1–1] 1 | [1–2] 1 | p = 0.04 | p = 0.03 | |
-lower flexors | [1–1] 1 | [2–4] 3 | [1–4] 3 | [1–4] 2 | [2–4] 3 | [1–2] 1 | [1–4] 3 | K NS | K p = 0.03 | K p = 0.03 |
Lovett | ||||||||||
scale (0–5) | NMFES+K | NMFES+K | NMFES+K | |||||||
-upper extensors | 5 | [2–4] 3 | [2–4] 3 | [3–5] 4 | [2–4] 3 | [3–5] 4 | [3–4] 3 | p = 0.04 | p = 0.02 | p = 0.05 |
-upper flexors | 5 | [1–3] 2 | [1–3] 2 | [2–4] 3 | [1–3] 2 | [3–5] 4 | [2–4] 3 | K p = 0.05 | K p = 0.02 | K p = 0.04 |
NMFES+K | NMFES+K | NMFES+K | ||||||||
-lower extensors | 5 | [2–4] 3 | [2–4] 4 | [3–5] 3 | [2–4] 4 | [2–5] 4 | [2–4] 4 | p = 0.03 | p = 0.03 | p = 0.05 |
-lower flexors | 5 | [1–4] 3 | [2–4] 3 | [2–5] 4 | [2–4] 3 | [3–5] 4 | [2–4] 3 | K p = 0.04 | K p = 0.04 |
Muscle Group | Healthy Volunteers N = 60 | T0 Acute Phase (Up to 7 Days after Incident) | T1 Subacute Phase (After 2–3 Weeks of Treatment) | T2 (After 2 Months of Rehabilitation Center Treatment) | p Patients T0 vs. T2 Before–After | p Healthy vs. Patients T0 Before | p Healthy vs. Patients T2 After | |||
---|---|---|---|---|---|---|---|---|---|---|
Group NMFES+K Patients N = 60 | Group K Patients N = 60 | Group NMFES+K Patients N = 60 | Group K Patients N = 60 | Group NMFES+K Patients N = 60 | Group K Patients N = 60 | |||||
rEMG (Amplitude at Rest in µV) | ||||||||||
-wrist extensors muscles | 25 ± 6 | 37 ± 6 | 32 ± 4 | 35 ± 2 | 35 ± 3 | 28 ± 4 | 36 ± 5 | NMFES+K p = 0.03 K p = 0.04 | NMFES+K p = 0.02 K p = 0.03 | NMFES+K NS K p = 0.03 |
-wrist flexor muscles | 20 ± 4 | 64 ± 4 | 70 ± 3 | 55 ± 2 | 72 ± 3 | 43 ± 8 | 68 ± 5 | NMFES+K p = 0.009 K NS | NMFES+K p = 0.008 K p = 0.009 | NMFES+K p = 0.03 K p = 0.008 |
-anterior tibial muscle | 19 ± 3 | 40 ± 2 | 46 ± 3 | 39 ± 3 | 41 ± 4 | 20 ± 4 | 45 ± 4 | NMFES+K p = 0.008 K NS | NMFES+K p = 0.008 K p = 0.009 | NMFES+K NS K p = 0.02 |
-calf muscles | 21 ± 2 | 95 ± 4 | 105 ± 7 | 22 ± 3 | 96 ± 1 | 23 ± 2 | 100 ± 6 | NMFES+K p = 0.009 K NS | NMFES+K p = 0.009 K p = 0.009 | NMFES+K NS K p = 0.009 |
mcEMG (Amplitude during Maximal Contraction in µV) | ||||||||||
-wrist extensors muscles | 1385 ± 226 | 926 ± 129 | 919 ± 107 | 980 ± 222 | 801 ± 186 | 1290 ± 102 | 819 ± 100 | NMFES+K p = 0.04 K NS | NMFES+K p = 0.03 K p = 0.03 | NMFES+K NS K p = 0.03 |
-wrist flexor muscles | 1622 ± 428 | 821 ± 232 | 795 ± 121 | 1325 ± 122 | 765 ± 97 | 1426 ± 241 | 823 ± 92 | NMFES+K p = 0.008 K NS | NMFES+K p = 0.009 K p = 0.009 | NMFES+K NS K p = 0.009 |
-anterior tibial muscle | 1625 ± 324 | 708 ± 125 | 821 ± 192 | 1325 ± 96 | 728 ± 77 | 1321 ± 102 | 894 ± 126 | NMFES+K p = 0.009 K NS | NMFES+K p = 0.008 K p = 0.009 | NMFES+K NS K p = 0.008 |
-calf muscles | 1621 ± 225 | 504 ± 128 | 525 ± 171 | 628 ± 245 | 522 ± 175 | 1407 ± 205 | 525 ± 582 | NMFES+K p = 0.008 K NS | NMFES+K p = 0.009 K p = 0.009 | NMFES+K NS K p = 0.009 |
sEMG (Index of Antagonistic Muscle Alternate Action) | ||||||||||
-at wrist | 5 | 3 | 3 | 5 | 3 | 5 | 3 | NMFES+K p = 0.03 K NS | NMFES+K p =0.03 K p = 0.03 | NMFES+K NS K p = 0.03 |
-at ankle | 5 | 3 | 3 | 4 | 3 | 4 | 3 | NMFES+K p = 0.05 K NS | NMFES+K p = 0.03 K p = 0.03 | NMFES+K p = 0.04 K p = 0.03 |
NMFES+K Group, N = 60 | K Group, N = 60 | |||||||
---|---|---|---|---|---|---|---|---|
Before Treatment (T0) | After Treatment (T2) | Before Treatment (T0) | After Observation (T2) | |||||
Parameter | Ashworth’s Scale (+4–1) | |||||||
rEMG | rs | p | rs | p | rs | p | rs | p |
0.725 | 0.003 | 0.652 | 0.002 | 0.722 | 0.003 | 0.699 | 0.001 | |
Lovett’s Scale (0–5) | ||||||||
mcEMG | rs | p | rs | p | rs | p | rs | p |
0.745 | 0.002 | 0.711 | 0.002 | 0.771 | 0.002 | 0.621 | 0.001 | |
rEMG | ||||||||
mcEMG | rs | p | rs | p | rs | p | rs | p |
−0.689 | 0.003 | −0.653 | 0.002 | −0.655 | 0.003 | −0.611 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huber, J.; Kaczmarek, K.; Leszczyńska, K.; Daroszewski, P. Post-Stroke Treatment with Neuromuscular Functional Electrostimulation of Antagonistic Muscles and Kinesiotherapy Evaluated with Electromyography and Clinical Studies in a Two-Month Follow-Up. Int. J. Environ. Res. Public Health 2022, 19, 964. https://doi.org/10.3390/ijerph19020964
Huber J, Kaczmarek K, Leszczyńska K, Daroszewski P. Post-Stroke Treatment with Neuromuscular Functional Electrostimulation of Antagonistic Muscles and Kinesiotherapy Evaluated with Electromyography and Clinical Studies in a Two-Month Follow-Up. International Journal of Environmental Research and Public Health. 2022; 19(2):964. https://doi.org/10.3390/ijerph19020964
Chicago/Turabian StyleHuber, Juliusz, Katarzyna Kaczmarek, Katarzyna Leszczyńska, and Przemysław Daroszewski. 2022. "Post-Stroke Treatment with Neuromuscular Functional Electrostimulation of Antagonistic Muscles and Kinesiotherapy Evaluated with Electromyography and Clinical Studies in a Two-Month Follow-Up" International Journal of Environmental Research and Public Health 19, no. 2: 964. https://doi.org/10.3390/ijerph19020964
APA StyleHuber, J., Kaczmarek, K., Leszczyńska, K., & Daroszewski, P. (2022). Post-Stroke Treatment with Neuromuscular Functional Electrostimulation of Antagonistic Muscles and Kinesiotherapy Evaluated with Electromyography and Clinical Studies in a Two-Month Follow-Up. International Journal of Environmental Research and Public Health, 19(2), 964. https://doi.org/10.3390/ijerph19020964