Status of Workers’ Health Behavior and the Association between Occupational Characteristics and Health Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Participants
2.2. ULBs
2.3. Occupational Characteristics
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Centers for Disease Control and Prevention. The Power of Prevention: Chronic Disease… the Public Health Challenge of the 21st Century; United States Department of Health and Human Services: Washington, DC, USA, 2009.
- Remington, P.L.; Brownson, R.C.; Wegner, M.V. Chronic Disease Epidemiology and Control; American Public Health Association: Washington, DC, USA, 2010. [Google Scholar]
- Rayner, M.; Wickramasinghe, K.; Mendis, S. An Introduction to Population-Level Prevention of Non-Communicable Diseases; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Li, Y.; Pan, A.; Wang, D.D.; Liu, X.; Dhana, K.; Franco, O.H.; Kaptoge, S.; Di Angelantonio, E.; Stampfer, M.; Willett, W.C.; et al. Impact of Healthy Lifestyle Factors on Life Expectancies in the US Population. Circulation 2018, 138, 345–355. [Google Scholar] [CrossRef] [PubMed]
- O’Doherty, M.G.; Cairns, K.; O’Neill, V.; Lamrock, F.; Jørgensen, T.; Brenner, H.; Schöttker, B.; Wilsgaard, T.; Siganos, G.; Kuulasmaa, K.; et al. Effect of major lifestyle risk factors, independent and jointly, on life expectancy with and without cardiovascular disease: Results from the Consortium on Health and Ageing Network of Cohorts in Europe and the United States (CHANCES). Eur. J. Epidemiol. 2016, 31, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Ford, E.S.; Bergmann, M.M.; Kröger, J.; Schienkiewitz, A.; Weikert, C.; Boeing, H. Healthy Living Is the Best Revenge: Findings from the European Prospective Investigation into Cancer and Nutrition-Potsdam study. Arch. Intern. Med. 2009, 169, 1355–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loef, M.; Walach, H. The combined effects of healthy lifestyle behaviors on all cause mortality: A systematic review and meta-analysis. Prev. Med. 2012, 55, 163–170. [Google Scholar] [CrossRef]
- Parry, C.D.; Patra, J.; Rehm, J. Alcohol consumption and non-communicable diseases: Epidemiology and policy implications. Addiction 2011, 106, 1718–1724. [Google Scholar] [CrossRef]
- Beaglehole, R.; Bonita, R.; Horton, R.; Adams, C.; Alleyne, G.; Asaria, P.; Baugh, V.; Bekedam, H.; Billo, N.; Casswell, S.; et al. Priority actions for the non-communicable disease crisis. Lancet 2011, 377, 1438–1447. [Google Scholar] [CrossRef]
- Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Pellmar, T.C.; Brandt, E.N., Jr.; Baird, M.A. Health and Behavior: The Interplay of Biological, Behavioral, and Social Influences: Summary of an Institute of Medicine Report. Am. J. Health Promot. 2002, 16, 206–219. [Google Scholar] [CrossRef]
- Miranda, H.; Gore, R.J.; Boyer, J.; Nobrega, S.; Punnett, L. Health Behaviors and Overweight in Nursing Home Employees: Contribution of Workplace Stressors and Implications for Worksite Health Promotion. Sci. World J. 2015, 2015, 915359. [Google Scholar] [CrossRef] [Green Version]
- Azagba, S.; Sharaf, M.F. The effect of job stress on smoking and alcohol consumption. Health Econ. Rev. 2011, 1, 15. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Jang, T.; Kim, H.; Kang, M. The relationship between working hours and lifestyle behaviors: Evidence from a population-based panel study in Korea. J. Occup. Health 2021, 63, e12280. [Google Scholar] [CrossRef] [PubMed]
- Mohammadfam, I.; Mahdinia, M.; Aliabadi, M.M.; Soltanian, A.R. Effect of safety climate on safety behavior and occupational injuries: A systematic review study. Saf. Sci. 2022, 156, 105917. [Google Scholar] [CrossRef]
- Fabiano, B.; Pettinato, M.; Currò, F.; Reverberi, A.P. A field study on human factor and safety performances in a downstream oil industry. Saf. Sci. 2022, 153, 105795. [Google Scholar] [CrossRef]
- Cantonnet, M.L.; Aldasoro, J.C.; Oyarbide, I.R. Well-Being through workplace health promotion interventions by European enterprises. Saf. Sci. 2022, 151, 105736. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.-J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.-H.; Oh, K. Data Resource Profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Dufour, M.C. What is moderate drinking? Defining “drinks” and drinking levels. Alcohol Res. Health 1999, 23, 5–14. [Google Scholar]
- Oh, J.Y.; Yang, Y.J.; Kim, B.S.; Kang, J.H. Validity and reliability of Korean version of International Physical Activity Questionnaire (IPAQ) short form. J. Korean Acad. Fam. Med. 2007, 28, 532–541. [Google Scholar]
- Choi, S.B.; Yoon, J.-H.; Lee, W. The Modified International Standard Classification of Occupations defined by the clustering of occupational characteristics in the Korean Working Conditions Survey. Ind. Health 2020, 58, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Waldron, I. Trends in gender differences in mortality: Relationships to changing gender differences in behaviour and other causal factors. Gend. Ineq. Health 2000, 13, 415–454. [Google Scholar]
- Wilsnack, R.W.; Vogeltanz, N.D.; Wilsnack, S.C.; Harris, T.R.; Ahlström, S.; Bondy, S.; Csémy, L.; Ferrence, R.; Ferris, J.; Fleming, J.; et al. Gender differences in alcohol consumption and adverse drinking consequences: Cross-cultural patterns. Addiction 2000, 95, 251–265. [Google Scholar] [CrossRef]
- Kerr-Corrêa, F.; Igami, T.Z.; Hiroce, V.; Tucci, A.M. Patterns of alcohol use between genders: A cross-cultural evaluation. J. Affect. Disord. 2007, 102, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Nathanson, C.A. Sex roles as variables in preventive health behavior. J. Community Health 1977, 3, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Waldron, I.; Bratelli, G.; Carriker, L.; Sung, W.-C.; Vogeli, C.; Waldman, E. Gender differences in tobacco use in Africa, Asia, the Pacific, and Latin America. Soc. Sci. Med. 1988, 27, 1269–1275. [Google Scholar] [CrossRef]
- Chung, W.; Lim, S.; Lee, S. Why is high-risk drinking more prevalent among men than women? evidence from South Korea. BMC Public Health 2012, 12, 101. [Google Scholar] [CrossRef] [Green Version]
- Eurobarometer, S. Sport and Physical Activity; TNS Opinion & Social: Brussels, Belgium, 2014. [Google Scholar]
- Cheah, Y.K.; Poh, B.K. The Determinants of Participation in Physical Activity in Malaysia. Osong Public Health Res. Perspect. 2014, 5, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-J.; Huang, Y.-H.; Lu, F.-H.; Wu, J.-S.; Lin, L.L.; Chang, C.-J.; Yang, Y.-C. The Correlates of Leisure Time Physical Activity among an Adults Population from Southern Taiwan. BMC Public Health 2011, 11, 427. [Google Scholar] [CrossRef] [Green Version]
- Gidlow, C.; Johnston, L.H.; Crone, D.; Ellis, N.; James, D. A systematic review of the relationship between socio-economic position and physical activity. Health Educ. J. 2006, 65, 338–367. [Google Scholar] [CrossRef]
- Ford, E.S.; Merritt, R.K.; Heath, G.W.; Powell, K.E.; Washburn, R.A.; Kriska, A.; Haile, G. Physical Activity Behaviors in Lower and Higher Socioeconomic Status Populations. Am. J. Epidemiol. 1991, 133, 1246–1256. [Google Scholar] [CrossRef]
- Biernat, E.; Piatkowska, M. Leisure Time Physical Activity among Employed and Unemployed Women in Poland. Hong Kong J. Occup. Ther. 2017, 29, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Eyler, A.E.; Wilcox, S.; Matson-Koffman, D.; Evenson, K.R.; Sanderson, B.; Thompson, J.; Wilbur, J.; Rohm-Young, D. Correlates of Physical Activity among Women from Diverse Racial/Ethnic Groups. J. Womens Health Gend. Based Med. 2002, 11, 239–253. [Google Scholar] [CrossRef]
- Khan, S. Gendered leisure: Are women more constrained in travel for leisure? Tourismos 2011, 6, 105–121. [Google Scholar]
- Boateng, G.O.; Kuuire, V.Z.; Ung, M.; Amoyaw, J.A.; Armah, F.A.; Luginaah, I. Women’s Empowerment in the Context of Millennium Development Goal 3: A Case Study of Married Women in Ghana. Soc. Indic. Res. 2012, 115, 137–158. [Google Scholar] [CrossRef]
- Jee, Y.H.; Cho, S.I. Age-period-cohort analysis of smoking prevalence among young adults in Korea. Epidemiol. Health 2016, 38, e2016010. [Google Scholar] [CrossRef]
- Kim, Y.-Y.; Park, H.-J.; Kim, M.-S. Drinking Trajectories and Factors in Koreans. Int. J. Environ. Res. Public Health 2021, 18, 8890. [Google Scholar] [CrossRef]
- Prochaska, T.; Clark, M. Health behaviors and the human lifespan. Handb. Health Behav. Res. 1997, 3, 29–48. [Google Scholar]
- Sun, F.; Norman, I.J.; While, A.E. Physical activity in older people: A systematic review. BMC Public Health 2013, 13, 449. [Google Scholar] [CrossRef] [Green Version]
- Murtagh, E.M.; Murphy, M.H.; Murphy, N.M.; Woods, C.; Nevill, A.; Lane, A. Prevalence and Correlates of Physical Inactivity in Community-Dwelling Older Adults in Ireland. PLoS ONE 2015, 10, e0118293. [Google Scholar] [CrossRef] [Green Version]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Mâsse, L.C.; Tilert, T.; Mcdowell, M. Physical Activity in the United States Measured by Accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Luke, A.; Dugas, L.R.; Durazo-Arvizu, R.A.; Cao, G.; Cooper, R.S. Assessing Physical Activity and its Relationship to Cardiovascular Risk Factors: NHANES 2003-2006. BMC Public Health 2011, 11, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzmarzyk, P. Physical Activity and Fitness with Age among Sex and Ethnic Groups; Human Kinetics Publishers: Champaign, IL, USA, 2007; pp. 37–49. [Google Scholar]
- Najman, J.M.; Toloo, G.; Siskind, V. Socioeconomic disadvantage and changes in health risk behaviours in Australia: 1989-90 to 2001. Bull. World Health Organ. 2006, 84, 976–984. [Google Scholar] [CrossRef] [Green Version]
- Giskes, K.; Kunst, A.E.; Benach, J.; Borrell, C.; Costa, G.; Dahl, E.; Dalstra, J.A.A.; Federico, B.; Helmert, U.; Judge, K.; et al. Trends in smoking behaviour between 1985 and 2000 in nine European countries by education. J. Epidemiol. Community Health 2005, 59, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Huckle, T.; You, R.Q.; Casswell, S. Socio-economic status predicts drinking patterns but not alcohol-related consequences independently. Addiction 2010, 105, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, D.O.; Jena, A.B. The economics of intense exercise. J. Health Econ. 2010, 29, 347–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphreys, B.R.; Ruseski, J.E. Economic Determinants of Participation in Physical Activity and Sport. Unpublished work; 2006; pp. 1–25. [Google Scholar]
- Duncan, M.J.; Badland, H.M.; Mummery, W.K. Physical Activity Levels by Occupational Category in Non-Metropolitan Australian Adults. J. Phys. Act. Health 2010, 7, 718–723. [Google Scholar] [CrossRef] [Green Version]
- Shuval, K.; Li, Q.; Gabriel, K.P.; Tchernis, R. Income, physical activity, sedentary behavior, and the ‘weekend warrior’ among U.S. adults. Prev. Med. 2017, 103, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Le Moal, M. Drug Abuse: Hedonic Homeostatic Dysregulation. Science 1997, 278, 52–58. [Google Scholar] [CrossRef]
- Muraven, M.; Baumeister, R.F. Self-regulation and depletion of limited resources: Does self-control resemble a muscle? Psychol. Bull. 2000, 126, 247–259. [Google Scholar] [CrossRef]
- Richards, J.M.; Stipelman, B.A.; Bornovalova, M.A.; Daughters, S.B.; Sinha, R.; Lejuez, C. Biological mechanisms underlying the relationship between stress and smoking: State of the science and directions for future work. Biol. Psychol. 2011, 88, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, R. Chronic Stress, Drug Use, and Vulnerability to Addiction. Ann. N. Y. Acad. Sci. 2008, 1141, 105–130. [Google Scholar] [CrossRef] [Green Version]
- Schultchen, D.; Reichenberger, J.; Mittl, T.; Weh, T.R.M.; Smyth, J.M.; Blechert, J.; Pollatos, O. Bidirectional relationship of stress and affect with physical activity and healthy eating. Br. J. Health Psychol. 2019, 24, 315–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dėdelė, A.; Miškinytė, A.; Andrušaitytė, S.; Bartkutė, Ž. Perceived Stress Among Different Occupational Groups and the Interaction with Sedentary Behaviour. Int. J. Environ. Res. Public Health 2019, 16, 4595. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Kondo, N. Organizational justice, psychological distress, and stress-related behaviors by occupational class in female Japanese employees. PLoS ONE 2019, 14, e0214393. [Google Scholar] [CrossRef]
- Dollard, M.; Winefield, H.R.; Winefield, A.H. Occupational Stress in the Service Professions; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Bartram, T.; Joiner, T.A.; Stanton, P. Factors affecting the job stress and job satisfaction of Australian nurses: Implications for recruitment and retention. Contemp. Nurse 2004, 17, 293–304. [Google Scholar] [CrossRef]
- Gellis, Z.D. Coping with occupational stress in healthcare. Adm. Soc. Work 2002, 26, 37–52. [Google Scholar] [CrossRef]
- Folkard, S. Do Permanent Night Workers Show Circadian Adjustment? A Review Based on the Endogenous Melatonin Rhythm. Chronobiol. Int. 2008, 25, 215–224. [Google Scholar] [CrossRef]
- Ha, M.; Park, J. Shiftwork and Metabolic Risk Factors of Cardiovascular Disease. J. Occup. Health 2005, 47, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-E.; Kim, M.-H.; Choi, M.; Kim, H.-R.; Kawachi, I. Variability in daily or weekly working hours and self-reported mental health problems in Korea, Korean working condition survey, 2017. Arch. Public Health 2021, 79, 25. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Ryu, J.; Kim, H.; Kang, C.W.; Jung-Choi, K. Working hours and depressive symptoms: The role of job stress factors. Ann. Occup. Environ. Med. 2018, 30, 46. [Google Scholar] [CrossRef] [PubMed]
- Junming, D.; Ja, L.; Chang, S.; Ling, W.; Junling, G.; Hua, F. 609 Association between long working hour and job stress and depression among employees at grid company in china. Occup. Environ. Med. 2018, 75 (Suppl. 2), A591. [Google Scholar]
Overall Study Population | Current Smoking, n (%) | p-Value | Heavy Drinking, n (%) | p-Value | Physical Activity, n (%) | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
No | Yes | No | Yes | Active | Inactive | |||||
Total participants | 72,665 | 58,548 | 14,117 | 64,704 | 7961 | 29,183 | 43,482 | |||
Sex | <0.0001 | <0.0001 | <0.0001 | |||||||
Male | 31,103 | 19,140 (61.5) | 11,963 (38.5) | 25,019 (80.4) | 6084 (19.6) | 13,213 (42.5) | 17,890 (57.5) | |||
Female | 41,562 | 39,408 (94.8) | 2154 (5.2) | 39,685 (95.5) | 1877 (4.5) | 15,970 (38.4) | 25,592 (61.6) | |||
Age (years) | <0.0001 | <0.0001 | <0.0001 | |||||||
19–40 | 23,185 | 17,407 (75.1) | 5778 (24.9) | 19,912 (85.9) | 3273 (14.1) | 9818 (42.3) | 13,367 (57.7) | |||
41–60 | 26,954 | 21,415 (79.4) | 5539 (20.6) | 23,388 (86.8) | 3566 (13.2) | 10,376 (38.5) | 16,578 (61.5) | |||
>60 | 22,526 | 19,726 (87.6) | 2800 (12.4) | 21,404 (95.0) | 1122 (5.0) | 8989 (39.9) | 13,537 (60.1) | |||
Education | <0.0001 | <0.0001 | <0.0001 | |||||||
Middle school or less | 25,176 | 21,410 (85.0) | 3766 (15.0) | 23,312 (92.6) | 1864 (7.4) | 9439 (37.5) | 15,737 (62.5) | |||
High school | 24,314 | 18,547 (76.3) | 5767 (23.7) | 20,993 (86.3) | 3321 (13.7) | 10,399 (42.8) | 13,915 (57.2) | |||
College or more | 23,175 | 18,591 (80.2) | 4584 (19.8) | 20,399 (88.0) | 2776 (12.0) | 9345 (40.3) | 13,830 (59.7) | |||
Household income | <0.0001 | <0.0001 | <0.0001 | |||||||
First quartile | 14,289 | 11,765 (82.3) | 2524 (17.7) | 13,257 (92.8) | 1032 (7.2) | 5493 (38.4) | 8796 (61.6) | |||
Second quartile | 18,267 | 14,537 (79.6) | 3730 (20.4) | 16,289 (89.2) | 1978 (10.8) | 7375 (40.4) | 10,892 (59.6) | |||
Third quartile | 19,643 | 15,528 (79.1) | 4115 (20.9) | 17,241 (87.8) | 2402 (12.2) | 7916 (40.3) | 11,727 (59.7) | |||
Fourth quartile | 20,466 | 16,718 (81.7) | 3748 (18.3) | 17,917 (87.5) | 2549 (12.5) | 8399 (41.1) | 12,067 (58.9) | |||
Working status | <0.0001 | <0.0001 | <0.0001 | |||||||
Workers | 43,161 | 32,495 (75.3) | 10,666 (24.7) | 36,869 (85.4) | 6296 (14.6) | 17,773 (41.2) | 25,388 (58.8) | |||
Nonworkers | 29,504 | 26,053 (88.3) | 3451 (11.7) | 27,835 (94.3) | 1669 (5.7) | 11,410 (38.7) | 18,094 (61.3) |
Overall Study Population | Current Smoking, n (%) | p-Value | Heavy Drinking, n (%) | p-Value | Physical Activity, n (%) | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
No | Yes | No | Yes | Active | Inactive | |||||
Total workers | 42,870 | 32,300 | 10,570 | 36,632 | 6238 | 17,274 | 25,596 | |||
Sex | <0.0001 | <0.0001 | 0.3772 | |||||||
Male | 22,602 | 13,172 (58.3) | 9430 (41.7) | 17,562 (77.7) | 5040 (22.3) | 9152 (40.5) | 13,450 (59.5) | |||
Female | 20,268 | 19,128 (94.4) | 1140 (5.6) | 19,070 (94.1) | 1198 (5.9) | 8122 (40.1) | 12,146 (59.9) | |||
Age (years) | <0.0001 | <0.0001 | <0.0001 | |||||||
19–40 | 14,706 | 10,172 (69.2) | 4534 (30.8) | 12,145 (82.6) | 2561 (17.4) | 6338 (43.1) | 8368 (56.9) | |||
41–60 | 19,545 | 14,873 (76.1) | 4672 (23.9) | 16,469 (84.3) | 3076 (15.7) | 7414 (37.8) | 12,131 (62.1) | |||
>60 | 8619 | 7255 (84.2) | 1364 (15.8) | 8018 (93.0) | 601 (7.0) | 3522 (40.9) | 5097 (59.1) | |||
Education | <0.0001 | <0.0001 | 0.1151 | |||||||
Middle school or less | 12,246 | 9924 (81.0) | 2322 (19.0) | 10,952 (89.4) | 1294 (10.6) | 4754 (38.8) | 7492 (61.2) | |||
High school | 14,532 | 10,214 (70.3) | 4318 (29.7) | 12,007 (82.6) | 2525 (17.4) | 6087 (41.9) | 8445 (58.1) | |||
College or more | 16,092 | 12,162 (75.6) | 3930 (24.4) | 13,673 (85.0) | 2419 (15.0) | 6433 (40.0) | 9659 (60.0) | |||
Household income | <0.0001 | <0.0001 | 0.0093 | |||||||
First quartile | 5459 | 4309 (78.9) | 1150 (21.1) | 4925 (90.2) | 534 (9.8) | 2298 (42.1) | 3161 (57.9) | |||
Second quartile | 10,556 | 7802 (73.9) | 2754 (26.1) | 9055 (85.8) | 1501 (14.2) | 4281 (40.6) | 6275 (59.4) | |||
Third quartile | 12,716 | 9291 (73.1) | 3425 (26.9) | 10,735 (84.4) | 1981 (15.6) | 5045 (39.7) | 7671 (60.3) | |||
Fourth quartile | 14,1390 | 10,898 (77.1) | 3241 (22.9) | 11,917 (84.3) | 2222 (15.7) | 5650 (40.0) | 8489 (60.0) | |||
Occupational classification | <0.0001 | <0.0001 | 0.6472 | |||||||
Manager | 9295 | 7363 (79.2) | 1932 (20.8) | 8091 (87.1) | 1204 (12.9) | 3841 (41.3) | 5454 (58.7) | |||
Office | 6539 | 4963 (75.9) | 1576 (24.1) | 5469 (83.4) | 1070 (16.4) | 2570 (39.9) | 3969 (60.7) | |||
Sales or service | 9075 | 6985 (77.0) | 2090 (23.0) | 7621 (84.0) | 1454 (16.0) | 3713 (40.9) | 5362 (59.1) | |||
Agricultural or fishery | 4671 | 3729 (79.8) | 942 (20.2) | 4210 (90.1) | 461 (9.9) | 1924 (41.2) | 2747 (58.8) | |||
Skilled manual | 6954 | 4110 (59.1) | 2844 (40.9) | 5513 (79.3) | 1441 (20.7) | 2411 (34.7) | 4543 (65.3) | |||
Simple manual | 6336 | 5150 (81.3) | 1186 (18.7) | 5728 (90.4) | 608 (9.6) | 2815 (44.4) | 3521 (55.6) | |||
Employment status | <0.0001 | <0.0001 | <0.0001 | |||||||
Paid workers | 27,644 | 20,845 (75.4) | 6799 (24.6) | 23,743 (85.9) | 3901 (14.1) | 11,622 (42.0) | 16,022 (58.0) | |||
Self-employed | 12,450 | 8930 (71.7) | 3520 (28.3) | 10,311 (82.8) | 2139 (17.2) | 4631 (37.2) | 7819 (62.8) | |||
Others | 2776 | 2525 (91.0) | 251 (9.0) | 2578 (92.9) | 198 (7.1) | 1021 (36.8) | 1755 (63.2) | |||
Working schedule | <0.0001 | 0.0021 | <0.0001 | |||||||
Daytime fixed | 28,119 | 21,595 (76.8) | 6524 (23.2) | 24,134 (85.8) | 3985 (14.2) | 10,661 (37.9) | 17,458 (62.1) | |||
Shift | 14,751 | 10,705 (72.6) | 4046 (27.4) | 12,498 (84.7) | 2253 (15.3) | 6613 (44.8) | 8138 (55.2) | |||
Weekly working hours | <0.0001 | <0.0001 | <0.0001 | |||||||
≤40 | 21,280 | 17,222 (80.9) | 4058 (19.1) | 18,758 (88.1) | 2522 (11.9) | 8787 (41.3) | 12,493 (58.7) | |||
41–60 | 16,201 | 11,400 (70.4) | 4801 (29.6) | 13,456 (83.1) | 2745 (16.9) | 6412 (39.6) | 9789 (60.4) | |||
>60 | 5389 | 3678 (68.3) | 1711 (31.7) | 4418 (82.0) | 971 (18.0) | 2075 (38.5) | 3314 (61.5) |
Working Status, Odds Ratio (95% Confidence Intervals) | ||
---|---|---|
Nonworkers | Workers | |
Current smoking | Reference | 1.33 (1.28–1.39) |
Heavy drinking | Reference | 1.66 (1.57–1.76) |
Physical inactivity | Reference | 1.03 (1.01–1.05) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-Y.; Jung, S.; Lee, W. Status of Workers’ Health Behavior and the Association between Occupational Characteristics and Health Behavior. Int. J. Environ. Res. Public Health 2022, 19, 13021. https://doi.org/10.3390/ijerph192013021
Lee S-Y, Jung S, Lee W. Status of Workers’ Health Behavior and the Association between Occupational Characteristics and Health Behavior. International Journal of Environmental Research and Public Health. 2022; 19(20):13021. https://doi.org/10.3390/ijerph192013021
Chicago/Turabian StyleLee, Seung-Yeon, Saemi Jung, and Wanhyung Lee. 2022. "Status of Workers’ Health Behavior and the Association between Occupational Characteristics and Health Behavior" International Journal of Environmental Research and Public Health 19, no. 20: 13021. https://doi.org/10.3390/ijerph192013021
APA StyleLee, S. -Y., Jung, S., & Lee, W. (2022). Status of Workers’ Health Behavior and the Association between Occupational Characteristics and Health Behavior. International Journal of Environmental Research and Public Health, 19(20), 13021. https://doi.org/10.3390/ijerph192013021