Unveiling Urinary Mutagenicity by the Ames Test for Occupational Risk Assessment: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. The Urinary Mutagenicity Method
UM Limitations
4. Test Strains Used for Occupational Biomonitoring
5. Occupational Risk Assessment
Study Population | Occupational Exposure | Urinary Mutagenicity | Correlation with Exposure/Effect (Bio)Markers | Reference | ||
---|---|---|---|---|---|---|
n | Age (Mean ± Standard Deviation (Range)) | Bacterial Strain | Concentration | |||
Firefighters | Structural fire combat: 5 consecutive 24-h shifts typically spanning 12 days | Salmonella typhimurium YG1041 (+S9 mix) Negative control: DMSO solvent Positive controls: 2-nitrofluorene and 2- aminoanthracene | Pre-fire: 1.01 ± 0.07 (0.19–5.76) Post-fire: 1.90 ± 0.12 (0.51–22.68) | Not explored | [40] | |
16 | 34 (25–50) | |||||
Fire station office workers | 5 consecutive 24-h shifts typically spanning 12 days (no exposure) | Post-shift: 0.87 ± 0.08 (0.17–10.5) | Not explored | |||
17 | 50 (28–62) | |||||
Firefighters | Prescribed burn days and non-burn days (January–July of 2015) | Salmonella typhimurium YG1041 (+S9 mix) Negative control: DMSO solvent Positive controls: 2-nitrofluorene and 2- aminoanthracene | Burn day Pre-shift: 0.29 (0–1.98) a Post-shift: 0.28 (0.01–4.46) a Next-morning: 0.26 (0–3.46) a Non-burn day Pre-shift: 0.45 (0–3.24) a Post-shift: 0.27 (0–1.33) a Next-morning: 0.25 (0–0.89) a | Positive correlations between cross-work shift (pre- to post) changes in urinary mutagenicity and Malondialdehyde (p = 0.0010), 1-hydroxypyrene (p = 0.0001). | [58] | |
12 | 33 ± 5.4 | |||||
Firefighters | Prescribed burn days and non-burn days (2015–2018) | Salmonella typhimurium YG1041 (+S9 mix) Negative control: DMSO solvent Positive controls were 2-nitrofluorene in the absence of S9 and 2-aminoanthgracene in the presence of S9. | Burn day Pre-shift: 1.55 ± 0.14 (0.00–3.85) Post-shift: 1.80 ± 0.13 (0.00–2.83) Next-morning: 1.67 ± 0.19 (0.00–6.96) Non-burn day Pre-shift: 1.53 ± 0.19 (0.00–3.08) Post-shift: 1.52 ± 0.13 (0.00–1.36) Next-morning: 1.34 ± 0.13 (0.00–1.38) | Pre-exposure to next-morning change in the mutagenicity was correlated negatively with black carbon exposure and black carbon to PM2.5 ratio. | [41] | |
19 | 35.0 ± 7.2 | |||||
Charcoal workers | After the third day of the workweek in 8 different charcoal companies. | Salmonella typhimurium YG1041 (+S9 mix) | Woodsmoke No exposure: 1.79 (1.26–2.54) b Low exposure: 2.65 (2.01–3.66) b High exposure: 4.22 (3.27–5.45) b | Difference in wood smoke exposure among nonsmokers was significant (data shown in a graph) | [25] | |
132 | 34.05 ± 10.47 | |||||
Chemical laboratory staff | Organic solvents | Salmonella typhimurium YG1024 and TA100 (+ or − S9 mix) Negative control: DMSO Positive control: 2-anthramine with S9 and sodium azide for TA100 and 4-o-nitrophenyenediamine for YG1024 without S9 | TA100 (−S9): 0 c TA100 (+S9): 0 c YG1041 (−S9): 0–2.6 c YG1041 (+S9): 0–25.1 c | Not explored | [33] | |
29 | 29.3 ± 7.7 | |||||
Pharmacy workers | Occupationally exposed to antineoplastic drugs in Pharmacy Intravenous Admixture Services | Salmonella typhimurium strain TA98 and TA100 with or without S9 mix Negative control: DMSO Positive control: 2-nitrofluorene for TA98 and N-methyl-N-nitro-N-nitrosoguanidine for TA100 | TA98 (−S9 mix): 15–60 mL urine: 20.00–64.71 d TA98 (+S9 mix): 15–60 mL urine: 39.41–84.71 d TA100 (−S9 mix): 15–60 mL urine: 14.71–62.94 d TA100 (+S9 mix): 15–60 mL urine: 40.00–81.76 d | Mutagenic activity positively correlated with the dose of urine concentrates. | [32] | |
158 | 28.23 ± 6.07 | |||||
Chemical factory workers | Involved in the production of satchel charges for mining. Exposed to nitrotoluenes (8 h/day, 5 days/week) | Salmonella typhimurium YG1041 | Mutagenic potency of: Unhydrolyzed urine: 198.8 ± 375.8 cc Enzymatically hydrolyzed urines: 486.4 ± 535.9 cc Enzymatically acid-hydrolyzed urines: 53.7 ± 76.5 cc | The levels of urinary metabolites of 2,4,6-trinitrotoluene (determined in enzymatically hydrolyzed urine) correlated best with mutagenicity (r = 0.89–0.96, p < 0.01; Spearman-rank test). | [31] | |
78 | 39.6 ± 8.1 | |||||
(Applied to 11 workers and 6 controls) | ||||||
Factory controls | Employed in the same factory but were no longer working directly in jobs that would expose them to nitrotoluenes | Mutagenic potency of: Unhydrolyzed urines: 3.9 ± 2.5 cc Enzymatically hydrolyzed urines: 8.8 ± 7.6 cc Enzymatically acid-hydrolyzed urines: 2.8 ± 3.2 cc | ||||
25 | 38.4 ± 99.4 | |||||
Coke oven workers | Locksmiths, drivers, loaders, and welder | Salmonella typhimurium TA98 and YG1024 (+S9 mix) Negative control: DMSO solvent | Correlated weakly with pyrene and Benzo(a)Pyrene concentrations in breathing zone. Correlated strongly with urinary 1-hydroxypyrene and DNA adduct levels in lymphocytes. | [35] | ||
(March 1994) | TA98: 328 (80–910) e YG1024: 1894 (370–4850) e | |||||
18 | -- | |||||
(September 1994) | TA98: 570 (34–1287) e YG1024: 1704 (56–8240) e | |||||
21 | -- | |||||
Controls | TA98 (n = 6): 226 (88–441) e YG1024 (n = 7): 1190 (750–2096) e | |||||
6–7 | ||||||
Coke oven workers | High-exposure group | Salmonella typhimurium TA98 (+S9 mix) Negative control: DMSO solvent | 6.22 ± 5.54 f | No correlation was found between urinary mutagenicity and 1-hydroxypyrene. | [42] | |
15 | 42.3 ± 7.8 | |||||
Coke oven workers | Low-exposure group | 4.02 ± 5.59 f | ||||
22 | 43.1 ± 10.5 | |||||
Coke oven workers | Workers occupationally exposed in a coke oven plant | Salmonella typhimurium TA98 (+S9 mix) and YG1024(+S9 mix) Negative control: redistilled water after DMSO extraction (+S9 mix) | Mutagenic rate (TA98): 2.7 (1.5; 4.5) g Mutagenic rate (YG1024): 18.2 (7.3; 28.4) g | The influence of smoking on urinary mutagenicity was greater than the effect of exposure. Association between urinary mutagenicity and 1-hydroxypyrene. | [43] | |
50 | 40.2 ± 7.8 | |||||
Coke oven workers | Workers occupationally exposed in a coke oven plant | Salmonella typhimurium YG1024 (+S9 mix) Negative control: DMSO Positive control: 2-Aminofluorene | 0.495 ± 0.407 h | Urinary mutagenicity was significantly related to occupational PAH exposure given by 1-hydroxypyrene (r = 0.41, p = 0.0215) | [44] | |
31 | 37 (24–53) | |||||
Workers from a heavy industrial zone | Workers in several plants located in a heavy industrialized area in the south of France, potentially exposed to PAHs | Salmonella typhimurium TA98 (+S9 mix), YG1041 (+S9 mix) and YG1041 (−S9 mix) Negative control: DMSO solvent | TA98 (+S9 mix) Before work-shift: 1.72 ± 3.54 i After work-shift: 2.89 ± 5.14 i 5 h after work-shift: 4.03 ± 7.56 i 17 h after work-shift: 1.50 ± 2.58 i YG1041 (+S9 mix) Before work-shift: 5.79 ± 11.31 i After work-shift: 10.42 ± 12.95 i 5 h after work-shift: 9.62 ± 17.58 i 17 h after work-shift: 4.33 ± 6.42 i YG1041 (-S9 mix) Before work-shift: 0.35 ± 1.51 i After work-shift: 0.71 ± 2.90 i 5 h after work-shift: 0.91 ± 1.96 i 17 h after work-shift: 1.03 ± 2.33 i | A good correlation between air particulate levels and the test results with TA98S (post-shift) and with YG1041 (pre-shift and post-shift). Urinary 1-hydroxypyrene correlated with the test results with YG1041S (pre-shift, after-shift and 5 h after-shift) while 3-hydroxybenzo(a)pyrene correlated with those obtained with YG1041S (after-shift). | [18] | |
31 | 37 ± 10 | |||||
Truck engine-testing facility staff | Exposure to diesel engine exhaust | Salmonella typhimurium YG1041 (+S9 mix) | All: 13.0 ± 10.1 cc Exposure to 6.1–39.0 µg/m3: 6.7 ± 4.8 cc Exposure to 39.1–54.5 µg/m3: 15.15 ± 9.4 cc Exposure to 54.6–107.7 µg/m3: 19.6 ± 12.9 cc | Positive exposure-response trends between elemental carbon and urinary mutagenicity were detected among subjects exposed to elemental carbon concentrations below the European occupational exposure limit (50 µg/m3) | [24] | |
20 | 43.2 ± 6.5 | |||||
Controls | Unexposed | 5.6 ± 4.4 cc | ||||
15 | 39.4 ± 8.8 | |||||
Traffic policemen | Working cycle consisted of six consecutive working days followed by two days off. | Salmonella typhimurium YG1024 (+S9 mix) Negative control: DMSO Positive control: 2-Aminofluorene | Pre-shift on day 1: 0.021 ± 0.011 hh Post-shift on day 6: 0.062 ± 0.021 hh | Correlation of 1-hydroxypyrene with mutagenic activity | [55] | |
58 | 47 ± 10.2 | |||||
Textile industry workers | Dye processing (most commonly used dyes are arylamine-related chemicals) | Salmonella typhimurium TA98 +S9 mix or + β-glucuronidase (Distinguishes between slow and fast CYP1A2 activity) (24 h-urine sample) | Presence of β-glucuronidase:
| No association with smoking habits. | [50] | |
117 | 29.41 ± 9.71 | |||||
Controls | Presence of β-glucuronidase:
| |||||
117 | 27.44 ± 9.27 | |||||
Chemical factory workers | Dinitrotoluenes and mononitrotoluenes manufacturing | Salmonella typhimurium YG1041 (−S9 mix) | Unhydrolyzed urine: 46.2 k Enzymatically hydrolyzed urine: 127 k Acid-hydrolyzed urine: 354.2 k | Urinary mutagenicity correlated with both metabolites of Dinitrotoluenes in urine and Dinitrotoluenes levels in blood. Weak and non-significant correlation with mononitrotoluenes and their metabolites | [34] | |
24 | -- | |||||
Plastic factory workers | Vinyl chloride, plastic monomers | Salmonella typhimurium TA98 and TA100 strains + β-glucuronidase Negative and positive controls commonly accepted for the Ames test were also applied [14]. | TA98: 79.46 l | Not explored | [51] | |
32 | -- | |||||
Hospital pharmacy staff | Cytostatic drugs | TA98 (− β-glucuronidase): 10.99 l TA98 (+ β-glucuronidase): 14.28 l | ||||
10 | -- | |||||
Pharmaceutical factory workers | Daunomycin and its precursors | TA98 (− β-glucuronidase): 22.43 l TA98 (+ β-glucuronidase): 7.43 l TA100 (− β-glucuronidase): 84.71 l | ||||
33 | -- | |||||
Rubber manufacturing | Workers of nine companies (three rubber tire/belts, five general rubber goods, and one retreading company | Salmonella typhimurium YG1024 (+S9 mix) Negative control: DMSO | Non-work day: 18,212.32–89,704.16 m Work-week 9049.6–103,731.04 m (24 h urine samples): | Interaction of slow acetylation status on the correlation between urinary mutagenicity and DNA adducts in blood | [53] | |
104 | -- | |||||
Rubber manufacturing | Associated with inhalable particulate and dermal exposure | Salmonella typhimurium YG1024 (+S9 mix) Negative control: DMSO; Positive control: 2-Aminopyrene | After a workweek: +1.82 × 107 n | Slow acetylation phenotype and mild skin aberrations were associated with an increased urinary mutagenicity. | [52] | |
105 | 37.9 ± 9.0 | |||||
Bus drivers—work day | Heavily exposed to air pollution | Salmonella typhimurium YG1021 (+ S9 mix) Negative control: DMSO Positive control: 2-Aminoanthracene | 2.35 × 10−6 (−7.0 × 10−8– 9.04 × 10−6) o | Women bus drivers had higher mutagenic activity than men and slow acetylators had lower mutagenic activity. Exposure to vehicle exhaust increased urinary mutagenic activity and doing exercise in leisure time decreased urinary mutagenic activity. No influence of age, gender, NAT2 phenotype or of lifestyle factors in mail carriers. No correlation was found between individual concentrations of 1-hydroxypyrene and urinary mutagenicity | [56] | |
57 | 45 (27–60) | |||||
Bus drivers—day off | 2.42 × 10−6 (−7.7 × 10−7–6.71 × 10−6) o | |||||
60 | 45 (27–60) | |||||
Mail carriers—work day | 1.25 × 10−6 (−2.74 × 10−6–6.72 × 10−6) o | |||||
88 | 38 (20–60) | |||||
Mail carriers—day off | 7.6 × 10−7 (−7.9 × 10−7–2.04 × 10−6) o | |||||
5 | 38 (28–58) | |||||
Farmers | Male farmers spraying chlorothalonil, a fungicide over two spraying seasons (with two farmers participating twice). S0: before the beginning of the working day; S1: the morning of the day of spraying; S2: the evening of the same day after spraying operations S3: in the morning of the day after. | Salmonella typhimurium TA97a, TA98, TA100, TA102. (+ and −S9 mix) Different urine concentrations: Negative control: spontaneous revertants were previously established. Positive control: systematically used for each strain in both conditions (not specified). | p TA97a (−S9 mix): non-smokers: S0: n.d.—1.1; S1: 0.8–1.2; S2: 1.0–1.6; S3: 1.0–1.3; smokers: S0:0.9–1.2; S1: 1.0–1.2; S2: 0.9–1.2; S3: n.d.−1.5. TA97a (+S9 mix): non-smokers: S0: n.d.−1.2; S1: 0.9–1.6; S2: 0.9–1.3 S3: 1.0–1.3; smokers: S0: 0.8–1.1; S1: 1.0–1.4: S2: 1.1–1.2; S3: n.d.−1.1. TA98 (−S9 mix): non-smokers: S0: n.d.−1.4; S1: 0.9–1.4; S2: 1.0–1.4; S3: 0.9–1.6; smokers: S0: 0.9–1.2; S1: 1.0–1.1; S2: 1.0–1.3; S3: 1.0–1.3. TA98 (+S9 mix): non-smokers: S0: n.d.—1.3; S1: n.d.−1.3; S2: 1.0–2.1; S3: 1.0–1.5; smokers: S0: 0.9–1.5; S1: 1.1–1.5; S2: 1.2–3.4; S3: 1.3–3.3. TA100 (−S9 mix): non-smokers: S0: n.d.−1.1; S1: 0.9–1.2; S2: 0.8–1.2; S3: 0.9–1.3; smokers: S0: 0.9–1.0; S1: 1.0–1.3; S2: 0.9–1.2; S3: n.d.−1.4. TA100 (+S9 mix): non-smokers: S0: n.d.−1.1; S1: 0.9–1.4; S2: 1.0–1.4; S3: 1.0–2.7; smokers: S0: 0.8–1.1; S1: 1.0–1.4; S2:1.0–1.2; S3: n.d.−1.3. TA102 (−S9 mix): non-smokers: S0: n.d.−1.3; S1: 1.0–1.7; S2: 0.9–1.9; S3: n.d.−1.7; smokers: S0: 1.0–1.2; S1: 1.0–1.2; S2: 1.0–1.2; S3: 1.0–1.4. TA102 (+S9 mix): non-smokers: S0: n.d.−1.2; S1: 0.8–1.2; S2: 0.8–1.2; S3: 0.9–1.3; smokers: S0: 1.0–1.3; S1: 0.8–1.5; S2: 1.0–1.2; S3: 1.0–1.8. | No relationships between the relative changes in the number of revertants (adjusted for urine concentration) and any exposure parameters available: area sprayed, number of tanks prepared and time free of exposure to any pesticide. | [59] | |
14 | 36.1 (25–50) | |||||
Farmers | Male fruit growers spraying fungicide captan for apple or pear trees over two spraying seasons (1998 and 2000). S1: morning before the day of spraying. S2: evening of the day of spraying. S3: morning of the day after captan exposure. | Salmonella typhimurium TA97a (−S9 mix), TA102 (−S9 mix), YG1041 (+S9 mix) Negative control: DMSO + spontaneous revertants were previously stablished Positive control: Acridine Mutagen ICR 191 (0.4 ng/plate; TA97a), mitomycine C (0.4 ng/plate), and benzo(a)pyrene (0.5 mg/plate) for quality control of S9 mix. | q YG1041 (+S9 mix): S1: 1.29 ± 0.17; S2: 1.42 ± 0.46; S3: 1.34 ± 0.26. TA97a (−S9 mix): S1: 1.04 ± 0.11; S2: 1.09 ± 0.10; S3: 1.07 ± 0.11. TA102 (−S9 mix): S1: 1.11 ± 0.10; S2: 1.08 ± 0.09; S3: 1.07 ± 0.10 | For YG1041 results: no association with parameters related to confounding factors, except for smoking consumption effect. TA102: no association with pesticide exposure S1; positive correlation with predicted absorbed dose of captan (p < 0.01 linear regression, p = 0.03, Spearman’s ro = 0.40) at S3 but not at S2; positive correlation (p = 0.07 linear regression analysis, Spearman’s ro =0.56, p = 0.002) was observed between the difference (S3–S1) of the mutagenic power of urine samples (TA102) and the predicted absorbed dose of captan. | [60] | |
12 (1998) | 39 (22–53) | |||||
17 (2000) | 40 (20–55) |
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, D.J. The classification and properties of toxic hazards BT. In Toxic Trauma: A Basic Clinical Guide; Baker, D.J., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 25–47. [Google Scholar] [CrossRef]
- IARC. Chemical Agents and Related Occupations. International Agency for Research on Cancer (IARC). 2012. Available online: https://publications.iarc.fr/123 (accessed on 18 June 2021).
- Park, M.; Joo, H.S.; Lee, K.; Jang, M.; Kim, S.D.; Kim, I.; Borlaza, L.J.S.; Lim, H.; Shin, H.; Chung, K.H.; et al. Differential toxicities of fine particulate matters from various sources. Sci. Rep. 2018, 8, 17007. [Google Scholar] [CrossRef] [Green Version]
- Claxton, L.D.; Matthews, P.P.; Warren, S.H. The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat. Res. Mutat. Res. 2004, 567, 347–399. [Google Scholar] [CrossRef]
- Engwa, G.A.; Ferdinand, P.U.; Nwalo, F.N.; Unachukwu, M.N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World-New Tricks for an Old Dog; IntechOpen: London, UK, 2019; pp. 77–100. [Google Scholar] [CrossRef] [Green Version]
- IARC. Agents Classified by the IARC Monographs, Volumes 1–131. International Agency for Research on Cancer (IARC). 2022. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 22 December 2021).
- Moreno-Ríos, A.L.; Tejeda-Benítez, L.P.; Bustillo-Lecompte, C.F. Sources, characteristics, toxicity, and control of ultrafine particles: An overview. Geosci. Front. 2021, 13, 101147. [Google Scholar] [CrossRef]
- Bulka, C.M.; Daviglus, M.L.; Persky, V.W.; A Durazo-Arvizu, R.; Lash, J.P.; Elfassy, T.; Lee, D.J.; Ramos, A.R.; Tarraf, W.; Argos, M. Association of occupational exposures with cardiovascular disease among US Hispanics/Latinos. Heart 2019, 105, 439–448. [Google Scholar] [CrossRef]
- De Matteis, S.; Heederik, D.; Burdorf, A.; Colosio, C.; Cullinan, P.; Henneberger, P.K.; Olsson, A.; Raynal, A.; Rooijackers, J.; Santonen, T.; et al. Current and new challenges in occupational lung diseases. Eur. Respir. Rev. 2017, 26, 170080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorkamp, K.; Castaño, A.; Antignac, J.-P.; Boada, L.D.; Cequier, E.; Covaci, A.; López, M.E.; Haug, L.S.; Kasper-Sonnenberg, M.; Koch, H.M.; et al. Biomarkers, matrices and analytical methods targeting human exposure to chemicals selected for a European human biomonitoring initiative. Environ. Int. 2021, 146, 106082. [Google Scholar] [CrossRef]
- Demarini, D.M. Urinary Mutagenicity: A Biomarker of Genotoxic Exposures via Air, Water, and Diet. 2007. Available online: https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NHEERL&dirEntryID=162967 (accessed on 20 August 2021).
- Ames, B.N.; Lee, F.D.; Durston, W.E. An Improved Bacterial Test System for the Detection and Classification of Mutagens and Carcinogens. Proc. Natl. Acad. Sci. USA 1973, 70, 782–786. [Google Scholar] [CrossRef] [Green Version]
- Ames, B.N.; Durston, W.E.; Yamasaki, E.; Lee, F.D. Carcinogens are Mutagens: A Simple Test System Combining Liver Homogenates for Activation and Bacteria for Detection. Proc. Natl. Acad. Sci. USA 1973, 70, 2281–2285. [Google Scholar] [CrossRef]
- Jeddi, M.Z.; Hopf, N.B.; Viegas, S.; Price, A.B.; Paini, A.; van Thriel, C.; Benfenati, E.; Ndaw, S.; Bessems, J.; Behnisch, P.A.; et al. Towards a systematic use of effect biomarkers in population and occupational biomonitoring. Environ. Int. 2021, 146, 106257. [Google Scholar] [CrossRef]
- Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. Environ. Mutagen. Relat. Subj. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- OECD. Test No. 471: Bacterial Reverse Mutation Test; Organisation for Economic Co-operation and Development: Paris, France, 2020. [Google Scholar] [CrossRef] [Green Version]
- Barros, B.; Oliveira, M.; Morais, S. Urinary biohazard markers in firefighters. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2021; pp. 243–319. [Google Scholar] [CrossRef]
- Nikoyan, A.; De Méo, M.; Sari-Minodier, I.; Chaspoul, F.; Gallice, P.; Botta, A. Evaluation of a battery of Salmonella typhimurium tester strains for biomonitoring of mutagenic polycyclic aromatic hydrocarbons, nitroarenes and aromatic amines. Mutat. Res. Toxicol. Environ. Mutagen. 2007, 626, 88–101. [Google Scholar] [CrossRef]
- Watanabe, M.; Sofuni, T.; Nohmi, T. Comparison of the sensitivity of Salmonella typhimurium strains YG1024 and YG1012 for detecting the mutagenicity of aromatic amines and nitroarenes. Mutat. Res. Lett. 1993, 301, 7–12. [Google Scholar] [CrossRef]
- Kuenemann-Migeot, C.; Callais, F.; Momas, I.; Festy, B. Use of Salmonella typhimurium TA 98, YG 1024 and YG 1021 and deconjugating enzymes for evaluating the mutagenicity from smokers’ urine. Mutat. Res. Toxicol. Environ. Mutagen. 1997, 390, 283–291. [Google Scholar] [CrossRef]
- Sui, H.; Kawakami, K.; Sakurai, N.; Hara, T.; Nohmi, T. Improvement and Evaluation of High Throughput Fluctuation Ames Test Using 384-well Plate with Salmonella typhimurium TA100 and TA98. Genes Environ. 2009, 31, 47–55. [Google Scholar] [CrossRef]
- Kristina, D.; Alves, M. A Aplicabilidade de Combinações Seletivas de Linhagens S. typhimurium na Caracterização da Mutagenicidade de Amostras de ar. Master’s Thesis, Faculdade de Ciências Farmacêuticas, São Paulo, Brazil, 2011. Unpublished. [Google Scholar] [CrossRef] [Green Version]
- Hagiwara, Y.; Watanabe, M.; Oda, Y.; Sofuni, T.; Nohmi, T. Specificity and sensitivity of Salmonella typhimurium YG1041 and YG1042 strains possesing elevated levels of both nitroreductase and acetyltransferase activity. Mutat. Res. Mutagen. Relat. Subj. 1993, 291, 171–180. [Google Scholar] [CrossRef]
- Wong, J.Y.Y.; Vermeulen, R.; Dai, Y.; Hu, W.; Martin, W.K.; Warren, S.H.; Liberatore, H.K.; Ren, D.; Duan, H.; Niu, Y.; et al. Elevated urinary mutagenicity among those exposed to bituminous coal combustion emissions or diesel engine exhaust. Environ. Mol. Mutagen. 2021, 62, 458–470. [Google Scholar] [CrossRef]
- Kato, M.; Loomis, D.; Brooks, L.M.; Gattas, G.F.; Gomes, L.; Carvalho, A.B.; Rego, M.A.; DeMarini, D.M. Urinary biomarkers in charcoal workers exposed to wood smoke in Bahia State, Brazil. Cancer Epidemiol. Biomark. Prev. 2004, 13, 1005–1012. [Google Scholar] [CrossRef]
- Long, A.S.; Lemieux, C.L.; Yousefi, P.; Ruiz-Mercado, I.; Lam, N.L.; Orellana, C.R.; White, P.A.; Smith, K.R.; Holland, N. Human urinary mutagenicity after wood smoke exposure during traditional temazcal use. Mutagenesis 2014, 29, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Ishidate, M.; Nohmi, T. Sensitive method for the detection of mutagenic nitroarenes and aromatic amines: New derivatives of Salmonella typhimurium tester strains possessing elevated O-acetyltransferase levels. Mutat. Res. Mutagen. Relat. Subj. 1990, 234, 337–348. [Google Scholar] [CrossRef]
- Einistö, P.; Nohmi, T.; Watanabe, M.; Ishidate, M. Sensitivity of Salmonella typhimurium YG1024 to urine mutagenicity caused by cigarette smoking. Mutat. Res. Lett. 1990, 245, 87–92. [Google Scholar] [CrossRef]
- Oguri, A.; Karakama, K.; Arakawa, N.; Sugimura, T.; Wakabayashi, K. Detection of mutagenicity of diphenyl ether herbicides in Salmonella typhimurium YG1026 and YG1021. Mutat. Res. Lett. 1995, 346, 57–60. [Google Scholar] [CrossRef]
- Nohmi, T.; Watanabe, M. Mutagenicity of carcinogenic heterocyclic amines in Salmonella typhimurium YG strains and transgenic rodents including gpt delta. Genes Environ. 2021, 43, 38. [Google Scholar] [CrossRef] [PubMed]
- Sabbioni, G.; Sepai, O.; Norppa, H.; Yan, H.; Hirvonen, A.; Zheng, Y.; Järventaus, H.; Back, B.; Brooks, L.R.; Warren, S.H.; et al. Comparison of biomarkers in workers exposed to 2,4,6-trinitrotoluene. Biomarkers 2007, 12, 21–37. [Google Scholar] [CrossRef]
- Zhang, J.; Bao, J.; Wang, R.; Geng, Z.; Chen, Y.; Liu, X.; Xie, Y.; Jiang, L.; Deng, Y.; Liu, G.; et al. A multicenter study of biological effects assessment of pharmacy workers occupationally exposed to antineoplastic drugs in Pharmacy Intravenous Admixture Services. J. Hazard. Mater. 2016, 315, 86–92. [Google Scholar] [CrossRef]
- Varella, S.D.; Rampazo, R.A.; Varanda, E.A. Urinary mutagenicity in chemical laboratory workers exposed to solvents. J. Occup. Health 2008, 50, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Sabbioni, G.; Jones, C.R.; Sepai, O.; Hirvonen, A.; Norppa, H.; Järventaus, H.; Glatt, H.; Pomplun, D.; Yan, H.; Brooks, L.R.; et al. Biomarkers of Exposure, Effect, and Susceptibility in Workers Exposed to Nitrotoluenes. Cancer Epidemiol. Biomark. Prev. 2006, 15, 559–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuljukka-Rabb, T.; Nylund, L.; Vaaranrinta, R.; Savela, K.; Mutanen, P.; Veidebaum, T.; Sorsa, M.; Rannug, A.; Peltonen, K. The effect of relevant genotypes on PAH exposure-related biomarkers. J. Expo. Sci. Environ. Epidemiol. 2002, 12, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, M.H.G.; Saber, A.T.; Pedersen, J.E.; Pedersen, P.B.; Clausen, P.A.; Løhr, M.; Kermanizadeh, A.; Loft, S.; E Ebbehøj, N.; Hansen, Å.M.; et al. Assessment of polycyclic aromatic hydrocarbon exposure, lung function, systemic inflammation, and genotoxicity in peripheral blood mononuclear cells from firefighters before and after a work shift. Environ. Mol. Mutagen. 2018, 59, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Abreu, A.; Costa, C.; e Silva, S.P.; Morais, S.; Pereira, M.D.C.; Fernandes, A.; de Andrade, V.M.; Teixeira, J.P.; Costa, S. Wood smoke exposure of Portuguese wildland firefighters: DNA and oxidative damage evaluation. J. Toxicol. Environ. Health Part A 2017, 80, 596–604. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Costa, S.; Vaz, J.; Fernandes, A.; Slezakova, K.; Delerue-Matos, C.; Teixeira, J.P.; Pereira, M.C.; Morais, S. Firefighters exposure to fire emissions: Impact on levels of biomarkers of exposure to polycyclic aromatic hydrocarbons and genotoxic/oxidative-effects. J. Hazard. Mater. 2020, 383, 121179. [Google Scholar] [CrossRef]
- Gaughan, D.M.; Siegel, P.D.; Hughes, M.D.; Chang, C.-Y.; Ms, B.F.L.; Ms, C.R.C.; Ms, J.C.R.; Kales, S.F.; Bs, M.C.; Kobzik, L.; et al. Arterial stiffness, oxidative stress, and smoke exposure in wildland firefighters. Am. J. Ind. Med. 2014, 57, 748–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keir, J.L.A.; Akhtar, U.S.; Matschke, D.M.J.; Kirkham, T.L.; Chan, H.M.; Ayotte, P.; White, P.A.; Blais, J.M. Elevated Exposures to Polycyclic Aromatic Hydrocarbons and Other Organic Mutagens in Ottawa Firefighters Participating in Emergency, On-Shift Fire Suppression. Environ. Sci. Technol. 2017, 51, 12745–12755. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-M.; Warren, S.H.; DeMarini, D.M.; Song, C.C.; Adetona, O. Urinary mutagenicity and oxidative status of wildland firefighters working at prescribed burns in a Midwestern US forest. Occup. Environ. Med. 2020, 78, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.-R.; Wang, C.-J.; Wu, M.-T.; Pan, C.-H.; Kuo, C.-Y.; Yang, H.-J.; Chang, L.W.; Hu, C.-W. Repeated Measurements of Urinary Methylated/Oxidative DNA Lesions, Acute Toxicity, and Mutagenicity in Coke Oven Workers. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3381–3389. [Google Scholar] [CrossRef] [Green Version]
- Siwinska, E.; Mielżyńska, D.; Kapka, L. Association between urinary 1-hydroxypyrene and genotoxic effects in coke oven workers. Occup. Environ. Med. 2004, 61, e10. [Google Scholar] [CrossRef]
- Simioli, P.; Lupi, S.; Gregorio, P.; Siwinska, E.; Mielzynska, D.; Clonfero, E.; Pavanello, S. Non-smoking coke oven workers show an occupational PAH exposure-related increase in urinary mutagens. Mutat. Res. Toxicol. Environ. Mutagen. 2004, 562, 103–110. [Google Scholar] [CrossRef]
- Yun, B.H.; Guo, J.; Bellamri, M.; Turesky, R.J. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. Mass Spectrom. Rev. 2018, 39, 55–82. [Google Scholar] [CrossRef]
- Fent, K.W.; Eisenberg, J.; Evans, D.E.; Sammons, D.; Robertson, S.; Striley, C.; Snawder, J.; Mueller, C.; Kochenderfer, V.; Pleil, J.D.; et al. Health Hazard Evaluation Report: Evaluation of Dermal Exposure to Polycyclic Aromatic Hydrocarbons in Fire Fighters; NIOSH HETA Report No. 2010-0156-3196; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health: Washington, DC, USA, 2013.
- Keir, J.L.; Akhtar, U.S.; Matschke, D.M.; White, P.A.; Kirkham, T.L.; Chan, H.M.; Blais, J.M. Polycyclic aromatic hydrocarbon (PAH) and metal contamination of air and surfaces exposed to combustion emissions during emergency fire suppression: Implications for firefighters’ exposures. Sci. Total Environ. 2020, 698, 134211. [Google Scholar] [CrossRef]
- Anderson, S.E.; Meade, B.J. Potential Health Effects Associated with Dermal Exposure to Occupational Chemicals. Environ. Health Insights 2014, 8, EHI-S15258. [Google Scholar] [CrossRef] [Green Version]
- WHO. Dermal Exposure—Inter-Organization Programme for the Sound Management of Chemicals; World Health Organization (WHO): Geneva, Switzerland, 2014; Available online: https://apps.who.int/iris/handle/10665/336512?locale-attribute=pt&show=full (accessed on 30 July 2021).
- Fanlo, A.; Sinuès, B.; Mayayo, E.; Bernal, L.; Soriano, A.; Martínez-Jarreta, B.; Martínez-Ballarín, E. Urinary Mutagenicity, CYP1A2 and NAT2 Activity in Textile Industry Workers. J. Occup. Health 2004, 46, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Szendi, K.; Hornyák, L.; Varga, C. Multi-endpoint biological monitoring in combined, carcinogenic occupational exposures. Int. J. Environ. Health Res. 2017, 27, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, R.; Bos, R.P.; Pertijs, J.; Kromhout, H. Exposure related mutagens in urine of rubber workers associated with inhalable particulate and dermal exposure. Occup. Environ. Med. 2003, 60, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, S.; Talaska, G.; Jönsson, B.A.; Kromhout, H.; Vermeulen, R. Polycyclic Aromatic Hydrocarbon Exposure, Urinary Mutagenicity, and DNA Adducts in Rubber Manufacturing Workers. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1452–1459. [Google Scholar] [CrossRef] [Green Version]
- Soliman, M. Cancer causing chemicals. In Cancer Causing Substances; Atroshi, F., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Ledda, C.; Loreto, C.; Bracci, M.; Lombardo, C.; Romano, G.; Cinà, D.; Mucci, N.; Castorina, S.; Rapisarda, V. Mutagenic and DNA repair activity in traffic policemen: A case-crossover study. J. Occup. Med. Toxicol. 2018, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Hansen, Å.M.; Wallin, H.; Binderup, M.L.; Dybdahl, M.; Autrup, H.; Loft, S.; Knudsen, L.E. Urinary 1-hydroxypyrene and mutagenicity in bus drivers and mail carriers exposed to urban air pollution in Denmark. Mutat. Res. Toxicol. Environ. Mutagen. 2004, 557, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Mennecozzi, M.; Landesmann, B.; Palosaari, T.; Harris, G.; Whelan, M. Sex Differences in Liver Toxicity—Do Female and Male Human Primary Hepatocytes React Differently to Toxicants In Vitro? PLoS ONE 2015, 10, e0122786. [Google Scholar] [CrossRef] [PubMed]
- Adetona, A.; Martin, W.K.; Warren, S.H.; Hanley, N.M.; Adetona, O.; Zhang, J.; Simpson, C.; Paulsen, M.H.; Rathbun, S.L.; Wang, J.-S.; et al. Urinary mutagenicity and other biomarkers of occupational smoke exposure of wildland firefighters and oxidative stress. Inhal. Toxicol. 2019, 31, 73–87. [Google Scholar] [CrossRef]
- André, V.; Lebailly, P.; Pottier, D.; Deslandes, E.; De Méo, M.; Henry-Amar, M.; Gauduchon, P. Urine mutagenicity of farmers occupationally exposed during a 1-day use of chlorothalonil and insecticides. Int. Arch. Occup. Environ. Health 2003, 76, 55–62. [Google Scholar] [CrossRef]
- Lebailly, P.; Devaux, A.; Pottier, D.; De Meo, M.; Andre, V.; Baldi, I.; Severin, F.; Bernaud, J.; Durand, B.; Henry-Amar, M.; et al. Urine mutagenicity and lymphocyte DNA damage in fruit growers occupationally exposed to the fungicide captan. Occup. Environ. Med. 2003, 60, 910–917. [Google Scholar] [CrossRef] [Green Version]
- Papadopoli, R.; Nobile, C.G.A.; Trovato, A.; Pileggi, C.; Pavia, M. Chemical risk and safety awareness, perception, and practices among research laboratories workers in Italy. J. Occup. Med. Toxicol. 2020, 15, 17. [Google Scholar] [CrossRef]
(A) Strain with Metabolic Activation | (B) Strain without Metabolic Activation | ||
---|---|---|---|
Chemical | CAS No. | Chemical | CAS No. |
9,10-Dimethylantrancene | 781-43-1 | Sodium Azide | 26626-22-8 |
7,12-Dimethylbenzantrancene | 57-97-6 | 2-Nitrofluorene | 607-57-8 |
Congo Red * | 573-58-0 | 9-Aminoacridine | 90-45-9 |
Benzo(a)pyrene | 50-32-8 | ICR191 | 17070-45-0 |
Cyclophosphamide (monohydrate) | 50-18-0 (6055-19-2) | Cumene hydroperoxide | 80-15-9 |
2-Aminoanthracene | 613-13-8 | Mitomycin C | 50-07-7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros, B.; Oliveira, M.; Morais, S. Unveiling Urinary Mutagenicity by the Ames Test for Occupational Risk Assessment: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 13074. https://doi.org/10.3390/ijerph192013074
Barros B, Oliveira M, Morais S. Unveiling Urinary Mutagenicity by the Ames Test for Occupational Risk Assessment: A Systematic Review. International Journal of Environmental Research and Public Health. 2022; 19(20):13074. https://doi.org/10.3390/ijerph192013074
Chicago/Turabian StyleBarros, Bela, Marta Oliveira, and Simone Morais. 2022. "Unveiling Urinary Mutagenicity by the Ames Test for Occupational Risk Assessment: A Systematic Review" International Journal of Environmental Research and Public Health 19, no. 20: 13074. https://doi.org/10.3390/ijerph192013074
APA StyleBarros, B., Oliveira, M., & Morais, S. (2022). Unveiling Urinary Mutagenicity by the Ames Test for Occupational Risk Assessment: A Systematic Review. International Journal of Environmental Research and Public Health, 19(20), 13074. https://doi.org/10.3390/ijerph192013074