Predictive Value of Repeated Jump Testing on Nomination Status in Professional and under 19 Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure and Instrumentation
2.3. Data Acquisition
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bradley, P.S.; Sheldon, W.; Wooster, B.; Olsen, P.; Boanas, P.; Krustrup, P. High-intensity running in English FA Premier League soccer matches. J. Sports Sci. 2009, 27, 159–168. [Google Scholar] [CrossRef]
- Di Salvo, V.; Gregson, W.; Atkinson, G.; Tordoff, P.; Drust, B. Analysis of high intensity activity in Premier League soccer. Int. J. Sports Med. 2009, 30, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.; Orme, P.; Di Michele, R.; Close, G.L.; Milsom, J.; Morgans, R.; Drust, B.; Morton, J.P. Quantification of Seasonal-Long Physical Load in Soccer Players With Different Starting Status From the English Premier League: Implications for Maintaining Squad Physical Fitness. Int. J. Sports Physiol. Perform. 2016, 11, 1038–1046. [Google Scholar] [CrossRef] [Green Version]
- Reilly, T.; Bangsbo, J.; Franks, A. Anthropometric and physiological predispositions for elite soccer. J. Sports Sci. 2000, 18, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Toselli, S.; Mauro, M.; Grigoletto, A.; Cataldi, S.; Benedetti, L.; Nanni, G.; Di Miceli, R.; Aiello, P.; Gallamini, D.; Fischetti, F.; et al. Assessment of Body Composition and Physical Performance of Young Soccer Players: Differences According to the Competitive Level. Biology 2022, 11, 823. [Google Scholar] [CrossRef]
- Nassis, G.P.; Massey, A.; Jacobsen, P.; Brito, J.; Randers, M.B.; Castagna, C.; Mohr, M.; Krustrup, P. Elite football of 2030 will not be the same as that of 2020: Preparing players, coaches, and support staff for the evolution. Scand. J. Med. Sci. Sports 2020, 30, 962–964. [Google Scholar] [CrossRef]
- Little, T.; Williams, A.G. Specificity of acceleration, maximum speed, and agility in professional soccer players. J. Strength Cond. Res. 2005, 19, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Rodriguez, A.; Cano-Caceres, F.J.; Figueiredo, A.; Fernandez-Garcia, J.C. Train Like You Compete? Physical and Physiological Responses on Semi-Professional Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 756. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.L.; Norton, K.I. Evolution of World Cup soccer final games 1966–2010: Game structure, speed and play patterns. J. Sci. Med. Sport 2014, 17, 223–228. [Google Scholar] [CrossRef]
- Dodd, K.D.; Newans, T.J. Talent identification for soccer: Physiological aspects. J. Sci. Med. Sport 2018, 21, 1073–1078. [Google Scholar] [CrossRef]
- Relvas, H.; Littlewood, M.; Nesti, M.; Gilbourne, D.; Richardson, D. Organizational Structures and Working Practices in Elite European Professional Football Clubs: Understanding the Relationship between Youth and Professional Domains. Eur. Sport Manag. Q. 2010, 10, 165–187. [Google Scholar] [CrossRef]
- Balliauw, M.; Bosmans, J.; Pauwels, D. Does the quality of a youth academy impact a football player’s market value? Sport Bus. Manag. Int. J. 2021, 12, 269–283. [Google Scholar] [CrossRef]
- Larkin, P.; Reeves, M.J. Junior-elite football: Time to re-position talent identification? Soccer Soc. 2018, 19, 1183–1192. [Google Scholar] [CrossRef]
- Reeves, M.J.; Roberts, S.J. A bioecological perspective on talent identification in junior-elite soccer: A Pan-European perspective. J. Sports Sci. 2020, 38, 1259–1268. [Google Scholar] [CrossRef] [Green Version]
- Barraclough, S.; Till, K.; Kerr, A.; Emmonds, S. Methodological Approaches to Talent Identification in Team Sports: A Narrative Review. Sports 2022, 10, 81. [Google Scholar] [CrossRef]
- Williams, A.M.; Reilly, T. Talent identification and development in soccer. J. Sports Sci. 2000, 18, 657–667. [Google Scholar] [CrossRef]
- Meylan, C.; Cronin, J.; Oliver, J.; Hughes, M. Talent Identification in Soccer: The Role of Maturity Status on Physical, Physiological and Technical Characteristics. Int. J. Sports Sci. Coach. 2010, 5, 571–592. [Google Scholar] [CrossRef]
- Pino-Ortega, J.; Rojas-Valverde, D.; Gomez-Carmona, C.D.; Rico-Gonzalez, M. Training Design, Performance Analysis, and Talent Identification-A Systematic Review about the Most Relevant Variables through the Principal Component Analysis in Soccer, Basketball, and Rugby. Int. J. Environ. Res. Public Health 2021, 18, 2642. [Google Scholar] [CrossRef] [PubMed]
- Vaeyens, R.; Lenoir, M.; Williams, A.M.; Philippaerts, R.M. Talent identification and development programmes in sport: Current models and future directions. Sports Med. 2008, 38, 703–714. [Google Scholar] [CrossRef]
- Vaeyens, R.; Malina, R.M.; Janssens, M.; Van Renterghem, B.; Bourgois, J.; Vrijens, J.; Philippaerts, R.M. A multidisciplinary selection model for youth soccer: The Ghent Youth Soccer Project. Br. J. Sports Med. 2006, 40, 928–934; discussion 934. [Google Scholar] [CrossRef]
- e Silva, M.C.; Figueiredo, A.J.; Simoes, F.; Seabra, A.; Natal, A.; Vaeyens, R.; Philippaerts, R.; Cumming, S.P.; Malina, R. Discrimination of u-14 soccer players by level and position. Int. J. Sports Med. 2010, 31, 790–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deprez, D.; Fransen, J.; Boone, J.; Lenoir, M.; Philippaerts, R.; Vaeyens, R. Characteristics of high-level youth soccer players: Variation by playing position. J. Sports Sci. 2015, 33, 243–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonaus, C.; Muller, E. Using physiological data to predict future career progression in 14- to 17-year-old Austrian soccer academy players. J. Sports Sci. 2012, 30, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- le Gall, F.; Carling, C.; Williams, M.; Reilly, T. Anthropometric and fitness characteristics of international, professional and amateur male graduate soccer players from an elite youth academy. J. Sci. Med. Sport 2010, 13, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Dolci, F.; Hart, N.H.; Kilding, A.E.; Chivers, P.; Piggott, B.; Spiteri, T. Physical and Energetic Demand of Soccer: A Brief Review. Strength Cond. J. 2020, 42, 70–77. [Google Scholar] [CrossRef]
- McBurnie, A.J.; Dos’Santos, T. Multidirectional Speed in Youth Soccer Players: Theoretical Underpinnings. Strength Cond. J. 2022, 44, 15–33. [Google Scholar] [CrossRef]
- Prasad, R.; Khetmalis, M.S. Relationship between football skill test with YO–YO intermittent recovery test. Int. J. Physiol. Nutr. Phys. Educ. 2021, 6, 14–16. [Google Scholar]
- Vandendriessche, J.B.; Vaeyens, R.; Vandorpe, B.; Lenoir, M.; Lefevre, J.; Philippaerts, R.M. Biological maturation, morphology, fitness, and motor coordination as part of a selection strategy in the search for international youth soccer players (age 15–16 years). J. Sports Sci. 2012, 30, 1695–1703. [Google Scholar] [CrossRef]
- Massa, M.; Moreira, A.; Costa, R.A.; Lima, M.R.; Thiengo, C.R.; Marquez, W.Q.; Coutts, A.J.; Aoki, M.S. Biological maturation influences selection process in youth elite soccer players. Biol. Sport 2022, 39, 435–441. [Google Scholar] [CrossRef]
- Murr, D.; Feichtinger, P.; Larkin, P.; O’Connor, D.; Honer, O. Psychological talent predictors in youth soccer: A systematic review of the prognostic relevance of psychomotor, perceptual-cognitive and personality-related factors. PLoS ONE 2018, 13, e0205337. [Google Scholar] [CrossRef] [Green Version]
- Murr, D.; Raabe, J.; Honer, O. The prognostic value of physiological and physical characteristics in youth soccer: A systematic review. Eur. J. Sport Sci. 2018, 18, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.K.; Narvariya, P.; Weldon, A.; Talukdar, K.; Ramirez-Campillo, R. Can complex contrast training interventions improve aerobic endurance, maximal strength, and repeated sprint ability in soccer players? A systematic review and meta-analysis. Montenegrin J. Sports Sci. Med. 2022, 11, 45–55. [Google Scholar] [CrossRef]
- Çetin, O.; Koçak, M. Repeated Sprint Ability of Youth Football Players in the Same Age Category According to Playing Position and Competition Level. Montenegrin J. Sports Sci. Med. 2022, 11, 59–63. [Google Scholar] [CrossRef]
- Gomez-Piqueras, P.; Gonzalez-Villora, S.; Castellano, J.; Teoldo, I. Relation between the physical demands and success in professional soccer players. J. Hum. Sport Exerc. 2019, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Altmann, S.; Ringhof, S.; Neumann, R.; Woll, A.; Rumpf, M.C. Validity and reliability of speed tests used in soccer: A systematic review. PLoS ONE 2019, 14, e0220982. [Google Scholar] [CrossRef] [Green Version]
- Casartelli, N.; Muller, R.; Maffiuletti, N.A. Validity and reliability of the Myotest accelerometric system for the assessment of vertical jump height. J. Strength Cond. Res. 2010, 24, 3186–3193. [Google Scholar] [CrossRef]
- Petridis, L.; Utczas, K.; Troznai, Z.; Kalabiska, I.; Palinkas, G.; Szabo, T. Vertical Jump Performance in Hungarian Male Elite Junior Soccer Players. Res. Q. Exerc. Sport 2019, 90, 251–257. [Google Scholar] [CrossRef]
- Sieghartsleitner, R.; Zuber, C.; Zibung, M.; Charbonnet, B.; Conzelmann, A. Talent selection in youth football: Technical skills rather than general motor performance predict future player status of football talents. Curr. Issues Sport Sci. 2019, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.M.; Ford, P.R.; Drust, B. Talent identification and development in soccer since the millennium. J. Sports Sci. 2020, 38, 1199–1210. [Google Scholar] [CrossRef]
- Sieghartsleitner, R.; Zuber, C.; Zibung, M.; Conzelmann, A. Science or Coaches’ Eye?—Both! Beneficial Collaboration of Multidimensional Measurements and Coach Assessments for Efficient Talent Selection in Elite Youth Football. J. Sports Sci Med. 2019, 18, 32–43. [Google Scholar]
- Saward, C.; Hulse, M.; Morris, J.G.; Goto, H.; Sunderland, C.; Nevill, M.E. Longitudinal Physical Development of Future Professional Male Soccer Players: Implications for Talent Identification and Development? Front. Sports Act. Living 2020, 2, 578203. [Google Scholar] [CrossRef] [PubMed]
- Hulse, M.A.; Morris, J.G.; Hawkins, R.D.; Hodson, A.; Nevill, A.M.; Nevill, M.E. A field-test battery for elite, young soccer players. Int. J. Sports Med. 2013, 34, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.; Schorer, J.; Wattie, N. Compromising Talent: Issues in Identifying and Selecting Talent in Sport. Quest 2017, 70, 48–63. [Google Scholar] [CrossRef]
- Barreiros, A.; Cote, J.; Fonseca, A.M. Training and psychosocial patterns during the early development of Portuguese national team athletes. High Abil. Stud 2013, 24, 49–61. [Google Scholar] [CrossRef]
- Thompson, C.G.; Kim, R.S.; Aloe, A.M.; Becker, B.J. Extracting the Variance Inflation Factor and Other Multicollinearity Diagnostics from Typical Regression Results. Basic Appl. Soc. Psychol. 2017, 39, 81–90. [Google Scholar] [CrossRef]
- Midi, H.; Sarkar, S.K.; Rana, S. Collinearity diagnostics of binary logistic regression model. J. Interdiscip. Math. 2010, 13, 253–267. [Google Scholar] [CrossRef]
- Lavery, M.R.; Acharya, P.; Sivo, S.A.; Xu, L. Number of predictors and multicollinearity: What are their effects on error and bias in regression? Commun. Stat. Simul. Comput. 2017, 48, 27–38. [Google Scholar] [CrossRef]
- Höner, O.; Leyhr, D.; Kelava, A. The influence of speed abilities and technical skills in early adolescence on adult success in soccer: A long-term prospective analysis using ANOVA and SEM approaches. PLoS ONE 2017, 12, e0182211. [Google Scholar] [CrossRef] [Green Version]
- Suppiah, H.T.; Low, C.Y.; Chia, M. Detecting and developing youth athlete potential: Different strokes for different folks are warranted. Br. J. Sports Med. 2015, 49, 878–882. [Google Scholar] [CrossRef]
- Figueiredo, A.J.; Goncalves, C.E.; Tessitore, A. Bridging the gap between empirical results, actual strategies, and developmental programs in soccer. Int. J. Sports Physiol. Perform. 2014, 9, 540–543. [Google Scholar] [CrossRef]
- Sarmento, H.; Anguera, M.T.; Pereira, A.; Araujo, D. Talent Identification and Development in Male Football: A Systematic Review. Sports Med. 2018, 48, 907–931. [Google Scholar] [CrossRef]
- Mahar, M.T.; Welk, G.J.; Janz, K.F.; Laurson, K.; Zhu, W.M.; Baptista, F. Estimation of Lower Body Muscle Power from Vertical Jump in Youth. Meas. Phys. Educ. Exerc. 2022, 1–11. [Google Scholar] [CrossRef]
- Kons, R.L.; Ache-Dias, J.; Detanico, D.; Barth, J.; Dal Pupo, J. Is vertical jump height an indicator of athletes’ power output in different sport modalities? J. Strength Cond. Res. 2018, 32, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Bruton, A.; Gabel, L.; Nettlefold, L.; Macdonald, H.; Race, D.; McKay, H. Estimation of Peak Muscle Power From a Countermovement Vertical Jump in Children and Adolescents. J. Strength Cond. Res. 2019, 33, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Maulder, P.; Cronin, J. Horizontal and vertical jump assessment: Reliability, symmetry, discriminative and predictive ability. Phys. Ther. Sport 2005, 6, 74–82. [Google Scholar] [CrossRef]
- Rodriguez-Rosell, D.; Mora-Custodio, R.; Franco-Marquez, F.; Yanez-Garcia, J.M.; Gonzalez-Badillo, J.J. Traditional vs. Sport-Specific Vertical Jump Tests: Reliability, Validity, and Relationship With the Legs Strength and Sprint Performance in Adult and Teen Soccer and Basketball Players. J. Strength Cond. Res. 2017, 31, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Stolen, T.; Chamari, K.; Castagna, C.; Wisloff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef] [PubMed]
- Romero-Caballero, A.; Varela-Olalla, D.; Loens-Gutierrez, C. Fitness evaluation in young and amateur soccer players: Reference values for vertical jump and aerobic fitness in men and women. Sci. Sport 2021, 36, 141.e1–141.e7. [Google Scholar] [CrossRef]
- Boraczyński, M.; Boraczyński, T.; Podstawski, R.; Wójcik, Z.; Gronek, P. Relationships between measures of functional and isometric lower body strength, aerobic capacity, anaerobic power, sprint and countermovement jump performance in professional soccer players. J. Hum. Kinet. 2020, 75, 161–175. [Google Scholar] [CrossRef]
- Reilly, T.; Williams, A.M.; Nevill, A.; Franks, A. A multidisciplinary approach to talent identification in soccer. J. Sports Sci. 2000, 18, 695–702. [Google Scholar] [CrossRef]
- Haugaasen, M.; Toering, T.; Jordet, G. From childhood to senior professional football: A multi-level approach to elite youth football players’ engagement in football-specific activities. Psychol. Sport Exerc. 2014, 15, 336–344. [Google Scholar] [CrossRef]
- Rebelo, A.; Brito, J.; Maia, J.; Coelho-e-Silva, M.J.; Figueiredo, A.J.; Bangsbo, J.; Malina, R.M.; Seabra, A. Anthropometric characteristics, physical fitness and technical performance of under-19 soccer players by competitive level and field position. Int. J. Sports Med. 2013, 34, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Dowling, J.J.; Vamos, L. Identification of Kinetic and Temporal Factors Related to Vertical Jump Performance. J. Appl. Biomech. 1993, 9, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, P.; Turner, A.; Read, P.; Bishop, C. Reactive Strength Index and its Associations with Measures of Physical and Sports Performance: A Systematic Review with Meta-Analysis. Sports Med. 2022, 52, 301–330. [Google Scholar] [CrossRef] [PubMed]
- Mascherini, G.; Marella, M.; Bosi, P.; Radini, M.; Spicuglia, P.; Gulisano, M.; Francia, P. Can the vertical jump height measure the lower limbs muscle strength? Ital. J. Anat. Embryol. 2019, 124, 107–112. [Google Scholar] [CrossRef]
- Montalvo, S.; Gonzalez, M.P.; Dietze-Hermosa, M.S.; Eggleston, J.D.; Dorgo, S. Common Vertical Jump and Reactive Strength Index Measuring Devices: A Validity and Reliability Analysis. J. Strength Cond. Res. 2021, 35, 1234–1243. [Google Scholar] [CrossRef]
- Pueo, B.; Jimenez-Olmedo, J.M.; Lipinska, P.; Busko, K.; Penichet-Tomas, A. Concurrent validity and reliability of proprietary and open-source jump mat systems for the assessment of vertical jumps in sport sciences. Acta Bioeng. Biomech. 2018, 20, 51–57. [Google Scholar] [CrossRef]
- Stratford, C.; Dos’Santos, T.; McMahon, J.J. The 10/5 Repeated Jumps Test: Are 10 Repetitions and Three Trials Necessary? Biomechanics 2021, 1, 1. [Google Scholar] [CrossRef]
- Theodorou, A.; Paradisis, G.; Panoutsakopoulos, V.; Smpokos, E.; Skordilis, E.; Cooke, C.B. Performance indices selection for assessing anaerobic power during a 30 second vertical jump test. J. Sports Med. Phys. Fit. 2013, 53, 596–603. [Google Scholar] [CrossRef]
- Boucher, C.; Malina, R. Genetics of Physical Fitness and Motor Performance. Exerc. Sports Sci. Rev. 1993, 11, 3206. [Google Scholar]
- Lago-Penas, C.; Casais, L.; Dellal, A.; Rey, E.; Dominguez, E. Anthropometric and physiological characteristics of young soccer players according to their playing positions: Relevance for competition success. J. Strength Cond. Res. 2011, 25, 3358–3367. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription; Wolters Kluwer Health: Philadelphia, PA, USA, 2018. [Google Scholar]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- The R Development Core Team. R: A Language and Environment for Statistical Computing; (Version 4.0. 5) [Computer software]; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Antonogeorgos, G.; Panagiotakos, D.B.; Priftis, K.N.; Tzonou, A. Clinical study logistic regression and linear discriminant analysis in evaluating factors associated with asthma prevalence among 10 to 12 years old children: Divergence and similarity of the two statistical methods. Int J Pediatr 2009, 2009, 952042. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Muller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. ROCR: Visualizing classifier performance in R. Bioinformatics 2005, 21, 3940–3941. [Google Scholar] [CrossRef]
- Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships. 2002. Available online: http://pkg.cs.ovgu.de/LNF/i386/5.10/R/LNFr-lmtest/reloc/R-2.10/library/lmtest/doc/lmtest-intro.pdf (accessed on 1 September 2022).
- Thiele, C.; Hirschfeld, G. cutpointr: Improved estimation and validation of optimal cutpoints in R. arXiv 2020, arXiv:2002.09209. [Google Scholar] [CrossRef]
- Friesen, L. Psychometrics & Post-Data Analysis: A Software Implementation for Binary Logistic Regression in Jamovi. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2019. [Google Scholar]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamovi the Jamovi Project. Version 2.3. 2022. Available online: https://www.jamovi.org (accessed on 1 September 2022).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; Sage Publications: Southend Oaks, CA, USA, 2018. [Google Scholar]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398. [Google Scholar]
- Honer, O.; Votteler, A. Prognostic relevance of motor talent predictors in early adolescence: A group- and individual-based evaluation considering different levels of achievement in youth football. J. Sports Sci. 2016, 34, 2269–2278. [Google Scholar] [CrossRef]
- Muller, L.; Gonaus, C.; Perner, C.; Muller, E.; Raschner, C. Maturity status influences the relative age effect in national top level youth alpine ski racing and soccer. PLoS ONE 2017, 12, e0181810. [Google Scholar] [CrossRef]
- Johnson, A.; Farooq, A.; Whiteley, R. Skeletal maturation status is more strongly associated with academy selection than birth quarter. Sci. Med. Football 2017, 1, 157–163. [Google Scholar] [CrossRef]
- Honer, O.; Murr, D.; Larkin, P.; Schreiner, R.; Leyhr, D. Nationwide Subjective and Objective Assessments of Potential Talent Predictors in Elite Youth Soccer: An Investigation of Prognostic Validity in a Prospective Study. Front. Sports Act. Living 2021, 3, 638227. [Google Scholar] [CrossRef]
- Kelly, A.L.; Williams, C.A. Physical Characteristics and the Talent Identification and Development Processes in Male Youth Soccer: A Narrative Review. Strength Cond. J. 2020, 42, 15–34. [Google Scholar] [CrossRef]
- Bangsbo, J. Fitness Training in Football: A Scientific Approach; August Krogh Inst., University of Copenhagen: Copenhagen, Denmark, 1994. [Google Scholar]
- Woods, C.T.; Cripps, A.; Hopper, L.; Joyce, C. A comparison of the physical and anthropometric qualities explanatory of talent in the elite junior Australian football development pathway. J. Sci. Med. Sport 2017, 20, 684–688. [Google Scholar] [CrossRef]
- Unnithan, V.; White, J.; Georgiou, A.; Iga, J.; Drust, B. Talent identification in youth soccer. J. Sports Sci. 2012, 30, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Gil, S.M.; Gil, J.; Ruiz, F.; Irazusta, A.; Irazusta, J. Physiological and anthropometric characteristics of young soccer players according to their playing position: Relevance for the selection process. J. Strength Cond. Res. 2007, 21, 438–445. [Google Scholar] [CrossRef]
- Gil, S.; Ruiz, F.; Irazusta, A.; Gil, J.; Irazusta, J. Selection of young soccer players in terms of anthropometric and physiological factors. J. Sports Med. Phys. Fit. 2007, 47, 25–32. [Google Scholar]
- Lago-Penas, C.; Rey, E.; Casais, L.; Gomez-Lopez, M. Relationship between performance characteristics and the selection process in youth soccer players. J. Hum. Kinet. 2014, 40, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Castagna, C.; Castellini, E. Vertical jump performance in Italian male and female national team soccer players. J. Strength Cond. Res. 2013, 27, 1156–1161. [Google Scholar] [CrossRef]
- Janz, K.F.; Laurson, K.R.; Baptista, F.; Mahar, M.T.; Welk, G.J. Vertical Jump Power Is Associated with Healthy Bone Outcomes in Youth: ROC Analyses and Diagnostic Performance. Meas. Phys. Educ. Exerc. 2021, 1–9. [Google Scholar] [CrossRef]
- Mujika, I.; Santisteban, J.; Impellizzeri, F.M.; Castagna, C. Fitness determinants of success in men’s and women’s football. J. Sports Sci. 2009, 27, 107–114. [Google Scholar] [CrossRef]
- Baker, J.; Wattie, N. Innate Talent in Sport: Separating Myth from Reality. Curr. Issues Sport Sci. 2018, 3, 1–9. [Google Scholar] [CrossRef]
- Baker, J.; Wattie, N.; Schorer, J. A proposed conceptualization of talent in sport: The first step in a long and winding road. Psychol. Sport Exerc. 2019, 43, 27–33. [Google Scholar] [CrossRef]
- Ramirez, H.E. Seasonal Variation in Anthropometric and Performance Variables in American Professional Soccer Players. Master’s Thesis, Georgia Southern University, Statesboro, GA, USA, 2022. [Google Scholar]
- Clemente, F.M.; Ramirez-Campillo, R.; Sarmento, H. Detrimental Effects of the Off-Season in Soccer Players: A Systematic Review and Meta-analysis. Sports Med. 2021, 51, 795–814. [Google Scholar] [CrossRef]
- Silva, J.R.; Magalhaes, J.F.; Ascensao, A.A.; Oliveira, E.M.; Seabra, A.F.; Rebelo, A.N. Individual match playing time during the season affects fitness-related parameters of male professional soccer players. J. Strength Cond. Res. 2011, 25, 2729–2739. [Google Scholar] [CrossRef]
- Craig, T.P.; Swinton, P. Anthropometric and physical performance profiling does not predict professional contracts awarded in an elite Scottish soccer academy over a 10-year period. Eur. J. Sport Sci. 2021, 21, 1101–1110. [Google Scholar] [CrossRef]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Physical fitness, injuries, and team performance in soccer. Med. Sci. Sports Exerc. 2004, 36, 278–285. [Google Scholar] [CrossRef]
- Wisloeff, U.; Helgerud, J.; Hoff, J. Strength and endurance of elite soccer players. Med. Sci. Sports Exerc. 1998, 30, 462–467. [Google Scholar] [CrossRef]
- Trecroci, A.; Longo, S.; Perri, E.; Iaia, F.M.; Alberti, G. Field-based physical performance of elite and sub-elite middle-adolescent soccer players. Res. Sports Med. 2019, 27, 60–71. [Google Scholar] [CrossRef]
- Forsman, H.; Blomqvist, M.; Davids, K.; Liukkonen, J.; Konttinen, N. Identifying technical, physiological, tactical and psychological characteristics that contribute to career progression in soccer. Int. J. Sports Sci. Coach. 2016, 11, 505–513. [Google Scholar] [CrossRef]
- Zuber, C.; Zibung, M.; Conzelmann, A. Holistic Patterns as an Instrument for Predicting the Performance of Promising Young Soccer Players—A 3-Years Longitudinal Study. Front. Psychol. 2016, 7, 1088. [Google Scholar] [CrossRef] [Green Version]
- Till, K.; Baker, J. Challenges and [Possible] Solutions to Optimizing Talent Identification and Development in Sport. Front. Psychol. 2020, 11, 664. [Google Scholar] [CrossRef]
- Datson, N.; Hulton, A.; Andersson, H.; Lewis, T.; Weston, M.; Drust, B.; Gregson, W. Applied physiology of female soccer: An update. Sports Med. 2014, 44, 1225–1240. [Google Scholar] [CrossRef] [Green Version]
- Naisidou, S.; Kepesidou, M.; Kontostergiou, M.; Zapartidis, I. Differences of physical abilities between successful and less successful young female athletes. J. Phys. Educ. Sport 2017, 17, 294–299. [Google Scholar] [CrossRef]
- Abbott, A.; Button, C.; Pepping, G.J.; Collins, D. Unnatural selection: Talent identification and development in sport. Nonlinear Dynamics Psychol Life Sci 2005, 9, 61–88. [Google Scholar] [PubMed]
- Pfeiffer, M.; Hohmann, A. Applications of neural networks in training science. Hum. Mov. Sci. 2012, 31, 344–359. [Google Scholar] [CrossRef]
- Bergkamp, T.L.G.; Niessen, A.S.M.; den Hartigh, R.J.R.; Frencken, W.G.P.; Meijer, R.R. Methodological Issues in Soccer Talent Identification Research. Sports Med. 2019, 49, 1317–1335. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, P.L. Nonsense, common sense, and science of expert performance: Talent and individual differences. Intelligence 2014, 45, 6–17. [Google Scholar] [CrossRef]
- Austin, P.C.; Merlo, J. Intermediate and advanced topics in multilevel logistic regression analysis. Stat. Med. 2017, 36, 3257–3277. [Google Scholar] [CrossRef] [Green Version]
- Phillips, E.; Davids, K.; Renshaw, I.; Portus, M. Expert performance in sport and the dynamics of talent development. Sports Med 2010, 40, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Chalitsios, C.; Nikodelis, T.; Panoutsakopoulos, V.; Chassanidis, C.; Kollias, I. Classification of Soccer and Basketball Players’ Jumping Performance Characteristics: A Logistic Regression Approach. Sports 2019, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Zou, K.H.; O’Malley, A.J.; Mauri, L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 2007, 115, 654–657. [Google Scholar] [CrossRef] [Green Version]
- Mann, D.L.; Dehghansai, N.; Baker, J. Searching for the elusive gift: Advances in talent identification in sport. Curr. Opin. Psychol. 2017, 16, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Hazra, A.; Gogtay, N. Biostatistics Series Module 7: The Statistics of Diagnostic Tests. Indian J. Dermatol. 2017, 62, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Bergkamp, T.L.G.; Frencken, W.G.P.; Niessen, A.S.M.; Meijer, R.R.; den Hartigh, R.J.R. How soccer scouts identify talented players. Eur. J. Sport Sci. 2022, 22, 994–1004. [Google Scholar] [CrossRef]
- Cumming, S.P.; Brown, D.J.; Mitchell, S.; Bunce, J.; Hunt, D.; Hedges, C.; Crane, G.; Gross, A.; Scott, S.; Franklin, E.; et al. Premier League academy soccer players’ experiences of competing in a tournament bio-banded for biological maturation. J. Sports Sci. 2018, 36, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Egorova, E.S.; Borisova, A.V.; Mustafina, L.J.; Arkhipova, A.A.; Gabbasov, R.T.; Druzhevskaya, A.M.; Astratenkova, I.V.; Ahmetov, I.I. The polygenic profile of Russian football players. J. Sports Sci. 2014, 32, 1286–1293. [Google Scholar] [CrossRef]
- McEvoy, B.P.; Visscher, P.M. Genetics of human height. Econ. Hum. Biol. 2009, 7, 294–306. [Google Scholar] [CrossRef]
- Ackerman, P.L.; Beier, M.E. 13 Methods for Studying the Structure of Expertise: Psychometric Approaches. In The Cambridge Handbook of Expertise and Expert Performance; Cambridge University Press: Cambridge, UK, 2018; p. 213. [Google Scholar]
Group | N | Mean | SD | |
---|---|---|---|---|
Age (yrs) | PRO | 24 | 24.63 | 4.67 |
U19 | 20 | 17.77 | 1.51 | |
Height (m) | PRO | 24 | 1.80 | 0.06 |
U19 | 20 | 1.74 | 0.05 | |
Mass (kg) | PRO | 24 | 75.40 | 6.69 |
U19 | 20 | 67.90 | 5.08 | |
BMI (kg/m2) | PRO | 24 | 23.25 | 1.13 |
U19 | 20 | 22.30 | 1.27 | |
JhMAX (m) | PRO | 24 | 0.32 | 0.04 |
U19 | 20 | 0.28 | 0.05 | |
hAVE (m) | PRO | 24 | 0.26 | 0.04 |
U19 | 20 | 0.22 | 0.06 | |
RSIMAX (m/ms) | PRO | 24 | 1.88 | 0.28 |
U19 | 20 | 1.78 | 0.40 | |
RSIAVE (m/ms) | PRO | 24 | 1.52 | 0.2 |
U19 | 20 | 1.41 | 0.33 | |
PREL (W/kg) | PRO | 24 | 11.00 | 0.95 |
U19 | 20 | 10.12 | 1.38 |
95% Confidence | |||||||||
---|---|---|---|---|---|---|---|---|---|
Interval | |||||||||
Parameter | t | df | p | Mean | SE | Cohen’s d | Effect Size | Lower | Upper |
Difference | Difference | ||||||||
Age (yrs) | 6.29 | 42 | <0.001 | 6.86 | 1.09 | 1.90 | Large | 1.09 | 2.70 |
Height (m) | 3.07 | 42 | 0.002 | 0.05 | 0.02 | 0.93 | Large | 0.27 | 1.57 |
Mass (kg) | 4.12 | 42 | <0.001 | 7.50 | 1.82 | 1.25 | Large | 0.54 | 1.93 |
BMI (kg/m2) | 2.64 | 42 | 0.006 | 0.95 | 0.36 | 0.80 | Moderate | 0.15 | 1.43 |
JhMAX (m) | 2.64 | 42 | 0.006 | 0.04 | 0.01 | 0.80 | Moderate | 0.15 | 1.43 |
hAVE (m) | 2.33 | 42 | 0.012 | 0.04 | 0.02 | 0.71 | Moderate | 0.07 | 1.33 |
RSIMAX (m/s) | 0.98 | 42 | 0.167 | 0.10 | 0.10 | 0.30 | Small | −0.31 | 0.89 |
RSIAVE (m/s) | 1.4 | 42 | 0.084 | 0.11 | 0.08 | 0.42 | Small | −0.19 | 1.03 |
PREL (W/kg) | 2.49 | 42 | 0.008 | 0.88 | 0.35 | 0.75 | Moderate | 0.12 | 1.38 |
Model Fit Measures | Omnibus Likelihood Ratio Tests | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall Model Test | Model Coefficients—Group | 95% Confidence Interval | |||||||||||||
Model | x2 | f | p | Predictor | x2 | df | p | Predictor | Estimate | SE | Z | p | Odds Ratio | Lower | Upper |
1 | 17.12 | 2 | <0.001 | Intercept | −59.63 | 19.88 | −3.00 | 0.003 | 0.00 | 0.00 | 0.00 | ||||
Height | 10.37 | 1 | 0.001 | Height | 21.66 | 8.20 | 2.64 | 0.008 | 2.56 × 109 | 266.23 | 2.5 × 1016 | ||||
BMI | 8.21 | 1 | 0.004 | BMI | 0.94 | 0.38 | 2.46 | 0.014 | 2.57 | 1.21 | 5.44 |
Classification Table | Predictive Measures | ||||||
---|---|---|---|---|---|---|---|
Predicted | |||||||
Observed | U19 | PRO | % Correct | Accuracy | Specificity | Sensitivity | AUC |
U19 | 15 | 5 | 75.00 | 0.73 | 0.75 | 0.71 | 0.82 |
PRO | 7 | 17 | 70.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadakis, Z.; Panoutsakopoulos, V.; Kollias, I.A. Predictive Value of Repeated Jump Testing on Nomination Status in Professional and under 19 Soccer Players. Int. J. Environ. Res. Public Health 2022, 19, 13077. https://doi.org/10.3390/ijerph192013077
Papadakis Z, Panoutsakopoulos V, Kollias IA. Predictive Value of Repeated Jump Testing on Nomination Status in Professional and under 19 Soccer Players. International Journal of Environmental Research and Public Health. 2022; 19(20):13077. https://doi.org/10.3390/ijerph192013077
Chicago/Turabian StylePapadakis, Zacharias, Vassilios Panoutsakopoulos, and Iraklis A. Kollias. 2022. "Predictive Value of Repeated Jump Testing on Nomination Status in Professional and under 19 Soccer Players" International Journal of Environmental Research and Public Health 19, no. 20: 13077. https://doi.org/10.3390/ijerph192013077
APA StylePapadakis, Z., Panoutsakopoulos, V., & Kollias, I. A. (2022). Predictive Value of Repeated Jump Testing on Nomination Status in Professional and under 19 Soccer Players. International Journal of Environmental Research and Public Health, 19(20), 13077. https://doi.org/10.3390/ijerph192013077