Toward a Socio-Political Approach to Promote the Development of Circular Agriculture: A Critical Review
Abstract
:1. Introduction
2. Circular Agriculture
3. Research Method and Steps
3.1. Research Method
3.2. Research Steps
4. Current Research on CA Focuses on the Field of Natural Science with Technological Upgrading as the Main Focus
4.1. Biological Resources, Water Resources, Land Resources and Technology Are the Key Words in CA Research
4.2. A large Number of Articles on CA Are Concentrated in the Field of Natural Science
4.3. Environmental Journals Pay More Attention to CA Research
4.4. CA Research Mainly Comes from China, the United States, Germany and Italy
5. Successes and Limitations of Circular Agriculture Projects under Different Political Backgrounds
5.1. The Cases of Circular Agriculture in Different Political and Governance Contexts
5.1.1. Government-Led Agricultural Waste Utilization: The Case of China
5.1.2. Wastewater Recycling and Industry Association: The Case of Germany
5.1.3. Circulation of Olive Farms: The Case of Italy
5.2. Discussion and Analysis
5.2.1. Top-Down Circular Agriculture Development Model
5.2.2. Bottom-Up Circular Agriculture Development Model
6. Social and Political Views on the Circular Agriculture System
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blay-Palmer, A.; Carey, R.; Valette, E.; Sanderson, M. Post COVID-19 and food pathways to sustainable transformation. Agric. Hum. Values 2020, 37, 517–519. [Google Scholar] [CrossRef]
- Workie, E.; Mackolil, J.; Nyika, J.; Ramadas, S. Deciphering the impact of COVID-19 pandemic on food security, agriculture, and livelihoods: A review of the evidence from developing countries. Curr. Res. Environ. Sustain. 2020, 2, 100014. [Google Scholar] [CrossRef] [PubMed]
- FAO. Tracking Progress on Food and Agriculture-related SDG indicators 2020. 2020. Available online: https://www.fao.org/sdg-progress-report/en/ (accessed on 10 July 2022).
- Clark, M.A.; Domingo, N.G.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global food system emissions could preclude achieving the 1.5 and 2 C climate change targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.V.; Salvador, R.; de Francisco, A.C.; Piekarski, C.M. Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renew. Sustain. Energy Rev. 2020, 131, 109958. [Google Scholar] [CrossRef]
- Korhonen, J.; Nuur, C.; Feldmann, A.; Birkie, S.E. Circular economy as an essentially contested concept. J. Clean. Prod. 2018, 175, 544–552. [Google Scholar] [CrossRef]
- Meng, F.; Qiao, Y.; Wu, W.; Smith, P.; Scott, S. Environmental impacts and production performances of organic agriculture in China: A monetary valuation. J. Environ. Manag. 2017, 188, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Gadde, B.; Bonnet, S.; Menke, C.; Garivait, S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ. Pollut. 2009, 157, 1554–1558. [Google Scholar] [CrossRef]
- Sawlani, R.; Agnihotri, R.; Sharma, C.; Patr, P.K.; Dimri, A.P.; Ram, K.; LalVerma, R. The severe Delhi SMOG of 2016: A case of delayed crop residue burning, coincident firecracker emissions, and atypical meteorology. Atmos. Pollut. Res. 2019, 10, 868–879. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards circular economy in the food system. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Caposciutti, G.; Baccioli, A.; Ferrari, L.; Desideri, U. Biogas from anaerobic digestion: Power generation or biomethane production? Energies 2020, 13, 743. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nižetić, S.; Olcer, A.I.; Ong, H.C.; Chen, W.; Chong, C.T.; Thomas, S.; Bandh, S.A.; Nguyen, X.P. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 2021, 154, 112322. [Google Scholar] [CrossRef]
- Sainju, U.M.; Hatfield, P.G.; Ragen, D.L. Greenhouse gas emissions under winter wheat-based organic and conventional crop productions. Soil Sci. Soc. Am. J. 2021, 85, 1349–1361. [Google Scholar] [CrossRef]
- Malhi, S.S.; Lemke, R.; Wang, Z.H.; Chhabra, B.S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Res. 2006, 90, 171–183. [Google Scholar] [CrossRef]
- Boulding, K.E. The Economics of the Coming Spaceship Earth. In Environmental Quality in a Growing Economy, Resources for the Future; Jarrett, H., Ed.; Johns Hopkins University Press: Baltimore, MD, USA, 1996; pp. 3–14. [Google Scholar]
- Zabaniotou, A.; Rovas, D.; Libutti, A.; Monteleone, M. Boosting circular economy and closing the loop in agriculture: Case study of a small-scale pyrolysis–biochar based system integrated in an olive farm in symbiosis with an olive mill. Environ. Dev. 2015, 14, 22–36. [Google Scholar] [CrossRef]
- Egea, F.J.; Torrente, R.G.; Aguilar, A. An efficient agro-industrial complex in Almería (Spain): Towards an integrated and sustainable bioeconomy model. New Biotechnol. 2018, 40, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, D.K.; Kjeldsen, C.; Thorsøe, M.H. Enabling sustainable agro-food futures: Exploring fault lines and synergies between the integrated territorial paradigm, rural eco-economy and circular economy. J. Agric. Environ. Ethics 2016, 29, 749–765. [Google Scholar] [CrossRef]
- Dumont, B.; Fortun-Lamothe, L.; Jouven, M.; Thomas, M.; Tichit, M. Prospects from agroecology and industrial ecology for animal production in the 21st century. Animal 2013, 7, 1028–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mier, Y.; Terán Giménez Cacho, M.; Giraldo, O.F.; Aldasoro, M.; Morales, H.; Ferguson, B.G.; Rosset, P.; Khadse, A.; Campos, C. Bringing agroecology to scale: Key drivers and emblematic cases. Agroecol. Sustain. Food Syst. 2018, 42, 637–665. [Google Scholar]
- Gosnell, H.; Gill, N.; Voyer, M. Transformational adaptation on the farm: Processes of change and persistence in transitions to ‘climate-smart’ regenerative agriculture. Glob. Environ. Chang. 2019, 59, 101965. [Google Scholar] [CrossRef]
- Grumbine, R.E.; Xu, J.; Ma, L. An overview of the problems and prospects for circular agriculture in sustainable food systems in the Anthropocene. Circ. Agric. Syst. 2021, 1, 1–11. [Google Scholar] [CrossRef]
- Khoo, H.H.; Eufrasio-Espinosa, R.M.; Koh, L.S.; Sharratt, P.N.; Isoni, V. Sustainability assessment of biorefinery production chains: A combined LCA-supply chain approach. J. Clean. Prod. 2019, 235, 1116–1137. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Styles, D.; Prade, T.; Adams, P.; Thelin, G.; Rodhe, L.; Gunnarsson, I.; D’Hertefeldt, T. Closing nutrient loops through decentralized anaerobic digestion of organic residues in agricultural regions: A multi-dimensional sustainability assessment. Resour. Conserv. Recycl. 2018, 136, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Molina-Moreno, V.; Leyva-Díaz, J.C.; Llorens-Montes, F.J.; Cortés-García, F.J. Design of indicators of circular economy as instruments for the evaluation of sustainability and efficiency in wastewater from pig farming industry. Water 2017, 9, 653. [Google Scholar] [CrossRef]
- Chen, L.; Cong, R.G.; Shu, B.; Mi, Z.F. A sustainable biogas model in China: The case study of Beijing Deqingyuan biogas project. Renew. Sustain. Energy Rev. 2017, 78, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Adenle, A.; Wedig, K.; Azadi, H. Sustainable agriculture and food security in Africa: The role of innovative technologies and international organizations. Technol. Soc. 2019, 58, 101143. [Google Scholar] [CrossRef]
- Priyadarshini, P.; Abhilash, P.C. Policy recommendations for enabling transition towards sustainable agriculture in India. Land Use Policy 2020, 96, 104718. [Google Scholar] [CrossRef]
- Kremen, C. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Top. Life Sci. 2020, 4, 229–240. [Google Scholar]
- Atinkut, H.B.; Yan, T.; Zhang, F.; Qin, S.; Gai, H.; Liu, Q. Cognition of agriculture waste and payments for a circular agriculture model in Central China. Sci. Rep. 2020, 10, 10826. [Google Scholar] [CrossRef]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, circular, bio economy: A comparative analysis of sustainability avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Mathews, J.; Tan, H. Circular economy: Lessons from China. Nature 2016, 531, 440–445. [Google Scholar] [CrossRef] [Green Version]
- Schebesta, H.; Candel, J. Game-changing potential of the EU’s Farm to Fork Strategy. Nat. Food 2020, 1, 586–588. [Google Scholar] [CrossRef]
- World Economic Forum. Shaping the Future of Food. Available online: https://www.weforum.org/system-initiatives/shaping-the-future-of-food-security-and-agriculture (accessed on 19 July 2021).
- Quezada, C.; Fonseca, M.B.; Romero, H. The circular agriculture applied in neighboring countries: The case of biogas on the border between Ecuador and Perú. New Biotechnol. 2016, 33, S66–S67. [Google Scholar] [CrossRef]
- Pazienza, P.; De Lucia, C. For a new plastics economy in agriculture: Policy reflections on the EU strategy from a local perspective. J. Clean. Prod. 2020, 253, 119844. [Google Scholar] [CrossRef]
- Batlles-delaFuente, A.; Abad-Segura, E.; González-Zamar, M.D.; Cortés-García, F.J. An Evolutionary Approach on the Framework of Circular Economy Applied to Agriculture. Agronomy 2022, 12, 620. [Google Scholar] [CrossRef]
- Altamira-Algarra, B.; Puigagut, J.; Day, J.W.; Mitsch, W.J.; Vymazal, J.; Hunter, R.G.; García, J. A review of technologies for closing the P loop in agriculture runoff: Contributing to the transition towards a circular economy. Ecol. Eng. 2022, 177, 106571. [Google Scholar] [CrossRef]
- Rosemarin, A.; Macura, B.; Carolus, J.; Barquet, K.; Ek, F.; Järnberg, L.; Lorick, D.; Johannesdottir, S.; Pedersen, S.M.; Koskiaho, J.; et al. Circular nutrient solutions for agriculture and wastewater–a review of technologies and practices. Curr. Opin. Environ. Sustain. 2020, 45, 78–91. [Google Scholar] [CrossRef]
- Vasa, T.N.; Chacko, S.P. Recovery of struvite from wastewaters as an eco-friendly fertilizer: Review of the art and perspective for a sustainable agriculture practice in India. Sustain. Energy Technol. Assess. 2021, 48, 101573. [Google Scholar] [CrossRef]
- Song, J.; Wang, Y.; Zhang, S.; Song, Y.; Xue, S.; Liu, L.; Lvy, X.; Wang, X.; Yang, G. Coupling biochar with anaerobic digestion in a circular economy perspective: A promising way to promote sustainable energy, environment and agriculture development in China. Renew. Sustain. Energy Rev. 2021, 144, 110973. [Google Scholar] [CrossRef]
- Kamar Zaman, A.M.; Yaacob, J.S. Exploring the potential of vermicompost as a sustainable strategy in circular economy: Improving plants’ bioactive properties and boosting agricultural yield and quality. Environ. Sci. Pollut. Res. 2022, 29, 12948–12964. [Google Scholar] [CrossRef]
- Thomson, A.; Price, G.W.; Arnold, P.; Dixon, M.; Graham, T. Review of the potential for recycling CO2 from organic waste composting into plant production under controlled environment agriculture. J. Clean. Prod. 2021, 333, 130051. [Google Scholar] [CrossRef]
- Serebrennikov, D.; Thorne, F.; Kallas, Z.; McCarthy, S.N. Factors influencing adoption of sustainable farming practices in Europe: A systemic review of empirical literature. Sustainability 2020, 12, 9719. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafols, I.; Porter, A.L.; Leydesdorff, L. Science overlay maps: A new tool for research policy and library management. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1871–1887. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Feng, Y.; Xia, X.; Feng, M. Evaluation of China’s Circular Agriculture Performance and Analysis of the Driving Factors. Sustainability 2021, 13, 1643. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Fu, Q.; Cao, K.; Liu, D.; Li, T. Optimization of biochar systems in the water-food-energy-carbon nexus for sustainable circular agriculture. J. Clean. Prod. 2022, 355, 131791. [Google Scholar] [CrossRef]
- Visser, S.; Keesstra, S.; Maas, G.; De Cleen, M.; Molenaar, C. Soil as a basis to create enabling conditions for transitions towards sustainable land management as a key to achieve the SDGs by 2030. Sustainability 2019, 11, 6792. [Google Scholar] [CrossRef] [Green Version]
- Kardung, M.; Cingiz, K.; Costenoble, O.; Delahaye, R.; Heijman, W.; Lovrić, M.; van Leeuwen, M.; M’Barek, R.; van Meijl, H.; Piotrowski, S.; et al. Development of the circular bioeconomy: Drivers and indicators. Sustainability 2021, 13, 413. [Google Scholar] [CrossRef]
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.; Wu, Y.; Wong, S.W.; Shen, L. Provincial perspective analysis on the coordination between urbanization growth and resource environment carrying capacity (RECC) in China. Sci. Total Environ. 2020, 730, 138964. [Google Scholar] [CrossRef]
- Castro, A.J.; López-Rodríguez, M.D.; Giagnocavo, C.; Gimenez, M.; Céspedes, L.; La Calle, A.; Valera, D.L. Six collective challenges for sustainability of Almería greenhouse horticulture. Int. J. Environ. Res. Public Health 2019, 16, 4097. [Google Scholar] [CrossRef] [Green Version]
- Karpenstein-Machan, M. Sustainable cultivation concepts for domestic energy production from biomass. Crit. Rev. Plant Sci. 2001, 20, 1–14. [Google Scholar] [CrossRef]
- Chen, R. Livestock-biogas-fruit systems in South China. Ecol. Eng. 1997, 8, 19–29. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, S.; Wang, Y.; Wang, R. Advantages of the integrated pig-biogas-vegetable greenhouse system in North China. Ecol. Eng. 2005, 24, 175–183. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, G.; Sweeney, S.; Feng, Y. Household biogas use in rural China: A study of opportunities and constraints. Renew Sustain. Energy Rev. 2010, 14, 545–549. [Google Scholar] [CrossRef]
- Wu, G.; Cheng, D.; Li, L.; Li, C.; Jiang, G.; Zheng, Y. Biomass energy utilization and soil carbon sequestration in rural China: A case study based on circular agriculture. J. Renew. Sustain. Energy 2018, 10, 013107. [Google Scholar] [CrossRef]
- Dziedzic, M.; Gomes, P.R.; Angilella, M.; El Asli, A.; Berger, P.; Charmier, A.J.; Tsukada, S. International circular economy strategies and their impacts on agricultural water use. Clean. Eng. Technol. 2022, 8, 100504. [Google Scholar] [CrossRef]
- Maaß, O.; Grundmann, P. Governing transactions and interdependences between linked value chains in a circular economy: The case of wastewater reuse in Braunschweig (Germany). Sustainability 2018, 10, 1125. [Google Scholar] [CrossRef] [Green Version]
- Maaß, O.; Grundmann, P. Added-value from linking the value chains of wastewater treatment, crop production and bioenergy production: A case study on reusing wastewater and sludge in crop production in Braunschweig (Germany). Resour. Conserv. Recycl. 2016, 107, 195–211. [Google Scholar] [CrossRef]
- Zabaniotou, A. Redesigning a bioenergy sector in EU in the transition to circular waste-based Bioeconomy-A multidisciplinary review. J. Clean. Prod. 2018, 177, 197–206. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Zhu, J.; Fan, C.; Shi, H.; Shi, L. Efforts for a circular economy in China: A comprehensive review of policies. J. Ind. Ecol. 2019, 23, 110–118. [Google Scholar] [CrossRef]
- Jun, H.; Xiang, H. Development of circular economy is a fundamental way to achieve agriculture sustainable development in China. Energy Procedia 2011, 5, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zhang, R.; Loginova, J.; Sharma, V.; Zhang, Z.; Qian, Z. Institutional Logic of Carbon Neutrality Policies in China: What Can We Learn? Energies 2022, 15, 4391. [Google Scholar] [CrossRef]
- Hang, S.; Li, J.; Xu, X.; Lyu, Y.; Li, Y.; Gong, H.; Xu, Y.; Ouyang, Z. An Optimization Scheme of Balancing GHG Emission and Income in Circular Agriculture System. Sustainability 2021, 13, 7154. [Google Scholar] [CrossRef]
- Lantz, M.; Svensson, M.; Björnsson, L.; Börjesson, P. The prospects for an expansion of biogas systems in Sweden—Incentives, barriers and potentials. Energy Policy 2007, 35, 1830–1843. [Google Scholar] [CrossRef]
- Cong, R.G.; Brady, M. How to design a targeted agricultural subsidy system: Efficiency or equity? PLoS ONE 2012, 7, e41225. [Google Scholar] [CrossRef]
- Mao, K.; Zhang, Q.; Xue, Y.; Weeks, N. Toward a socio-political approach to water management: Successes and limitations of IWRM programs in rural northwestern China. Front. Earth Sci. 2020, 14, 268–285. [Google Scholar] [CrossRef]
- Crovella, T.; Paiano, A.; Lagioia, G.; Cilardi, A.M.; Trotta, L. Modelling Digital Circular Economy framework in the Agricultural Sector. An Application in Southern Italy. Eng. Proc. 2021, 9, 15. [Google Scholar]
- PBL. Balans van de Leefomgeving: Burgers in Zicht, Overheid aan Zet (Balance of the Living Environment); PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2020. [Google Scholar]
- Dagevos, H.; Lauwere, C. Circular business models and circular agriculture: Perceptions and practices of Dutch farmers. Sustainability 2021, 13, 1282. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sarsaiya, S.; Wainaina, S.; Rajendran, K.; Kumar, S.; Quan, W.; Taherzadeh, M.J. A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives. Renew. Sustain. Energy Rev. 2019, 111, 115–131. [Google Scholar] [CrossRef]
- Long, T.; Yao, W. Complexity study of technical innovation in circular agriculture. Manag. Eng. 2013, 10, 106–112. [Google Scholar]
- Theuerl, S.; Herrmann, C.; Heiermann, M.; Grundmann, P.; Landwehr, N.; Kreidenweis, U.; Prochnow, A. The future agricultural biogas plant in Germany: A vision. Energies 2019, 12, 396. [Google Scholar] [CrossRef] [Green Version]
- Schaltegger, S.; Wagner, M. Sustainable entrepreneurship and sustainability innovation: Categories and interactions. Bus. Strategy Environ. 2011, 20, 222–237. [Google Scholar] [CrossRef]
- Jolly, S.; Spodniak, P.; Raven, R.P.J.M. Institutional entrepreneurship in transforming energy systems towards sustainability: Wind energy in Finland and India. Energy Res. Soc. Sci. 2016, 17, 102–118. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, N.; Woodward, R.T. Under- and over-use of pesticides: An international analysis. Ecol. Econ. 2013, 89, 73–81. [Google Scholar] [CrossRef]
- Cohen, B.; Winn, M.I. Market imperfections, opportunity and sustainable entrepreneurship. J. Bus. Ventur. 2007, 22, 29–49. [Google Scholar] [CrossRef]
- Hockerts, K.; Wüstenhagen, R. Greening Goliaths versus emerging Davids—Theorizing about the role of incumbents and new entrants in sustainable entrepreneurship. J. Bus. Ventur. 2010, 25, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Jolly, S. Role of institutional entrepreneurship in the creation of regional solar PV energy markets: Contrasting developments in Gujarat and West Bengal. Energy Sustain. Dev. 2017, 38, 77–92. [Google Scholar] [CrossRef]
- Thompson, N.A.; Herrmann, A.M.; Hekkert, M.P. How sustainable entrepreneurs engage in institutional change: Insights from biomass torrefaction in the Netherlands. J. Clean. Prod. 2015, 106, 608–618. [Google Scholar] [CrossRef]
- Dean, T.J.; McMullen, J.S. Toward a theory of sustainable entrepreneurship: Reducing environmental degradation through entrepreneurial action. J. Bus. Ventur. 2007, 22, 50–76. [Google Scholar] [CrossRef]
- Hall, J.K.; Daneke, G.A.; Lenox, M.J. Sustainable development and entrepreneurship: Past contributions and future directions. J. Bus. Ventur. 2010, 25, 439–448. [Google Scholar] [CrossRef]
Reuse of Agricultural Wastewater | Circulation of Olive Farms | Government-Led Waste Utilization | |
---|---|---|---|
Case location | Braunschweig, Germany | Foggia district, Apulia region, Italy | Shunyi district, Beijing, China |
Key role subject | Association | Farm | Government |
Strength | Balancing the interests of the association and farmers | Contribute to the circular economy of the farm | Lower risk and comprehensive guarantee for farmers |
Risk and challenge |
|
|
|
Mode | Bottom-up | Bottom-up | Top-down |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Zhang, Y.; Xue, Y.; Xue, Y. Toward a Socio-Political Approach to Promote the Development of Circular Agriculture: A Critical Review. Int. J. Environ. Res. Public Health 2022, 19, 13117. https://doi.org/10.3390/ijerph192013117
Yang C, Zhang Y, Xue Y, Xue Y. Toward a Socio-Political Approach to Promote the Development of Circular Agriculture: A Critical Review. International Journal of Environmental Research and Public Health. 2022; 19(20):13117. https://doi.org/10.3390/ijerph192013117
Chicago/Turabian StyleYang, Chenyujing, Yuanyuan Zhang, Yanjin Xue, and Yongji Xue. 2022. "Toward a Socio-Political Approach to Promote the Development of Circular Agriculture: A Critical Review" International Journal of Environmental Research and Public Health 19, no. 20: 13117. https://doi.org/10.3390/ijerph192013117
APA StyleYang, C., Zhang, Y., Xue, Y., & Xue, Y. (2022). Toward a Socio-Political Approach to Promote the Development of Circular Agriculture: A Critical Review. International Journal of Environmental Research and Public Health, 19(20), 13117. https://doi.org/10.3390/ijerph192013117