Using Long-Duration Static Stretch Training to Counteract Strength and Flexibility Deficits in Moderately Trained Participants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Testing Procedure
2.3.1. Maximal Strength Testing
2.3.2. ROM Measurement
2.4. Intervention
Static Stretch Training
2.5. Data Analysis
3. Results
3.1. Effects of Stretching Intervention on MSt
3.2. Effects of Stretching Intervention on ROM
3.3. Intragroup Differences between Leg
4. Discussion
4.1. Limitations
4.2. Practical Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, T.D.; Tolusso, D.V.; Fedewa, M.V.; Esco, M.R. Comparison of Periodized and Non-Periodized Resistance Training on Maximal Strength: A Meta-Analysis. Sport. Med. 2017, 47, 2083–2100. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sport. Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Wisløff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong Correlation of Maximal Squat Strength with Sprint Performance and Vertical Jump Height in Elite Soccer Players. Br. J. Sport. Med. 2004, 38, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Moffit, T.J.; Montgomery, M.M.; Lockie, R.G.; Pamukoff, D.N. Association between Knee- and Hip-Extensor Strength and Running-Related Injury Biomechanics in Collegiate Distance Runners. J. Athl. Train. 2020, 55, 1262–1269. [Google Scholar] [CrossRef]
- Holzgrefe, R.E.; McCarthy, T.P.; Wilson, J.M.; Bariteau, J.T.; Labib, S. Association of Strength Following Achilles Tendon Repair With Return to Same Level of Play in High-Level Athletes. Foot Ankle Int. 2020, 41, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Baar, K. Minimizing Injury and Maximizing Return to Play: Lessons from Engineered Ligaments. Sport. Med. 2017, 47, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Ardern, C.L.; Taylor, N.F.; Feller, J.A.; Whitehead, T.S.; Webster, K.E. Sports Participation 2 Years after Anterior Cruciate Ligament Reconstruction in Athletes Who Had Not Returned to Sport at 1 Year: A Prospective Follow-up of Physical Function and Psychological Factors in 122 Athletes. Am. J. Sports Med. 2015, 43, 848–856. [Google Scholar] [CrossRef]
- Gobbi, A.; Francisco, R. Factors Affecting Return to Sports after Anterior Cruciate Ligament Reconstruction with Patellar Tendon and Hamstring Graft: A Prospective Clinical Investigation. Knee Surg. Sport. Traumatol. Arthrosc. 2006, 14, 1021–1028. [Google Scholar] [CrossRef]
- Harmon, K.G.; Drezner, J.A.; Gammons, M.; Guskiewicz, K.M.; Halstead, M.; Herring, S.A.; Kutcher, J.S.; Pana, A.; Putukian, M.; Roberts, W.O. American Medical Society for Sports Medicine Position Statement: Concussion in Sport. Br. J. Sports Med. 2013, 47, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Kim, U.; Choi, Y.S.; Jang, G.C.; Choi, Y.B. Early Rehabilitation after Open Repair for Patients with a Rupture of the Achilles Tendon. Injury 2017, 48, 1710–1713. [Google Scholar] [CrossRef]
- Brumann, M.; Baumbach, S.; Mutschler, W.; Polzer, H. Accelerated Rehabilitation Following Achilles Tendon Repair after Acute Rupture—Development of an Evidence-Based Treatment Protocol. Injury 2014, 45, 1782–1790. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.E.; Walter, G.A.; Okereke, E.; Scarborough, M.T.; Esterhai, J.L.; George, S.Z.; Kelley, M.J.; Tillman, S.M.; Gibbs, J.D.; Elliott, M.A.; et al. Muscle Adaptations with Immobilization and Rehabilitation after Ankle Fracture. Med. Scie Sport. Exerc. 2004, 36, 1695–1701. [Google Scholar] [CrossRef]
- Vandenborne, K.; Elliott, M.A.; Walter, G.A.; Abdus, S.; Okereke, E.; Shaffer, M.; Tahernia, D.; Esterhai, J.L. Longitidunal Study of Skeletal Muscle Adaptations during and Rehabilitation. Muscle Nerve 1998, 21, 1006–1012. [Google Scholar] [CrossRef]
- Davies, C.T.M.; Sargeant, A.J. Effects of Exercise Therapy on Total and Component Tissue Leg Volumes of Patients Undergoing Rehabilitation from Lower Limb Injury. Ann. Hum. Biol. 1975, 2, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Ingemann-Hansen, T. Halkjaer-Kristensen Progressive Resistance Exercise Training of the Hypotrophic Quadriceps Muscle in Man. The Effects on Morphology, Size and Function as Well as the Influence of Duration of Effort. Scand. J. Rehabil. Med. 1983, 15, 29–35. [Google Scholar]
- Lantto, I.; Heikkinen, J.; Flinkkila, T.; Ohtonen, P.; Kangas, J.; Siira, P.; Leppilahti, J. Early Functional Treatment Versus Cast Immobilization in Tension after Achilles Rupture Repair: Results of a Prospective Randomized Trial with 10 or More Years of Follow-Up. Am. J. Sport. Med. 2015, 43, 2302–2309. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, O.M.; Jones, D.A.; Round, J.M. Long-Lasting Unilateral Muscle Wasting and Weakness Following Injury and Immobilisation. Scand. Rehabil. Med. 1990, 22, 33–37. [Google Scholar]
- Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.M. Strength Imbalances and Prevention of Hamstring Injury in Professional Soccer Players: A Prospective Study. Am. J. Sport. Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.Y.; Mok, K.M.; Chan, H.C.K.; Yung, P.S.; Chan, K.M. Eccentric Hamstring Strength Deficit and Poor Hamstring-to-Quadriceps Ratio Are Risk Factors for Hamtring Strain Injury in Football: A Prospective Study of 146 Professional Players. J. Sci. Med. Sport. 2018, 21, 789–793. [Google Scholar] [CrossRef]
- Opar, D.A.; Williams, M.D.; Shield, A.J. Hamstring Strain Injuries: Factors That Lead to Injury and Re-Injury. Sport. Med. 2012, 42, 209–226. [Google Scholar] [CrossRef]
- Fousekis, K.; Tsepis, E.; Poulmedis, P.; Athanasopolous, S.; Vagenas, G. Intrinsic Risk Factors of Non-Contract Quadriceps and Hamstring Strains in Soccer: A Prospective Study of 100 Progressional PLayers. Br. J. Sport. Med 2011, 45, 709–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabbett, T.J. Incidence of Injury in Junior and Senior Rugby League Players. Sport. Med. 2004, 34, 849–859. [Google Scholar] [CrossRef]
- Fernandez, W.G.; Yard, E.E.; Comstock, R.D. Epidemiology of Lower Extremity Injuries among U.S. High School Athletes. Acad. Emerg. Med. 2007, 14, 641–645. [Google Scholar] [CrossRef]
- Wong, P.; Hong, Y. Soccer Injury in the Lower Extremities. Br. J. Sports Med. 2005, 39, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Croisier, P.J.L. Muscular Imbalance and Acute Lower Extremity Muscle Injuries in Sport. Int. Sport. J. 2004, 5, 169–176. [Google Scholar]
- Suetta, C.; Magnusson, S.P.; Rosted, A.; Aagaard, P.; Jakobsen, A.K.; Larsen, L.H.; Duus, B.; Kjaer, M. Resistance Training in the Early Postoperative Phase Reduces Hospitalization and Leads to Muscle Hypertrophy in Elderly Hip Surgery Patients—A Controlled, Randomized Study. J. Am. Geriatr. Soc. 2004, 52, 2016–2022. [Google Scholar] [CrossRef]
- Ralston, G.W.; Kilgore, L.; Wyatt, F.B.; Baker, J.S. The Effect of Weekly Set Volume on Strength Gain: A Meta-Analysis. Sport. Med. 2017, 47, 2585–2601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morie, M.; Reid, K.F.; Miciek, R.; Lajevardi, N.; Choong, K.; Krasnoff, J.B.; Storer, T.W.; Fielding, R.A.; Bhasin, S.; Lebrasseur, N.K. Habitual Physical Activity Levels Are Associated with Performance in Measures of Physical Function and Mobility in Older Men. J. Am. Geriatr. Soc. 2010, 58, 1727–1733. [Google Scholar] [CrossRef] [Green Version]
- Warneke, K.; Freund, P.A.; Schiemann, S. Long-Lasting Stretching Induced Muscle Hypertrophy—A Meta-Analysis of Animal Studies. J. Sci. Sport. Exerc. 2022, in press. [CrossRef]
- Warneke, K.; Keiner, M.; Hillebrecht, M.; Schiemann, S. Influence of One Hour versus Two Hours of Daily Static Stretching for Six Weeks Using a Calf-Muscle-Stretching Orthosis on Maximal Strength. Int. J. Env. Res. Public Health 2022, 19, 11621. [Google Scholar] [CrossRef] [PubMed]
- Warneke, K.; Brinkmann, A.; Hillebrecht, M.; Schiemann, S. Influence of Long-Lasting Static Stretching on Maximal Strength, Muscle Thickness and Flexibility. Front. Physiol. 2022, 13, 878955. [Google Scholar] [CrossRef]
- Chin, M.K.; So, R.C.; Yuan, Y.W.; Li, R.C.; Wong, A.S. Cardiorespiratory Fitness and Isokinetic Muscle Strength of Elite Asian Junior Soccer PLayers. J. Sport. Med. Phys. Fit. 1994, 34, 250–257. [Google Scholar]
- Cohen, J. Statistical Power Analysis for Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates Inc.: Mahwah, NJ, USA, 1988. [Google Scholar]
- Hohmann, E.; Tetsworth, K.; Glatt, V. The Hamstring/Quadriceps Ratio Is an Indicator of Function in ACL-Deficient, but Not in ACL-Reconstructed Knees. Arch. Orthop. Trauma Surg. 2019, 139, 91–98. [Google Scholar] [CrossRef]
- Lima, C.D.; Brown, L.E.; Ruas, C.V.; Behm, D.G. Effects of Static Versus Ballistic Stretching on Hamstring:Quadriceps Strength Ratio and Jump Performance in Ballet Dancers and Resistance Trained Women. J. Dance Med. Sci. 2018, 22, 160–167. [Google Scholar] [CrossRef]
- Warneke, K.; Hillebrecht, M.; Wirth, K.; Schiemann, S.; Keiner, M. Correlation between Isometric Maximum Strength and One Repetition Maximum in the Calf Muscle in Extended and Bended Knee Joint. Int. J. Appl. Sport. Sci. 2022, 34, 61–71. [Google Scholar] [CrossRef]
- Behm, D.G.; Sale, D.G. Velocity Specificity of Resistance Training. Sport. Med 1993, 15, 374–388. [Google Scholar] [CrossRef]
- Weishaupt, P.; Obermüller, R.; Hofmann, A. Spine Stabilizing Muscles in Golfers. Sport. Sport. 2000, 14, 55–58. [Google Scholar] [CrossRef]
- Gillet, B.; Begon, M.; Sevrez, V.; Berger-Vachon, C.; Rogowski, I. Adaptive Alterations in Shoulder Range of Motion and Strength in Young Tennis Players. J. Athl. Train. 2017, 52, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Haggmark, T.; Jansson, E.; Eriksson, E. Fiber Type Area and Metabolic Potential of the Thigh Muscle in Man after Knee Surgery and Immobilization. Int. J. Sport. Med. 1981, 2, 12–17. [Google Scholar] [CrossRef]
- Veldhuizen, J.W.; Verstappen, F.T.J.; Vroemen, J.P.A.M.; Kuipers, H.; Greep, J.M. Functional and Morphological Adaptations Following Four Weeks of Knee Immobilization. Int. J. Sport. Med. 1993, 14, 283–287. [Google Scholar] [CrossRef]
- Seniorou, M.; Thompson, N.; Harrington, M.; Theologis, T. Recovery of Muscle Strength Following Multi-Level Orthopedic Surgery in Deplegic Cerebral Palsy. Gait Posture 2007, 26, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Frankewycz, B.; Krutsch, W.; Weber, J.; Ernstberger, A.; Nerlich, M.; Pfeifer, C.G. Rehabilitation of Achilles Tendon Ruptures: Is Early Functional Rehabilitation Daily Routine? Arch. Orthop. Trauma Surg. 2017, 137, 333–340. [Google Scholar] [CrossRef]
- Hermanns, C.; Coda, R.; Cheema, S.; Vopat, M.; Bechtold, M.; Tarakemeh, A.; Mullen, S.; Schroeppel, J.; Vopat, B. Review of Variability in Rehabilitation Protocols after Lateral Ankle Ligament Surgery. Kansas J. Med. 2020, 13, 152–159. [Google Scholar] [CrossRef]
- Hurley, M.V. The Effects of Joint Damage on Muscle Function, Proprioception and Rehabilitation. Man. Ther. 1997, 2, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Kangas, J.; Pajala, A.; Siira, P.; Hämäläinen, M.; Leppilahti, J. Early Functional Treatment versus Early Immobilization in Tension of the Musculotendinous Unit after Achilles Rupture Repair: A Prospective, Randomized, Clinical Study. J. Trauma 2003, 54, 1171–1180. [Google Scholar] [CrossRef]
- Shaffer, M.A.; Okereke, E.; Esterhai, J.L.; Elliott, M.A.; Walker, G.A.; Yim, S.H.; Vandenborne, K. Effects of Immobilzation of Plantar-Flexion Torque, Fatigue Resistance, Functional Ability Following an Ankle Fracture. Phys. Ther. 2000, 80, 769–780. [Google Scholar] [CrossRef] [Green Version]
- Alway, S.E. Force and Contractile Characteristics after Stretch Overload in Quail Anterior Latissimus Dorsi Muscle. J. Appl. Physiol. 1994, 77, 135–141. [Google Scholar] [CrossRef]
- Antonio, J.; Gonyea, W.J.; Progressive, W.J.G. Progressive Stretch Overload of Skeletal Muscle Results in Hypertrophy before Hyperplasia. J. Appl. Physiol. 1993, 75, 1263–1271. [Google Scholar] [CrossRef]
- Sola, M.; Christensen, D.L.; Martin, A.W. Hypertrophy and Hyperplasia of Adult Chicken Anterior Latissimus Dorsi Muscles Following Stretch with and without Denervation 0. Exp. Neurol. 1973, 41, 76–100. [Google Scholar] [CrossRef]
- Devol, D.L.; Novakofski, J.; Fernando, R.; Bechtel, P.J. Varying Amounts of Stretch Stimulus Regulate Stretch-Induced Muscle Hypertrophy in the Chicken. Biochem. Physiol. 1991, 100A, 55–61. [Google Scholar] [CrossRef]
- Nunes, J.P.; Schoenfeld, B.J.; Nakamura, M.; Ribeiro, A.S.; Cunha, P.M.; Cyrino, E.S. Does Stretch Training Induce Muscle Hypertrophy in Humans? A Review of the Literature. Clin. Physiol. Funct. Imaging 2020, 40, 148–156. [Google Scholar] [CrossRef]
- Mizuno, T. Combined Effects of Static Stretching and Electrical Stimulation on Joint Range of Motion and Muscle Strength. J. Strength Cond. Res. 2019, 33, 2694–2703. [Google Scholar] [CrossRef]
- Nelson, A.G.; Kokkonen, J.; Winchester, J.B.; Kalani, W.; Peterson, K.; Kenly, M.S.; Arnall, D.A. A 10-Week Stretching Program Increases Strength in the Contralateral Muscle. J. Cond. Res 2012, 26, 832–836. [Google Scholar] [CrossRef]
- Yahata, K.; Konrad, A.; Sato, S.; Kiyono, R.; Yoshida, R.; Fukaya, T.; Nunes, J.P.; Nakamura, M. Effects of a High-Volume Static Stretching Programme on Plantar-Flexor Muscle Strength and Architecture. Eur. J. Appl. Physiol. 2021, 121, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Hiraizumi, K.; Kiyono, R.; Fukaya, T.; Nishishita, S.; Nunes, J.P.; Nakamura, M. The Effects of Static Stretching Programs on Muscle Strength and Muscle Architecture of the Medial Gastrocnemius. PLoS ONE 2020, 15, e0235679. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.L.; Kim, B.D.H.; Bourcet, M.R.; Jones, G.R.; Jakobi, J.M. Stretch Training Induces Unequal Adaptation in Muscle Fascicles and Thickness in Medial and Lateral Gastrocnemii. Scand. J. Med. Sci. Sport. 2017, 27, 1597–1604. [Google Scholar] [CrossRef]
- Apostolopoulos, N.; Metsios, G.S.; Flouris, A.D.; Koutedakis, Y.; Wyon, M.A. The Relevance of Stretch Intensity and Position—A Systematic Review. Front. Psychol. 2015, 6, 1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, E.; Bianco, A.; Paoli, A.; Palma, A. The Relation Between Stretching Typology and Stretching Duration: The Effects on Range of Motion. Int. J. Sport. Med. 2018, 39, 243–254. [Google Scholar] [CrossRef]
- Valkering, K.P.; Aufwerber, S.; Ranuccio, F.; Lunini, E.; Edman, G.; Ackermann, P.W. Functional Weight-Bearing Mobilization after Achilles Tendon Rupture Enhances Early Healing Response: A Single-Blinded Randomized Controlled Trial. Knee Surg. Sport. Traumatol. Arthrosc. 2017, 25, 1807–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malliares, P.; Cook, J.L.; Kent, P. Reduced Ankle Dorsiflexion Range May Increase the Risk of Patellar Tendon Injury among Volleyball Players. J. Sci. Med. Sport. 2006, 9, 304–309. [Google Scholar] [CrossRef]
- Keiner, M.; Kadlubowksi, B.; Hartmann, H.; Wirth, K. The Influence of Maximum Strength Performance in Squats and Standing Calf Raises on Squat Jumps, Drop Jumps, and Linear and Change of Direction Sprint Performance in Youth Soccer Players. Int. J. Sport. Exerc. Med. 2021, 7, 190. [Google Scholar] [CrossRef]
- Möck, S.; Hartmann, R.; Wirth, K.; Rosenkranz, G.; Mickel, C. The Correlation of the Dynamic Maximum Strength of the Standing Calf Raise with the Sprinting Performance between 5 and 30 Metres. JASC 2019, 27, 7–12. [Google Scholar]
Parameter | ICC (95% CI) | CV (95% CI) |
---|---|---|
MVC180 | 0.996 (0.993–0.998) | 1.81% (1.43–2.23) |
MVC90 | 0.957 (0.920–0.977) | 3.61% (1.88–6.11) |
KtW | 0.975 (0.953–0.987) | 3.54% (2.47–4.83) |
ORTH | 0.982 (0.978–0.986) | 2.59% (2.11–3.01) |
Parameter | Pre-test (M ± SD) | Post-test (M ± SD) | Pre-Post Diff in % | Time Effect | Time * Group |
---|---|---|---|---|---|
MVC180IL | 1660.87 ± 349.05 | 1982.67 ± 409.20 | +19.9 ± 11.1 | p < 0.001 F1,54 = 34.98 η² = 0.39 | p < 0.001 F3,54 = 22.19 η² = 0.55 |
MVC180CL | 1909.93 ± 413.17 | 1933.40 ± 403.61 | +1.5 ± 6.4 | ||
MVC180w MVC180s | 1499.29 ± 331.46 1728.71 ± 377.56 | 1556.79 ± 338.13 1713.71 ± 342.41 | +3.9 ± 4.2 −0.5 ± 4.0 | ||
MVC90IL | 1435.73 ± 340.85 | 1550.33 ± 324.96 | +9.6 ± 9.9 | p < 0.001 F1,54 = 12.14 η² = 0.18 | p = 0.004 F3,54 = 5.05 η² = 0.22 |
MVC90CL | 1488.67 ± 279.28 | 1518.40 ± 316.38 | +1.7 ± 6.9 | ||
MVC90w MVC90s | 1342.36 ± 238.04 1441.36 ± 237.02 | 1376.00 ± 206.75 1428.93 ± 235.96 | +3.0 ± 5.6 −0.7 ± 5.7 | ||
KtWIL | 12.13 ± 2.51 | 13.87 ± 2.35 | +15.2 ± 7.6 | p < 0.001 F1,54 = 20.66 η² = 0.28 | p < 0.001 F3,54 = 5.52 η² = 0.349 |
KtWCL | 13.1 ± 1.97 | 13.23 ± 1.82 | +1.3 ± 5.6 | ||
KtWCGw KtWCGs | 11.39 ± 2.44 12.18 ± 2.12 | 11.57 ± 2.15 12.43 ± 1.59 | +2.9 ± 10.1 +4.2 ± 18.9 | ||
ORTHIL | 7.9 ± 2.32 | 9.43 ± 2.04 | +22.4 ± 15.5 | p < 0.001 F1,54 = 24.12 η² = 0.31 | p < 0.001 F3,54 = 20.47 η² = 0.53 |
ORTHCL | 8.30 ± 2.28 | 8.53 ± 2.23 | +3.2 ± 5.7 | ||
ORTHCGw ORTHs | 7.75 ± 1.25 8.29 ± 1.07 | 7.71 ± 1.01 8.21 ± 1.17 | 0.7 ± 11.5 −0.9 ± 5.0 |
Parameter. | IG | CG | ||
---|---|---|---|---|
Pre-test | Post-test | Pre-test | Post-test | |
MVC180 | ∆= 0.87 p < 0.001 | ∆= 1.03 p = 0.19 | ∆= 0.87 p < 0.001 | ∆= 0.91 p < 0.001 |
MVC90 | ∆= 0.96 p = 0.92 | ∆= 1.02 p = 0.17 | ∆= 0.93 p < 0.001 | ∆= 0.96 p = 0.045 |
KtW | ∆= 0.92 p = 0.029 | ∆= 1.05 p = 0.11 | ∆= 0.93 p < 0.001 | ∆= 0.93 p = 0.018 |
ORTH | ∆= 0.95 p = 0.027 | ∆= 1.11 p < 0.001 | ∆= 0.93 p = 0.004 | ∆= 0.94 p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warneke, K.; Lohmann, L.H.; Keiner, M.; Wagner, C.-M.; Schmidt, T.; Wirth, K.; Zech, A.; Schiemann, S.; Behm, D. Using Long-Duration Static Stretch Training to Counteract Strength and Flexibility Deficits in Moderately Trained Participants. Int. J. Environ. Res. Public Health 2022, 19, 13254. https://doi.org/10.3390/ijerph192013254
Warneke K, Lohmann LH, Keiner M, Wagner C-M, Schmidt T, Wirth K, Zech A, Schiemann S, Behm D. Using Long-Duration Static Stretch Training to Counteract Strength and Flexibility Deficits in Moderately Trained Participants. International Journal of Environmental Research and Public Health. 2022; 19(20):13254. https://doi.org/10.3390/ijerph192013254
Chicago/Turabian StyleWarneke, Konstantin, Lars H. Lohmann, Michael Keiner, Carl-M. Wagner, Tobias Schmidt, Klaus Wirth, Astrid Zech, Stephan Schiemann, and David Behm. 2022. "Using Long-Duration Static Stretch Training to Counteract Strength and Flexibility Deficits in Moderately Trained Participants" International Journal of Environmental Research and Public Health 19, no. 20: 13254. https://doi.org/10.3390/ijerph192013254
APA StyleWarneke, K., Lohmann, L. H., Keiner, M., Wagner, C. -M., Schmidt, T., Wirth, K., Zech, A., Schiemann, S., & Behm, D. (2022). Using Long-Duration Static Stretch Training to Counteract Strength and Flexibility Deficits in Moderately Trained Participants. International Journal of Environmental Research and Public Health, 19(20), 13254. https://doi.org/10.3390/ijerph192013254