The Economic Impact of the SARS Epidemic with Related Interventions in China
Abstract
:1. Introduction
Background: SARS in 2003 in China
2. Materials and Methods
2.1. Theoretical Perspectives
2.2. Empirical Strategies
2.3. Data Sources
2.3.1. Economic Indicators
2.3.2. Epidemic Indicator
3. Results
3.1. Empirical Analyses
3.2. Robustness Checks
3.3. Mechanism Identification
3.3.1. Growth Decomposition
3.3.2. Dynamic Mechanism Identification
3.3.3. Long-Term Impact of an Epidemic after the Reaction Mechanism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Philipson, T. Economic Epidemiology and Infectious Diseases; National Bureau of Economic Research: Cambridge, MA, USA, 1999; p. w7037. [Google Scholar]
- de Francisco (Shapovalova), N.; Donadel, M.; Jit, M.; Hutubessy, R. A Systematic Review of the Social and Economic Burden of Influenza in Low-And Middle-Income Countries. Vaccine 2015, 33, 6537–6544. [Google Scholar] [CrossRef] [PubMed]
- Pinilla, J.; Barber, P.; Vallejo-Torres, L.; Rodríguez-Mireles, S.; López-Valcárcel, B.G.; Serra-Majem, L. The Economic Impact of the SARS-CoV-2 (COVID-19) Pandemic in Spain. Ijerph 2021, 18, 4708. [Google Scholar] [CrossRef] [PubMed]
- Beutels, P.; Jia, N.; Zhou, Q.-Y.; Smith, R.; Cao, W.-C.; de Vlas, S.J. The Economic Impact of SARS in Beijing, China. Trop. Med. Int. Health 2009, 14, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Coibion, O.; Gorodnichenko, Y.; Weber, M. Labor Markets During the COVID-19 Crisis: A Preliminary View; National Bureau of Economic Research: Cambridge, MA, USA, 2020; Volume 15. [Google Scholar]
- Jordà, Ò.; Singh, S.R.; Taylor, A.M. Longer-Run Economic Consequences of Pandemics. Rev. Econ. Stat. 2022, 104, 166–175. [Google Scholar] [CrossRef]
- Lau, J.T.F.; Yang, X.; Pang, E.; Tsui, H.Y.; Wong, E.; Wing, Y.K. SARS-Related Perceptions in Hong Kong. Emerg. Infect. Dis. 2005, 11, 8. [Google Scholar]
- Baker, S.R.; Farrokhnia, R.A.; Meyer, S.; Pagel, M.; Yannelis, C. How Does Household Spending Respond to an Epidemic? Consumption During the 2020 COVID-19 Pandemic. Rev. Asset Pricing Stud. 2020, 10, 834–862. [Google Scholar] [CrossRef]
- Baker, S.; Bloom, N.; Davis, S.; Terry, S. COVID-Induced Economic Uncertainty; National Bureau of Economic Research: Cambridge, MA, USA, 2020; p. w26983. [Google Scholar]
- Altig, D.; Baker, S.; Barrero, J.M.; Bloom, N.; Bunn, P.; Chen, S.; Davis, S.J.; Leather, J.; Meyer, B.; Mihaylov, E.; et al. Economic Uncertainty before and during the COVID-19 Pandemic. J. Public Econ. 2020, 191, 104274. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, Y.; Zhang, P. Macroeconomic Shock, Financial Risk Transmission and Governance Response to Major Public Emergencies. Manag. World. 2020, 2020, 13–35+7. (In Chinese) [Google Scholar] [CrossRef]
- Hai, W.; Zhao, Z.; Wang, J.; Hou, Z.-G. The Short-Term Impact of SARS on the Chinese Economy. Asian Econ. Pap. 2004, 3, 57–61. [Google Scholar] [CrossRef]
- Lee, J.-W.; McKibbin, W.J. Globalization and Disease: The Case of SARS. Asian Econ. Pap. 2004, 3, 113–131. [Google Scholar] [CrossRef]
- George, A.; Li, C.; Lim, J.Z.; Xie, T. From SARS to COVID-19: The Evolving Role of China-ASEAN Production Network. Econ. Model. 2021, 101, 105510. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, Q.; Sun, S.; Xia, C. The Impact of Awareness Diffusion on SIR-like Epidemics in Multiplex Networks. Appl. Math. Comput. 2019, 349, 134–147. [Google Scholar] [CrossRef]
- Zhou, M.; Xiang, H.; Li, Z. Optimal Control Strategies for a Reaction–Diffusion Epidemic System. Nonlinear Anal. Real World Appl. 2019, 46, 446–464. [Google Scholar] [CrossRef]
- Keogh-Brown, M.R.; Smith, R.D. The Economic Impact of SARS: How Does the Reality Match the Predictions? Health Policy 2008, 88, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Nilsson, T.; Pichler, S. The Impact of the 1918 Spanish Flu Epidemic on Economic Performance in Sweden. J. Health Econ. 2014, 36, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.P.A.S.; Mueller, J. Updating the Accounts: Global Mortality of the 1918–1920 “Spanish” Influenza Pandemic. Bull. Hist. Med. 2002, 76, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Belasen, A.R.; Polachek, S.W. How Hurricanes Affect Wages and Employment in Local Labor Markets. Am. Econ. Rev. 2008, 98, 49–53. [Google Scholar] [CrossRef]
- Shan, H. Reestimating the Capital Stock of China: 1952~2006. J. Quant. Tech. Econ. 2008, 25, 17–31. (In Chinese) [Google Scholar]
- Wong, G. Has SARS Infected the Property Market? Evidence from Hong Kong. J. Urban Econ. 2008, 63, 74–95. [Google Scholar] [CrossRef] [PubMed]
- Çakmaklı, C.; Demiralp, S.; Kalemli-Özcan, Ṣ.; Yesiltas, S.; Yildirim, M.A. COVID-19 and Emerging Markets: A SIR Model, Demand Shocks and Capital Flows; Working Paper Series; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Guerrieri, V.; Lorenzoni, G.; Straub, L.; Werning, I. Macroeconomic Implications of COVID-19: Can Negative Supply Shocks Cause Demand Shortages? Working Paper Series; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Tanaka, S. Economic Impacts of SARS/MERS/COVID-19 in Asian Countries. Asian Econ. Policy Rev. 2022, 17, 41–61. [Google Scholar] [CrossRef]
Provincial-Level | City-Level | ||||||
---|---|---|---|---|---|---|---|
Standard OLS | Bootstrap Error | Standard OLS | Common Support | ||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
Panel A: Gross Regional Production (GRP) | |||||||
did | 0.0435 *** | 0.0374 *** | 0.0374 *** | 0.0192 | 0.0216 ** | 0.0275 ** | 0.0206 * |
(0.0141) | (0.0134) | (0.0133) | (0.0126) | (0.0107) | (0.0108) | (0.0106) | |
Observations | 496 | 496 | 496 | 1657 | 1657 | 1655 | 1654 |
R-squared | 0.7434 | 0.7707 | 0.7707 | 0.1607 | 0.3160 | 0.3348 | 0.4746 |
Panel B: Gross Regional Industrial Production (GRIP) | |||||||
did | 0.0541 ** | 0.0479 * | 0.0479 * | 0.0431 * | 0.0538 ** | 0.0594 ** | 0.0473 * |
(0.0263) | (0.0261) | (0.0245) | (0.0259) | (0.0240) | (0.0244) | (0.0254) | |
Observations | 496 | 496 | 496 | 1,649 | 1,649 | 1,649 | 1,649 |
R-squared | 0.7135 | 0.7221 | 0.7221 | 0.2372 | 0.3723 | 0.3766 | 0.4008 |
Time FE | YES | YES | YES | YES | YES | YES | YES |
Prov. FE | YES | YES | YES | YES | |||
City FE | YES | YES | YES | ||||
Full Control | YES | YES | YES | YES |
Panel A | Use 1996–2016 | |||
---|---|---|---|---|
GRP | GRP Index | GRP Per Capita | GRP Index Per Capita | |
(8) | (9) | (10) | (11) | |
did | 0.0392 *** | 0.0218 *** | 0.0452 *** | 0.0274 *** |
(0.0137) | (0.0067) | (0.0144) | (0.0074) | |
Observations | 620 | 651 | 620 | 651 |
R-squared | 0.7332 | 0.6653 | 0.7178 | 0.6278 |
Panel B | Use 1999–2007 | |||
(12) | (13) | (14) | (15) | |
did | 0.0232 ** | 0.0111 ** | 0.0283 ** | 0.0156 *** |
(0.0108) | (0.0048) | (0.0114) | (0.0058) | |
Observations | 279 | 279 | 279 | 279 |
R-squared | 0.8053 | 0.8384 | 0.7846 | 0.7711 |
Consumption | Investment | Fiscal Expenditure | Fiscal Revenue | Fiscal Depict | Freight Traffic | Passenger Traffic | |
---|---|---|---|---|---|---|---|
(16) | (17) | (18) | (19) | (20) | (21) | (22) | |
did | −0.0135 | 0.0584 * | 0.0614 ** | −0.0397 | 0.2709 *** | −0.0183 | −0.0235 |
(0.0198) | (0.0322) | (0.0276) | (0.0310) | (0.0767) | (0.0719) | (0.1121) | |
Observations | 372 | 372 | 372 | 372 | 371 | 372 | 372 |
R-squared | 0.6298 | 0.5596 | 0.4673 | 0.4819 | 0.2313 | 0.1704 | 0.1961 |
GRP | GRIP | Consumption | Investment | Fiscal Expenditure | Fiscal Revenue | Fiscal Depict | GRP | GRIP | |
---|---|---|---|---|---|---|---|---|---|
(23) | (24) | (25) | (26) | (27) | (28) | (29) | (30) | (31) | |
… | |||||||||
prd_2001 | 0.0126 | 0.0091 | 0.0002 | 0.0395 | 0.0218 | 0.0070 | 0.1040 | 0.0147 | 0.0149 |
(0.0157) | (0.0343) | (0.0268) | (0.0440) | (0.0376) | (0.0421) | (0.1047) | (0.0153) | (0.0343) | |
prd_2002 | 0.0139 | 0.0203 | 0.0058 | 0.0589 | 0.0288 | 0.0332 | 0.0844 | 0.0136 | 0.0232 |
(0.0157) | (0.0343) | (0.0268) | (0.0440) | (0.0376) | (0.0421) | (0.1047) | (0.0152) | (0.0342) | |
did | 0.0363 ** | 0.0465 | −0.0018 | 0.0979 ** | 0.1052 *** | −0.0124 | 0.3784 *** | 0.0321 ** | 0.0456 |
(0.0157) | (0.0343) | (0.0268) | (0.0440) | (0.0376) | (0.0421) | (0.1047) | (0.0153) | (0.0343) | |
posd_2004 | 0.0185 | 0.0398 | 0.0239 | 0.0681 | 0.0691 * | 0.0577 | 0.1359 | 0.0143 | 0.0384 |
(0.0157) | (0.0343) | (0.0268) | (0.0440) | (0.0376) | (0.0421) | (0.1047) | (0.0153) | (0.0342) | |
posd_2005 | 0.0286 * | 0.0340 | 0.0611 ** | 0.0498 | 0.0480 | 0.0703 * | 0.0726 | 0.0207 | 0.0270 |
(0.0157) | (0.0343) | (0.0268) | (0.0440) | (0.0376) | (0.0421) | (0.1047) | (0.0153) | (0.0343) | |
… | |||||||||
Observations | 372 | 372 | 372 | 372 | 372 | 372 | 371 | 372 | 372 |
R-squared | 0.7825 | 0.5994 | 0.6411 | 0.5660 | 0.4798 | 0.4942 | 0.2434 | 0.7978 | 0.6060 |
Control | Yes | Yes |
(a) PVAR Lag Order Selection Criteria | ||||
---|---|---|---|---|
Lag | AIC | BIC | HQIC | |
1 | −9.00 | −7.77 | −8.50 | |
2 | −9.35 | −7.90 | −8.77 | |
3 | −9.82 * | −8.12 * | −9.14 * | |
4 | −9.60 | −7.59 | −8.79 | |
5 | −9.35 | −6.95 | −8.38 | |
(b) PVAR Granger Causality/Block Exogeneity Wald Tests | ||||
Equation | Excluded | Chi-sq. | p-value | |
Consumption | Investment | 15.99 | 0.00 | *** |
Output | 29.23 | 0.00 | *** | |
ALL | 83.33 | 0.00 | *** | |
Investment | Consumption | 2.05 | 0.73 | |
Output | 7.19 | 0.13 | ||
ALL | 21.34 | 0.01 | *** | |
Output | Consumption | 10.64 | 0.03 | ** |
Investment | 28.67 | 0.00 | *** | |
ALL | 62.39 | 0.00 | *** | |
H0: Excluded variable does not Granger-cause equation variable |
Output | Output | Output Index | Output Index | |
---|---|---|---|---|
(32) | (33) | (34) | (35) | |
Panel A: output | ||||
treated post | −0.0280 *** | −0.0239 *** | −0.0120 *** | −0.0111 *** |
(0.0067) | (0.0056) | (0.0031) | (0.0027) | |
Obs | 527 | 527 | 558 | 527 |
R-squared | 0.7447 | 0.8203 | 0.6852 | 0.7768 |
Panel B: output per capita | ||||
treated post | −0.0341 *** | −0.0311 *** | −0.0201 *** | −0.0184 *** |
(0.0070) | (0.0068) | (0.0034) | (0.0032) | |
Obs | 527 | 527 | 558 | 527 |
R-squared | 0.7312 | 0.7503 | 0.6513 | 0.7200 |
Control | YES | YES | ||
Panel C: Factor Input | ||||
Capital Stock | Population | |||
(36) | (37) | |||
treated post | −0.0133 | 0.0048 | ||
(0.0085) | (0.0037) | |||
Obs | 527 | 527 | ||
R-squared | 0.3871 | 0.2733 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, Y.; Qin, Y.; Chen, C.; Richard, B. The Economic Impact of the SARS Epidemic with Related Interventions in China. Int. J. Environ. Res. Public Health 2022, 19, 13263. https://doi.org/10.3390/ijerph192013263
Wang H, Zhang Y, Qin Y, Chen C, Richard B. The Economic Impact of the SARS Epidemic with Related Interventions in China. International Journal of Environmental Research and Public Health. 2022; 19(20):13263. https://doi.org/10.3390/ijerph192013263
Chicago/Turabian StyleWang, Haoyu, Yishan Zhang, Yingying Qin, Chao Chen, and Beason Richard. 2022. "The Economic Impact of the SARS Epidemic with Related Interventions in China" International Journal of Environmental Research and Public Health 19, no. 20: 13263. https://doi.org/10.3390/ijerph192013263
APA StyleWang, H., Zhang, Y., Qin, Y., Chen, C., & Richard, B. (2022). The Economic Impact of the SARS Epidemic with Related Interventions in China. International Journal of Environmental Research and Public Health, 19(20), 13263. https://doi.org/10.3390/ijerph192013263