Species Diversity of Mycoplankton on the Background of Selected Indicators of Water Quality in Stratified Mesotrophic Lakes
Abstract
:1. Introduction
2. Material and Methods
2.1. Field Study
2.2. Hydrochemical Laboratory Tests
2.3. Microbiological Laboratory Tests
2.4. Ecological Indicators and Statistical Analyses
- Q—ecological significance index
- F—frequency
- D—domination
3. Results
3.1. Measurements of Physicochemical Parameters of Water
3.2. PCR/Sequencing Analysis
3.3. Relationship between Water Quality and Mycoplankton
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blackwell, M. The fungi: 1,2,3…5.1 million species? Am. J. Bot. 2011, 98, 426–438. [Google Scholar] [CrossRef]
- Bass, D.; Richards, T.A. Three reasons to re-evaluate fungal diversity ‘on Earth and in the ocean’. Fungal Biol. Rev. 2011, 25, 159–164. [Google Scholar] [CrossRef]
- Taylor, D.L.; Hollingsworth, T.N.; McFarland, J.W.; Lennon, N.J.; Nusbaum, C.; Ruess, R.W. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 2014, 84, 3–20. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectrum 2017, 5, FUNK-0052-2016. [Google Scholar] [CrossRef] [PubMed]
- Shearer, C.; Descals, E.; Kohlmeyer, B.; Kohlmeyer, J.; Marvanova, L.; Padgett, D.; Porter, D.; Raja, H.A.; Schmit, J.P.; Thorton, H.A.; et al. Fungal biodiversity in aquatic habitats. Biodivers. Conserv. 2007, 16, 49–67. [Google Scholar] [CrossRef]
- Tsui, C.K.M.; Baschien, C.; Goh, T.K. Biology and ecology of freshwater fungi. In Biology of Microfungi; Li, D.-W., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 315–371. [Google Scholar]
- Wurzbacher, C.M.; Bärlocher, F.; Grossart, H.P. Fungi in lake ecosystems. Aquat. Microb. Ecol. 2010, 59, 125–149. [Google Scholar] [CrossRef] [Green Version]
- Sparrow, F. Ecology of freshwater fungi. In The Fungi—An Advanced Treatise. The Fungal Population; Ainsworth, G., Sussman, A., Eds.; Academic Press: New York, NY, USA, 1968; Volume 3, pp. 41–93. [Google Scholar]
- Smirnov, N.N. On the quantity of allochthonous pollen and spores received by the Rybinsk Reservoir. Hydrobiologia 1964, 24, 421–429. [Google Scholar] [CrossRef]
- Park, D. On the ecology of heterotrophic microorganisms in freshwater. Trans. Br. Mycol. Soc. 1972, 58, 291–299. [Google Scholar] [CrossRef]
- Jones, E.G.; Hyde, K.D.; Pang, K.L. (Eds.) Freshwater Fungi: And Fungal-Like Organisms; Walter de Gruyter GmbH & Co KG.: Berlin, Germany, 2014; p. 488. [Google Scholar]
- Pabst, S.; Scheifhacken, N.; Hesselschwerdt, J.; Wantzen, K. Leaf litter degradation in the wave impact zone of a prealpine lake. Hydrobiologia 2008, 613, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Siuda, W.; Chróst, R.J. Decomposition and utilization of particulate organic matter by bacteria in lakes of different trophic status. Pol. J. Environ. Stud. 2002, 11, 53–65. [Google Scholar]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2001; p. 1006. [Google Scholar]
- Esteves, F.A. Fundamentos de Limnologia, 3rd ed.Interciência: Rio de Janeiro, Brazil, 2011; p. 790. [Google Scholar]
- Callisto, M.; Molozzi, J.; Barbosa, J.L.E. Eutrophication of lakes. In Eutrophication: Causes, Consequences and Control; Ansari, A.A., Gill, S.S., Eds.; Springer Science + Business Media Dordrecht: Berlin/Heidelberg, Germany, 2014; p. 264. [Google Scholar]
- Descals, E. Techniques for handling ingoldian fungi. In Methods to Study Litter Decomposition. A Practical Guide; Graça, M.A.S., Bärlocher, F., Gessner, M.O., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 129–141. [Google Scholar]
- Cudowski, A.; Pietryczuk, A. Biodiversity of mycoplankton in the profile of eutrophic lakes with varying water quality. Fungal Ecol. 2020, 48, 1–13. [Google Scholar] [CrossRef]
- Cudowski, A.; Pietryczuk, A.; Hauschild, T. Quantitative and qualitative diversity of aquatic fungi in relation to the physical and chemical parameters of water quality in the Augustów Canal. Fungal Ecol. 2015, 13, 193–204. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Kasprzak, K.; Niedbała, W. Biocenotic indicators used in ordering and analyzing data in quantitative research. In Methods Used in Soil Zoology; Górny, M., Grum, L., Eds.; Wyd. Naukowe PWN: Warsaw, Poland, 1981; pp. 397–416. (In Polish) [Google Scholar]
- Lešp, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: Cambridge, UK, 2003; p. 269. [Google Scholar]
- Bärlocher, F.; Boddy, L. Aquatic fungal ecology—How does it differ from terrestrial? Fungal Ecol. 2016, 19, 5–13. [Google Scholar] [CrossRef]
- Grossart, H.P.; Rojas-Jimenez, K. Aquatic fungi: Targeting the forgotten in microbial ecology. Curr. Op. Microb. 2016, 31, 140–145. [Google Scholar] [CrossRef]
- Grossart, H.P.; Wurzbacher, C.; James, T.Y.; Kagami, M. Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol. 2016, 19, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Bährs, H.; Steinberg, C.E.W. Impact of two different humic substances on selected coccal green algae and cyanobacteria—Changes in growth and photosynthetic performance. Environ. Sci. Pollut. Res. 2011, 19, 335–346. [Google Scholar] [CrossRef]
- Godlewska, A.; Kiziewicz, B.; Muszyńska, E.; Mazalska, B. Fungi and straminipilous organisms found in ponds Białystok. Pol. J. Environ. Stud. 2009, 3, 369–376. [Google Scholar]
- Muszyńska, E.; Kiziewicz, B.; Godlewska, A.; Milewski, R. Fungi and straminipilous organisms growing In the Narew river and its Chosen tributaries in Ne Poland. Pol. J. Environ. Stud. 2014, 2, 401–408. [Google Scholar]
- Krauss, G.; Sridhar, K.R.; Jung, K.; Wennrich, R.; Ehrman, J.; Bärlocher, F. Aquatic hyphomycetes in polluted groundwater habitats of Central Germany. Microb. Ecol. 2003, 45, 329–339. [Google Scholar]
- Zeng, X.; Twardowska, I.; Wei, S.; Sun, L.; Wang, J.; Zhu, J.; Cai, J. Removal of trace metals and improvement of dredged sediment dewaterability by bioleaching combined with Fenton-like reaction. J. Hazard. Mater. 2015, 288, 51–59. [Google Scholar] [CrossRef]
- Dunalska, J.A. Total organic carbon as a new index for monitoring trophic states in lakes. Oceanol. Hydrobiol. Stud. 2011, 40, 112–115. [Google Scholar] [CrossRef]
- Schindler, D.W.; Carpenter, S.R.; Chapra, S.C.; Hecky, R.E.; Orihel, D.M. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef] [Green Version]
- Cudowski, A. Dissolved reactive manganese as a new index determining the trophic status of limnic waters. Ecol. Indic. 2015, 48, 721–727. [Google Scholar] [CrossRef]
- Godlewska, A.; Kiziewicz, B.; Muszyńska, E.; Jankowska, D. Aquatic fungi and straminipilous organisms in the lakes of the Ełckie District. Pol. J. Environ. Stud. 2016, 25, 1921–1930. [Google Scholar] [CrossRef]
- Pascoal, C.; Cássio, F. Linking fungal diversity to the functioning of freshwater ecosystems. In Novel Techniques and Ideas in Mycology; Fungal Diversity Research Series; Sridhar, K.R., Bärlocher, F., Hyde, K.D., Eds.; Fungal Diversity Press: Hong Kong, China, 2008; Volume 20, pp. 1–19. [Google Scholar]
- Mazurkiewicz-Zapałowicz, K.; Silicki, A.; Gregorczyk, A.; Biedunkiewicz, A.; Wolska, M. Effects of some abiotic factors on the occurrence of aquatic mycobiota in lakes of the Drawa National Park. Oceanol. Hydrobiol. Stud. 2012, 41, 8–16. [Google Scholar] [CrossRef]
- Ortiz-Vera, P.; Olchanheski, L.R.; da Silva, E.G.; de Lima, F.R.; Martinez, L.R.d.R.; Sato, M.I.Z.; Jaffé, R.; Alves, R.; Ichiwaki, S.; Padilla, G.; et al. Influence of water quality on diversity and composition of fungal communities in a tropical river. Sci. Rep. 2018, 8, 14799–14808. [Google Scholar] [CrossRef]
- Baudoin, J.M.; Guérold, F.; Felten, V.; Chauvet, E.; Wagner, P.; Rousselle, P. Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf- litter breakdown. Microb. Ecol. 2008, 56, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Pietryczuk, A.; Cudowski, A.; Hauschild, T. Effect of lakes with varied trophic status on the species diversity and abundance of fungi. Ecotox Environ. Safe 2014, 109, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.O.; Lins, R.P.M.; Lima, S.M.S.; Ribeiro, L.L.; de Ceballos, B.S.O. Fungi in eutrophic reservoirs in Paraíba State in semi-arid Northeast Brazil. Pan-Am. J. Aquat. Sci. 2014, 9, 288–300. [Google Scholar]
- Krachler, R.F.; Krachler, R.; Stojanovic, A.; Wielander, B.; Herzig, A. Effects of pH on aquatic biodegradation processes. Biogeosciences Discuss. 2009, 6, 491–514. [Google Scholar]
- Wahyuni, E.A. The Influence of pH characteristics on the occurrence of coliform bacteria in Madura Strait. Proc. Environ. Sci. 2015, 23, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, Y.; Chen, S.; Zhao, Z.; Feng, J.; Zhang, Z.; Lu, K.; Jia, J. Water bacterial and fungal community compositions associated with urban lakes, Xi’an, China. Int. J. Environ. Res. Public Health 2018, 15, 469–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douterelo, I.; Fish, K.E.; Boxall, J.B. Succession of bacterial and fungal communities within biofilms of a chlorinated drinking water distribution system. Water Res. 2018, 141, 74–85. [Google Scholar] [CrossRef]
- Mille-Lindblom, C.; Tranvik, L.J. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb. Ecol. 2003, 45, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Karpowicz, M.; Ejsmont-Karabin, J. Effect of metalimnetic gradient on phytoplankton and zooplankton (Rotifera, Crustacea) communities in different trophic conditions. Environ. Monit. Assess. 2017, 189, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Frenken, T.; Wierenga, J.; van Donk, E.; Declerck, S.A.J.; Domis, L.N.d.; Rohrlack, T.; van de Waal, D.B. Fungal parasites of a toxic inedible cyanobacterium provide food to zooplankton. Limnol. Oceanogr. 2018, 63, 2384–2393. [Google Scholar] [CrossRef]
- Wirth, F.; Goldani, L.Z. Epidemiology of Rhodotorula: An emerging pathogen. Interdiscip. Perspect. Infect. Dis. 2012, 2012, 465717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kot, A.M.; Błażejak, S.; Kurcz, A.; Gientka, I.; Kieliszek, M. Rhodotorula glutinis-potential source of lipids, carotenoids, and enzymes for use in industries. Appl. Microbiol. Biotechnol. 2016, 100, 6103–6117. [Google Scholar] [CrossRef] [Green Version]
- Karpowicz, M.; Ejsmont-Karabin, J. Influence of environmental factors on vertical distribution of zooplankton communities in humic lakes. Ann. Limnol.-Int. J. Lim. 2018, 54, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Cole, G.T.; Kendrick, B. (Eds.) Biology of Conidial Fungi, 1st ed.; Academic Press: Cambridge, MA, USA, 1981; Volume 1, p. 486. [Google Scholar]
- Zhang, Y.; Liu, S.; Che, Y.; Liu, X. Epicoccins A–D, epipolythiodioxopiperazines from a Cordyceps-colonizing isolate of Epicoccum nigrum. J. Nat. Prod. 2007, 70, 1522–1525. [Google Scholar] [CrossRef] [PubMed]
- Kemami Wangun, H.V.; Hertweck, C. Epicoccarines A, B and epipyridone: Tetramic acids and pyridone alkaloids from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. Org. Biomol. Chem. 2007, 5, 1702–1705. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.D. Mycological investigations of indoor environments. In Microorganisms in Home and Indoor Work Environments: Diversity, Health Impacts, Investigation and Control, 2nd ed.; Flannigan, B., Samson, R.A., Miller, J.D., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 231–246. [Google Scholar]
- Pusz, W.; Pląskowska, E.; Yildirim, I.; Weber, R. Fungi occurring on the plants of the genus Amaranthus L. Turk. J. Bot. 2015, 39, 147–161. [Google Scholar] [CrossRef]
- Mims, C.W.; Richardson, E.A. Ultrastructure of sporodochium and conidium development in the anamorphic fungus Epicoccum nigrum. Can. J. Bot. 2005, 83, 1354–1363. [Google Scholar] [CrossRef]
- Leslie, J.F.; Bandyopadhyay, R.; Visconti, A. Mycotoxin: Detection Methods, Management, Public Health, and Agricultural Trade; CABI: Wallingford, UK, 2008; p. 734. [Google Scholar]
- Smith, S.N. An overview of ecological and habitat aspects in the genus fusarium with special emphasis on the soil-borne pathogenic forms. Plant Path. Bull. 2007, 16, 97–120. [Google Scholar]
- Wiśniewska, H.; Basiński, T.; Chełkowski, J.; Perkowski, J. Fusarium sporotrichioides sherb. Toxins evaluated in cereal grain with Trichoderma harzianum. J. Plant Protect. Res. 2011, 51, 134–139. [Google Scholar] [CrossRef]
- Magill, S.S.; Manfredi, L.; Swiderski, A.; Cohen, B.; Merz, W.G. Isolation of Trichophyton violaceum and Trichophyton soudanense in Baltimore, Maryland. J. Clin. Microbiol. 2007, 45, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Monod, M.; Méhul, B. Recent findings in onychomycosis and their application for appropriate treatment. J. Fungi 2019, 5, 20–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shekha, Y.A.; Ismael, H.M.; Ahmed, A.A. Bacteriological and mycological assessment for water quality of Duhok Reservoir, Iraq. Jordan J. Biol. Sci. 2013, 6, 308–315. [Google Scholar] [CrossRef]
Oxygen Conditions in Lake | Lake | Geographical Coordinates |
---|---|---|
The presence of oxygen in the entire profile | Szurpiły | 54.22746991 N, 22.89284831 E |
Staw | 54.02284682 N, 22.98780206 E | |
Ożewo | 54.14730288 N, 22.81103507 E | |
Białe Wigierskie | 54.03053768 N, 23.08963512 E | |
Czarne near Bryzgla | 54.00539434 N, 23.08847648 E | |
Anaerobic hypolimnion | Jeglówek | 54.23828083 N, 22.88764166 E |
Jaczno | 54.28019417 N, 22.87475052 E | |
Kojle | 54.27619198 N, 22.89210078 E | |
Perty | 54.27352605 N, 22.89788832 E | |
Dusajtys | 54.14202472 N, 23.42812649 E | |
Limited oxygen in the hypolimnion | Ryngis | 54.09177329 N, 23.43347970 E |
Muliczne | 54.02806960 N, 23.03853835 E | |
Hałny | 54.13625607 N, 23.45802686 E | |
Pobłędzie | 54.30814827 N, 22.75552361 E | |
Sztabinki | 54.12678003 N, 23.41988603 E |
Species Name | GenBank Acc. Num. | Query Coverage/ Percent Identity [in %] | Data Availability |
---|---|---|---|
Acremonium implicatum/ Sarocladium implicatum | MT635273 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635273 (accessed on 16 June 2020) |
Alternaria alternata | MT635274 | 100/99.82 | https://www.ncbi.nlm.nih.gov/nuccore/MT635274 (accessed on 16 June 2020) |
Alternaria brassicicola | MT635275 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635275 (accessed on 16 June 2020) |
Alternaria infectoria/ Lawia infectoria | MT635276 | 100/99.83 | https://www.ncbi.nlm.nih.gov/nuccore/MT635276 (accessed on 16 June 2020) |
Anguillospora crassa | MT635277 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635277 (accessed on 16 June 2020) |
Uncultured Ascomycota/ Ascomycota sp. | MT635278 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635278 (accessed on 16 June 2020) |
Aspergillus fumigatus | MT635279 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635279 (accessed on 16 June 2020) |
Aspergillus tabacinus | MT635280 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635280 (accessed on 16 June 2020) |
Aspergillus westerdijkiae | MT635281 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635281 (accessed on 16 June 2020) |
Bipolaris sorokiniana/ Cochliobolus sativus | MT635282 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635282 (accessed on 16 June 2020) |
Bjerkandera adusta | MT635283 | 100/99.84 | https://www.ncbi.nlm.nih.gov/nuccore/MT635283 (accessed on 16 June 2020) |
Cadophora fastigiata | MT635284 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635284 (accessed on 16 June 2020) |
Candida albicans | MT635285 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635285 (accessed on 16 June 2020) |
Cladosporium cladosporioides | MT635286 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635286 (accessed on 16 June 2020) |
Cladosporium halotolerans | MT635287 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635287 (accessed on 16 June 2020) |
Cladosporium herbarum/ Mycosphaerella tassiana | MT635288 | 100/99.81 | https://www.ncbi.nlm.nih.gov/nuccore/MT635288 (accessed on 16 June 2020) |
Davidiella sp. | MT635289 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635289 (accessed on 16 June 2020) |
Epicoccum nigrum | MT635290 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635290 (accessed on 16 June 2020) |
Exophiala xenobiotica | MT635291 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635291 (accessed on 16 June 2020) |
Filobasidium magnum | MT635292 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635292 (accessed on 16 June 2020) |
Flagellospora curvula | MT635293 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635293 (accessed on 16 June 2020) |
Fomitopsis pinicola | MT635294 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635294 (accessed on 16 June 2020) |
Fusarium acuminatum | MT635295 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635295 (accessed on 16 June 2020) |
Fusarium equiseti/ Gibberella intricans | MT635296 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635296 (accessed on 16 June 2020) |
Fusarium poae | MT635297 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635297 (accessed on 16 June 2020) |
Fusarium sporotrichioides | MT635298 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635298 (accessed on 16 June 2020) |
Hanseniaspora uvarum | MT635299 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635299 (accessed on 16 June 2020) |
Glonium pusillum | MT635300 | 100/99.81 | https://www.ncbi.nlm.nih.gov/nuccore/MT635300 (accessed on 16 June 2020) |
Heliscus lugdunensis/ Neonectria lugdunensis | MT635301 | 100/98.21 | https://www.ncbi.nlm.nih.gov/nuccore/MT635301 (accessed on 16 June 2020) |
Holtermanniella takashimae | MT635302 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635302 (accessed on 16 June 2020) |
Komagataella phaffii | MT635303 | 100/99.63 | https://www.ncbi.nlm.nih.gov/nuccore/MT635303 (accessed on 16 June 2020) |
Lunulospora curvula | OP444247 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/OP444247 (accessed on 14 September 2022) |
Meyerozyma guilliermondii | OP444248 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/OP444248 (accessed on 14 September 2022) |
Microdochium sp. | OP444249 | 100/99.63 | https://www.ncbi.nlm.nih.gov/nuccore/OP444249 (accessed on 14 September 2022) |
Naganishia albida | OP444250 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/OP444250 (accessed on 14 September 2022) |
Naganishia diffluens | OP444251 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/OP444251 (accessed on 14 September 2022) |
Penicillium chrysogenum | OP444252 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/OP444252 (accessed on 14 September 2022) |
Penicillium griseoroseum | OP444253 | 100/99.83 | https://www.ncbi.nlm.nih.gov/nuccore/OP444253 (accessed on 14 September 2022) |
Penicillium olsonii | OP444254 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/OP444254 (accessed on 14 September 2022) |
Didymella pinodella | OP444255 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/OP444255 (accessed on 14 September 2022) |
Pichia fermentans/ Candida lambica | OP444256 | 100/99.50 | https://www.ncbi.nlm.nih.gov/nuccore/OP444256 (accessed on 14 September 2022) |
Pichia guilliermondii | MT635314 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635314 (accessed on 16 June 2020) |
Pithomyces chartarum | MT635315 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635315 (accessed on 16 June 2020) |
Pleosporaceae sp. | MT635316 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635316 (accessed on 16 June 2020) |
Pseudozyma pruni | MT635317 | 100/99.63 | https://www.ncbi.nlm.nih.gov/nuccore/MT635317 (accessed on 16 June 2020) |
Rhodotorula glutinis | MT635318 | 100/99.83 | https://www.ncbi.nlm.nih.gov/nuccore/MT635318 (accessed on 16 June 2020) |
Rhodotorula mucilaginosa | MT635319 | 100/99.83 | https://www.ncbi.nlm.nih.gov/nuccore/MT635319 (accessed on 16 June 2020) |
Simplicillium sp. | MT635320 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635320 (accessed on 16 June 2020) |
Talaromyces purpureogenus | MT635321 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635321 (accessed on 16 June 2020) |
Trametes hirsuta | MT635322 | 100/99.84 | https://www.ncbi.nlm.nih.gov/nuccore/MT635322 (accessed on 16 June 2020) |
Trichoderma harzianum | MT635323 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635323 (accessed on 16 June 2020) |
Trichophyton violaceum | MT635324 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635324 (accessed on 16 June 2020) |
Uncultured fungus | MT635325 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635325 (accessed on 16 June 2020) |
Uncultured Nectriaceae | MT635326 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635326 (accessed on 16 June 2020) |
Ustilaginoidea virens/ Villoscislava virens | MT635327 | 100/100 | https://www.ncbi.nlm.nih.gov/nuccore/MT635327 (accessed on 16 June 2020) |
Parameter [Unit] | The Presence of Oxygen in the Entire Profile | Anaerobic Hypolimnion | Limited Oxygen in Hypolimnion | ||||||
---|---|---|---|---|---|---|---|---|---|
Layer | E | M | H | E | M | H | E | M | H |
EC [μS/cm] | 382 ± 39.6 | 446 ± 40.2 | 478 ± 37.7 | 400 ± 31.8 | 414 ± 35.1 | 453 ± 38.5 | 289 ± 82.6 | 317 ± 82.1 | 329 ± 83.5 |
pH | 8.37 ± 0.61 | 8.12 ± 0.36 | 7.62 ± 0.74 | 8.05 ± 0.08 | 7.91 ± 0.15 | 7.07 ± 0.19 | 8.42 ± 1.05 | 8.08 ± 0.16 | 7.83 ± 0.37 |
DO [mg/L] | 11.2 ± 3.33 | 13.0 ± 0.62 | 7.14 ± 1.10 | 8.35 ± 0.44 | 10.3 ± 2.36 | 0.20 ± 0.05 | 8.69 ± 0.83 | 5.46 ± 0.73 | 3.55 ± 0.15 |
SDO [%] | 131 ± 21.7 | 121 ± 23.1 | 64.9 ± 6.01 | 116 ± 15.5 | 107 ± 22.3 | 2.3 ± 1.7 | 103 ± 12.4 | 44.3 ± 7.02 | 28.6 ± 1.34 |
TOC [mgC/L] | 5.97 ± 1.82 | 5.00 ± 0.92 | 4.31 ± 1.09 | 6.66 ± 1.61 | 5.77 ± 1.50 | 5.34 ± 1.45 | 7.30 ± 1.93 | 6.59 ± 1.85 | 6.16 ± 1.67 |
DOC [mgC/L] | 5.18 ± 2.61 | 4.75 ± 0.92 | 3.99 ± 1.24 | 5.95 ± 2.11 | 5.48 ± 1.40 | 5.00 ± 1.52 | 6.91 ± 1.91 | 6.24 ± 1.81 | 6.04 ± 1.60 |
IC [mgC/L] | 39.5 ± 3.42 | 47.9 ± 5.92 | 53.4 ± 7.97 | 48.0 ± 3.21 | 51.0 ± 4.33 | 58.0 ± 4.54 | 31.5 ± 8.33 | 35.5 ± 8.36 | 37.2 ± 8.67 |
TN [mgN/L] | 1.24 ± 0.28 | 1.83 ± 0.48 | 1.99 ± 0.85 | 1.18 ± 0.12 | 1.53 ± 0.39 | 2.15 ± 0.47 | 0.79 ± 0.08 | 0.91 ± 0.25 | 1.37 ± 0.49 |
DN [mgN/L] | 1.08 ± 0.23 | 1.69 ± 0.52 | 1.81 ± 0.95 | 0.94 ± 0.17 | 1.32 ± 0.19 | 1.81 ± 0.34 | 0.69 ± 0.04 | 0.83 ± 0.21 | 1.31 ± 0.51 |
Biomass of algae [μg/L] | 6.68 ± 0.87 | 8.76 ± 1.05 | 2.76 ± 0.09 | 5.02 ± 0.37 | 6.04 ± 0.42 | 0.89 ± 0.01 | 5.97 ± 0.88 | 7.09 ± 0.91 | 1.94 ± 0.11 |
Abundance of bacteria 106 [cells/mL] | 1.8 ± 0.7 | 4.6 ± 1.1 | 0.7 ± 0.5 | 1.7 ± 0.6 | 4.1 ± 1.2 | 1.3 ± 0.7 | 1.7 ± 0.9 | 4.2 ± 1.3 | 0.6 ± 0.3 |
Abundance of fungi [CFU/mL] | 11,800 ± 3800 | 9000 ± 2600 | 5600 ± 2200 | 11,000 ± 4600 | 6600 ± 1400 | 4400 ± 3000 | 11,400 ± 4200 | 7800 ± 1800 | 4800 ± 1800 |
The Presence of Oxygen in the Entire Profile | Layer | Anaerobic Hypolimnion | Layer | Limited Oxygen in Hypolimnion | Layer | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E | M | H | E | M | H | E | M | H | |||
Acremonium implicatum | X | X | Alternaria alternata | X | ˅ | Alternaria alternata | X | ||||
Anguillospora crassa | x | X | Alternaria infectoria | X | Cladosporium cladosporioides | X | X | X | |||
Ascomycota clone | X | Alterniaria brassicicola | X | Cladosporium halotolerans | X | ||||||
Aspergillus fumigatus | X | ˅ | Anguillospora crassa | X | x | Cladosporium herbarum | X | X | |||
Bjerkandera adusta | X | X | X | Aspergillus fumigatus | X | Epicoccum nigrum | X | X | X | ||
Cladosporium cladosporioides | X | Aspergillus tabacinus | X | Exophiala xenobiotica | X | ||||||
Cladosporium halotolerans | x | X | Aspergillus westardijkiae | X | Holtermanniella takashimae | X | |||||
Cladosporium herbarum | x | Bipolaris sorokiniana | X | Meyerozyma guilliermondii | X | X | |||||
Davidiella sp. | x | X | Cadophora fastigiata | X | Naganishia albida | ˅ | |||||
Epicoccum nigrum | X | X | X | Candida albicans | ˅ | Penicillium chrysogenum | X | x | X | ||
Flagellospora curvula | X | X | X | Cladosporium cladosporioides | X | X | X | Penicillium olsonii | x | ||
Fusarium sporotrichioides | X | Cladosporium halotolerans | X | X | X | Phoma pinodella | X | X | |||
Glonium pusillum | x | Cladosporium herbarum | X | Pichia guilliermondii | X | X | |||||
Heliscus lugdunensis | X | X | X | Epicoccum nigrum | X | X | X | Pithomyces chartarum | X | ||
Komagataella phaffii | ˅ | Filobasidium magnum | X | Pseudozyma pruni | x | X | |||||
Lunulospora curvula | X | X | Fomitopsis pinicola | X | Rhodotorula glutinis | X | X | X | |||
Meyerozyma guilliermondii | X | X | Fusarium acuminatum | X | Rhodotorula mucilaginosa | X | X | X | |||
Penicillium chrysogenum | x | X | x | Fusarium equiseti | X | Simplicillium sp. | x | ||||
Pichia guilliermondii | X | ˅ | X | Fusarium poae | x | Talaromyces purpureogenus | X | X | |||
Pleosporaceae sp. | X | Hanseniaspora uvarum | ˄ | Ustilaginoidea virens | x | ˄ | |||||
Rhodotorula glutinis | X | X | X | Heliscus lugdunensis | x | x | |||||
Talaromyces purpureogenus | X | X | Holtermanniella takashimae | X | |||||||
Trichoderma harzianum | X | X | Komagataella phaffii | x | |||||||
Trichophyton violaceum | ˅ | x | Lunulospora curvula | x | X | ||||||
Uncultured Nectriaceae clone | ˄ | Meyerozyma guilliermondii | X | X | X | ||||||
Ustilaginoidea virens | X | Microdochium sp. | X | ||||||||
Naganishia albida | ˅ | ||||||||||
Naganishia diffluens | X | ||||||||||
Penicillium chrysogenum | X | x | |||||||||
Penicillium griseoroseum | X | ||||||||||
Penicillium olsonii | X | ||||||||||
Pichia fermentans | x | X | |||||||||
Pichia guilliermondii | x | X | |||||||||
Pithomyces chartarum | X | ||||||||||
Rhodotorula glutinis | X | X | X | ||||||||
Rhodotorula mucilaginosa | X | ||||||||||
Talaromyces purpureogenus | X | x | |||||||||
Trametes hirsuta | X | ||||||||||
Uncultured fungus | ˄ | ||||||||||
Ustilaginoidea virens | X | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adam, C.; Magdalena, Ś. Species Diversity of Mycoplankton on the Background of Selected Indicators of Water Quality in Stratified Mesotrophic Lakes. Int. J. Environ. Res. Public Health 2022, 19, 13298. https://doi.org/10.3390/ijerph192013298
Adam C, Magdalena Ś. Species Diversity of Mycoplankton on the Background of Selected Indicators of Water Quality in Stratified Mesotrophic Lakes. International Journal of Environmental Research and Public Health. 2022; 19(20):13298. https://doi.org/10.3390/ijerph192013298
Chicago/Turabian StyleAdam, Cudowski, and Świsłocka Magdalena. 2022. "Species Diversity of Mycoplankton on the Background of Selected Indicators of Water Quality in Stratified Mesotrophic Lakes" International Journal of Environmental Research and Public Health 19, no. 20: 13298. https://doi.org/10.3390/ijerph192013298
APA StyleAdam, C., & Magdalena, Ś. (2022). Species Diversity of Mycoplankton on the Background of Selected Indicators of Water Quality in Stratified Mesotrophic Lakes. International Journal of Environmental Research and Public Health, 19(20), 13298. https://doi.org/10.3390/ijerph192013298