Virtual Reality and Exercise Training Enhance Brain, Cognitive, and Physical Health in Older Adults with Mild Cognitive Impairment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. VRCT and Exercise Intervention
2.3. EEG Recording, Preprocessing and Analysis
- Theta/beta (TBR): This tends to reflect attention-related functions. Increased TBR is a predictor of poor cognitive and attention control [33].
- Theta/alpha (TAR): This reflects cognitive ability, especially learning and memory-related functions. Increased TAR is associated with decreased cognitive ability [34].
- Delta/alpha (DAR): This is associated with cognitive deficit. Increased DAR is associated with cognitive impairment [35].
2.4. Cognitive Function and Anthropometric Measures
2.5. Physical Function
2.6. Statistical Analysis
3. Results
3.1. EEG
3.1.1. Band Power: Theta [4–8 Hz]
3.1.2. Power Ratio
- (i)
- Theta Beta ratio (TBR)
- (ii)
- Delta Alpha ratio (DAR)
3.1.3. Resting-State Whole-Brain Connectivity
3.2. Physical Functions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gauthier, S.; Reisberg, G.; Zaudig, M.; Petersen, R.C.; Ritchie, K.; Broich, K.; Belleville, S.; Brodaty, H.; Bennett, D.; Chertkow, H.; et al. Mild cognitive impairment. Lancet 2006, 367, 1262–1270. [Google Scholar] [CrossRef]
- Pal, K.; Mukadam, N.; Petersen, I.; Cooper, C. Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: A systematic review and meta-analysis. Soc. Psychiatr. Psychiatr. Epidemiol. 2018, 53, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Pieramico, V.; Esposito, R.; Cesinaro, S.; Frazzini, V.; Sensi, S.L. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals. Front. Syst. Neurosci. 2014, 8, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Author response: Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 91, 373–374. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.F.; Liu, A.; Jacobsen, E.; Rosano, C.; Berman, S.B.; Chang, C.-C.H.; Ganguli, M. Exercise and the risk of mild cognitive impairment: Does the effect depend on vascular factors? Alzheimer Dis. Assoc. Disord. 2021, 35, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.D.; Frank, L.L.; Foster-Schubert, K.; Green, P.S.; Wilkinson, C.W.; McTiernan, A.; Plymate, S.P.; Fishel, M.A.; Watson, G.S.; Cholerton, B.A.; et al. Effects of aerobic exercise on mild cognitive impairment: A controlled trial. Arch. Neurol. 2010, 67, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagamatsu, L.S.; Chan, A.; Davis, J.C.; Beattie, B.L.; Graf, P.; Voss, M.W.; Sharma, D.; Liu-Ambrose, T. Physical Activity Improves Verbal and Spatial Memory in Older Adults with Probable Mild Cognitive Impairment: A 6-Month Randomized Controlled Trial. J. Aging Res. 2013, 2013, 861893. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, C.M.C.; Pereira, J.R.; de Andrade, L.P.; Garuffi, M.; Ayan, C.; Kerr, D.S.; Talib, L.L.; Cominetti, M.R.; Stella, F. Physical Exercise Improves Peripheral BDNF Levels and Cognitive Functions in Mild Cognitive Impairment Elderly with Different BDNF Val66Met Genotypes. J. Alzheimers Dis. 2014, 43, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Morris, T.P.; Gomes-Osman, J.; Pascual-Leone, A. Author Response: Exercise for cognitive brain health in aging: A systematic review for an evaluation of dose. Neurol. Clin. Pract. 2018, 8, 366–368. [Google Scholar] [CrossRef]
- Suzuki, T.; Shimada, H.; Makizako, H.; Doi, T.; Yoshida, D.; Tsutsumimoto, K.; Anan, Y.; Uemura, K.; Lee, S.; Park, H. Effects of multicomponent exercise on cognitive function in older adults with amnestic mild cognitive impairment: A randomized controlled trial. BMC Neurol. 2012, 12, 128. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Park, J.H.; Na, H.R.; Hiroyuki, S.; Kim, G.M.; Jung, M.K.; Kim, W.K.; Park, K.W. Combined Intervention of Physical Activity, Aerobic Exercise, and Cognitive Exercise Intervention to Prevent Cognitive Decline for Patients with Mild Cognitive Impairment: A Randomized Controlled Clinical Study. J. Clin. Med. 2019, 8, 940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinke, L.F.T.; Bolandzadeh, N.; Nagamatsu, L.S.; Hsu, C.L.; Davis, J.C.; Miran-Khan, K.; Liu-Ambrose, T. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: A 6-month randomised controlled trial. Br. J. Sports Med. 2014, 49, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.J.; Blumenthal, J.A.; Hoffman, B.M.; Cooper, H.; Strauman, T.A.; Welsh-Bohmer, K.; Browndyke, J.; Sherwood, A. Aerobic Exercise and Neurocognitive Performance: A Meta-Analytic Review of Randomized Controlled Trials. Psychosom. Med. 2010, 72, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tak, E.C.; van Uffelen, J.; Paw, M.J.C.A.; Van Mechelen, W.; Hopman-Rock, M. Adherence to Exercise Programs and Determinants of Maintenance in Older Adults with Mild Cognitive Impairment. J. Aging Phys. Act. 2012, 20, 32–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, M.W.; Prakash, R.S.; Erickson, K.I.; Basak, C.; Chaddock, L.; Kim, J.S.; Alves, H.; Heo, S.; Szabo, A.; White, S.M.; et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front. Aging Neurosci. 2010, 2, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, J.; McDonough, D.J.; Gao, Z. The Effectiveness of virtual reality exercise on individual’s physiological, psychological and rehabilitative outcomes: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 4133. [Google Scholar] [CrossRef] [PubMed]
- Pisters, M.F.; Veenhof, C.; Schellevis, F.G.; Twisk, J.W.R.; Dekker, J.; De Bakker, D.H. Exercise adherence improving long-term patient outcome in patients with osteoarthritis of the hip and/or knee. Arthritis Care Res. 2010, 62, 1087–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Uffelen, J.G.; Chinapaw, M.M.; Hopman-Rock, M.; Van Mechelen, W. Feasibility and effectiveness of a walking program for community-dwelling older adults with mild cognitive impairment. J. Aging Phys. Act. 2009, 17, 398–415. [Google Scholar] [CrossRef] [Green Version]
- Van Uffelen, J.G.; Chinapaw, M.M.; Van Mechelen, W.; Hopman-Rock, M. Walking or vitamin B for cognition in older adults with mild cognitive impairment? A randomised controlled trial. Br. J. Sport. Med. 2008, 42, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Kim, G.J. A SWOT Analysis of the Field of Virtual Reality Rehabilitation and Therapy. Presence Teleop. Virtual Environ. 2005, 14, 119–146. [Google Scholar] [CrossRef]
- Baus, O.; Bouchard, S. Moving from virtual reality exposure-based therapy to augmented reality exposure-based therapy: A review. Front. Hum. Neurosci. 2014, 8, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.; Kim, K. Virtual reality for cognitive rehabilitation after brain injury: A systematic review. J. Phys. Ther. Sci. 2015, 27, 2999–3002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, H.J.; Choi, Y.R.; Lee, S.K. Effects of virtual reality cognitive rehabilitation program on cognitive function, physical function and depression in the elders with dementia. J. Int. Acad. Phys. Ther. Res. 2014, 5, 730–737. [Google Scholar] [CrossRef] [Green Version]
- Larson, E.B.; Feigon, M.; Gagliardo, P.; Dvorkin, A.Y. Virtual reality and cognitive rehabilitation: A review of current outcome research. NeuroRehabilitation 2014, 34, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Htut, T.Z.C.; Hiengkaew, V.; Jalayondeja, C.; Vongsirinavarat, M. Effects of physical, virtual reality-based, and brain exercise on physical, cognition, and preference in older persons: A randomized controlled trial. Eur. Rev. Aging Phys. Act. 2018, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Thapa, N.; Park, H.J.; Yang, J.-G.; Son, H.; Jang, M.; Lee, J.; Kang, S.W.; Park, K.W.; Park, H. The Effect of a Virtual Reality-Based Intervention Program on Cognition in Older Adults with Mild Cognitive Impairment: A Randomized Control Trial. J. Clin. Med. 2020, 9, 1283. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Train the Brain Consortium; Maffei, L.; Picano, E.; Andreassi, M.G.; Angelucci, A.; Baldacci, F.; Baroncelli, L.; Begenisic, T.; Bellinvia, P.F.; Berardi, N.; et al. Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: The Train the Brain study. Sci. Rep. 2017, 7, 39471. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-G.; Kim, J.-H.; Jun, T.-W. Effects of 12-Week Resistance Exercise on Electroencephalogram Patterns and Cognitive Function in the Elderly with Mild Cognitive Impairment: A Randomized Controlled Trial. Clin. J. Sport Med. 2018, 28, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Abhang, P.A.; Gawali, B.; Mehrotra, S. Introduction to EEG-and Speech-Based Emotion Recognition; Academic Press: Cambridge, MA, USA, 2016; pp. 19–50. [Google Scholar]
- Massar, S.; Rossi, V.; Schutter, D.; Kenemans, J. Baseline EEG theta/beta ratio and punishment sensitivity as biomarkers for feedback-related negativity (FRN) and risk-taking. Clin. Neurophysiol. 2012, 123, 1958–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jelic, V.; Shigeta, M.; Julin, P.; Almkvist, O.; Winblad, B.; Wahlund, L.H. Quantitative electroencephalography power and coherence in Alzheimer’s disease and mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 1996, 7, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Finnigan, S.; Wong, A.; Read, S. Defining abnormal slow EEG activity in acute ischaemic stroke: Delta/alpha ratio as an optimal QEEG index. Clin. Neurophysiol. 2016, 127, 1452–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makizako, H.; Shimada, H.; Park, H.; Doi, T.; Yoshida, D.; Uemura, K.; Tsutsumimoto, K.; Suzuki, T. Evaluation of multidimensional neurocognitive function using a tablet personal computer: Test-retest reliability and validity in community-dwelling older adults. Geriatr. Gerontol. Int. 2012, 13, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Prichep, L.; John, E.; Ferris, S.; Rausch, L.; Fang, Z.; Cancro, R.; Torossian, C.; Reisberg, B. Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging. Neurobiol. Aging 2006, 27, 471–481. [Google Scholar] [CrossRef]
- Leocani, L.; Locatelli, T.; Martinelli, V.; Rovaris, M.; Falautano, M.; Filippi, M.; Magnani, G.; Comi, G. Electroencephalographic coherence analysis in multiple sclerosis: Correlation with clinical, neuropsychological, and MRI findings. J. Neurol. Neurosurg. Psychiatry 2000, 69, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Selden, N.; Gitelman, D.; Salamon-Murayama, N.; Parrish, T.; Mesulam, M.M. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 1998, 121, 2249–2257. [Google Scholar] [CrossRef] [Green Version]
- Haense, C.; Kalbe, E.; Herholz, K.; Hohmann, C.; Neumaier, B.; Krais, R.; Heiss, W.-D. Cholinergic system function and cognition in mild cognitive impairment. Neurobiol. Aging 2012, 33, 867–877. [Google Scholar] [CrossRef]
- Kramer, A.F.; Colcombe, S. Fitness Effects on the Cognitive Function of Older Adults: A Meta-Analytic Study—Revisited. Perspect. Psychol. Sci. 2018, 13, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Ponomareva, N.; Korovaitseva, G.; Rogaev, E. EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease. Neurobiol. Aging 2008, 29, 819–827. [Google Scholar] [CrossRef]
- Musaeus, C.S.; Nielsen, M.S.; Østerbye, N.N.; Høgh, P. Decreased Parietal Beta Power as a Sign of Disease Progression in Patients with Mild Cognitive Impairment. J. Alzheimers Dis. 2018, 65, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Seidl, A. Regulation of conduction time along axons. Neuroscience 2013, 276, 126–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretti, D.V.; Pievani, M.; Fracassi, C.; Geroldi, C.; Calabria, M.; De Carli, C.S.; Rossini, P.M.; Frisoni, G.B. Brain Vascular Damage of Cholinergic Pathways and EEG Markers in Mild Cognitive Impairment. J. Alzheimers Dis. 2008, 15, 357–372. [Google Scholar] [CrossRef] [PubMed]
- Kilteni, K.; Groten, R.; Slater, M. The sense of embodiment in virtual reality. Presence Teleop. Virtual Environ. 2012, 21, 373–387. [Google Scholar] [CrossRef] [Green Version]
- Clemente, M.; Rey, B.; Rodríguez-Pujadas, A.; Barros-Loscertales, A.; Baños, R.M.; Botella, C.; Alcañiz, M.; Ávila, C. An fMRI Study to Analyze Neural Correlates of Presence during Virtual Reality Experiences. Interact. Comput. 2013, 26, 269–284. [Google Scholar] [CrossRef] [Green Version]
- Andersson, P.; Ragni, F.; Lingnau, A. Visual imagery during real-time fMRI neurofeedback from occipital and superior parietal cortex. NeuroImage 2019, 200, 332–343. [Google Scholar] [CrossRef]
- Bonda, E.; Petrides, M.; Frey, S.; Evans, A. Neural correlates of mental transformations of the body-in-space. Proc. Natl. Acad. Sci. USA 1995, 92, 11180–11184. [Google Scholar] [CrossRef] [Green Version]
- Van der Linden, M.; Berkers, R.M.W.J.; Morris, R.G.M.; Fernandez, G. Angular gyrus involvement at encoding and retrieval is associated with durable but less specific memories. J. Neurosci. 2017, 37, 9474–9485. [Google Scholar] [CrossRef] [Green Version]
- Van Son, D.; de Rover, M.; De Blasio, F.M.; van der Does, W.; Barry, R.J.; Putman, P. Electroencephalography theta/beta ratio covaries with mind wandering and functional connectivity in the executive control network. Ann. N. Y. Acad. Sci. 2019, 1452, 52–64. [Google Scholar] [CrossRef]
- Ottaviani, C.; Shahabi, L.; Tarvainen, M.; Cook, I.; Abrams, M.; Shapiro, D. Cognitive, behavioral, and autonomic correlates of mind wandering and perseverative cognition in major depression. Front. Neurosci. 2015, 8, 433. [Google Scholar] [CrossRef] [Green Version]
- Unsworth, N.; McMillan, B.D. Similarities and differences between mind-wandering and external distraction: A latent variable analysis of lapses of attention and their relation to cognitive abilities. Acta Psychol. 2014, 150, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Smallwood, J.; Nind, L.; O’Connor, R.C. When is your head at? An exploration of the factors associated with the temporal focus of the wandering mind. Conscious. Cogn. 2009, 18, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-I.; Chiang, I.-P.; Jen, C.J. Exercise training increases acetylcholine-stimulated endothelium-derived nitric oxide release in spontaneously hypertensive rats. J. Biomed. Sci. 1996, 3, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Knaepen, K.; Goekint, M.; Heyman, E.; Meeusen, R. Neuroplasticity—Exercise-Induced Response of Peripheral Brain-Derived Neurotrophic Factor. Sports Med. 2010, 40, 765–801. [Google Scholar] [CrossRef]
- Millett, D. Hans Berger: From psychic energy to the EEG. Perspect. Biol. Med. 2001, 44, 522–542. [Google Scholar] [CrossRef]
- Suffczynski, P.; Kalitzin, S.; Pfurtscheller, G.; da Silva, F.L. Computational model of thalamo-cortical networks: Dynamical control of alpha rhythms in relation to focal attention. Int. J. Psychophysiol. 2001, 43, 25–40. [Google Scholar] [CrossRef]
- Gurja, J.P.; Muthukrishan, S.P.; Tripathi, M.; Sharma, R. Reduced Resting-State Cortical Alpha Connectivity Reflects Distinct Functional Brain Dysconnectivity in Alzheimer’s Disease and Mild Cognitive Impairment. Brain Connect. 2022, 12, 134–145. [Google Scholar] [CrossRef]
- Lejko, N.; Larabi, D.I.; Herrmann, C.S.; Aleman, A.; Ćurčić-Blake, B. Alpha Power and Functional Connectivity in Cognitive Decline: A Systematic Review and Meta-Analysis. J. Alzheimers Dis. 2020, 78, 1047–1088. [Google Scholar] [CrossRef]
- Brier, M.R.; Thomas, J.B.; Ances, B.M. Network dysfunction in Alzheimer’s disease: Refining the disconnection hypothesis. Brain Connect. 2014, 4, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Konopka, A.R.; Harber, M.P. Skeletal Muscle Hypertrophy after Aerobic Exercise Training. Exerc. Sport Sci. Rev. 2014, 42, 53–61. [Google Scholar] [CrossRef]
- Bostancı, H.; Emir, A.; Tarakci, D.; Tarakci, E. Video game-based therapy for the non-dominant hand improves manual skills and grip strength. Hand Surg. Rehabil. 2020, 39, 265–269. [Google Scholar] [CrossRef] [PubMed]
Frequency Band | Frequency (Hz) | General Characteristics of Frequency Band |
---|---|---|
Delta | 1–4 | Sleep |
Theta | 4–8 | Deeply relaxed, inward focused |
Alpha | 8–12 | Very relaxed, passive attention |
Beta | 12–30 | Anxiety dominant, active, external attention, relaxed |
Gamma | 30–45 | Concentration |
Variables | VRCT | Exercise | Control |
---|---|---|---|
Number (female/male) | 33 (20/13) | 33 (30/3) | 33 (27/6) |
Age (years) | 72.5 ± 5 | 67.9 ± 3.6 | 72.6± 5.6 |
Education (years) | 9.5 ± 3.7 | 8.5 ± 3.9 | 8.5 ± 3.6 |
Height (m) | 1.58 ± 0.1 | 1.55 ± 0.4 | 1.57 ± 0.1 |
Weight (kg) | 61.9 ± 8.8 | 58.9 ± 7.8 | 61.5 ± 9.8 |
BMI (kg/m2) | 24.6 ± 2.7 | 24.5 ± 3.2 | 24.7 ± 3.2 |
SBP (mmHg) | 128.9 ± 18 | 131.9 ± 19 | 130.3 ± 14 |
DBP (mmHg) | 69.1 ± 12 | 81.1 ± 11 | 74.6 ± 11 |
Grip Strength (kg) | 24.3 ± 6.6 | 21.2 ± 4.34 | 22.9 ± 5.9 |
Gait speed (m/s) | 1.10 ± 0.19 | 1.14 ± 0.18 | 1.12 ± 0.21 |
ASM (kg) | 20.1 ± 6.1 | 19.3 ± 5.7 | 18.3 ± 5.3 |
TUG (s) | 11.2 ± 1.8 | 10.9 ± 1.7 | 10.5 ± 2.2 |
MMSE (score) | 27.21 ± 1.9 | 26.9 ± 1.7 | 26.5 ± 2.8 |
TMT-A (s) | 42.7 ± 19.5 | 44.7 ± 17.9 | 44.7 ± 20.6 |
SDST (score) | 39.6 ± 15.4 | 37.4 ± 13.3 | 30.2 ± 12.4 |
Variables | VRCT | Exercise | Control | |||
---|---|---|---|---|---|---|
Baseline | Post-Intervention | Baseline | Post-Intervention | Baseline | Post-Intervention | |
MMSE (score) | 27.2 ± 1.9 | 28.1 ± 1.7 *+ | 26.9 ± 1.7 | 27.8 ± 1.6 * | 26.5 ± 2.8 | 26.7 ± 1.9 + |
TMT-A(s) | 42.7 ± 19.5 | 36.4 ± 18.1 * | 44.7 ± 17.9 | 42.4 ± 20.1 | 44.7 ± 20.6 | 46.1 ± 22.1 |
SDST (score) | 39.6 ± 15.4 | 53.2 ± 13.7 *+ | 37.4 ± 13.3 | 49.4 ± 12.9 *+ | 30.2 ± 12.4 | 32.1 ± 13.4 + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.-G.; Thapa, N.; Park, H.-J.; Bae, S.; Park, K.W.; Park, J.-H.; Park, H. Virtual Reality and Exercise Training Enhance Brain, Cognitive, and Physical Health in Older Adults with Mild Cognitive Impairment. Int. J. Environ. Res. Public Health 2022, 19, 13300. https://doi.org/10.3390/ijerph192013300
Yang J-G, Thapa N, Park H-J, Bae S, Park KW, Park J-H, Park H. Virtual Reality and Exercise Training Enhance Brain, Cognitive, and Physical Health in Older Adults with Mild Cognitive Impairment. International Journal of Environmental Research and Public Health. 2022; 19(20):13300. https://doi.org/10.3390/ijerph192013300
Chicago/Turabian StyleYang, Ja-Gyeong, Ngeemasara Thapa, Hye-Jin Park, Seongryu Bae, Kyung Won Park, Jong-Hwan Park, and Hyuntae Park. 2022. "Virtual Reality and Exercise Training Enhance Brain, Cognitive, and Physical Health in Older Adults with Mild Cognitive Impairment" International Journal of Environmental Research and Public Health 19, no. 20: 13300. https://doi.org/10.3390/ijerph192013300
APA StyleYang, J. -G., Thapa, N., Park, H. -J., Bae, S., Park, K. W., Park, J. -H., & Park, H. (2022). Virtual Reality and Exercise Training Enhance Brain, Cognitive, and Physical Health in Older Adults with Mild Cognitive Impairment. International Journal of Environmental Research and Public Health, 19(20), 13300. https://doi.org/10.3390/ijerph192013300