Identification of Two Eosinophil Subsets in Induced Sputum from Patients with Allergic Asthma According to CD15 and CD66b Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sputum Induction and Processing
2.2. Flow Cytometry
2.3. Supernatant Cytokine Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Initiative for Asthma Global Strategy for Asthma Management and Prevention. GINA Guidelines. 2021. Available online: https://ginasthma.org/ (accessed on 14 February 2021).
- Spanish Asthma Management Guideline GEMA 5.1. 2021. Available online: https://www.gemasma.com/ (accessed on 14 February 2021).
- Hastie, A.T.; Moore, W.C.; Li, H.; Rector, B.M.; Ortega, V.E.; Pascual, R.M.; Peters, S.P.; Meyers, D.A.; Bleecker, E.R.; National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. Biomarker surrogates do not accurately predict sputum eosinophil and neutrophil percentages in asthmatic subjects. J. Allergy Clin. Immunol. 2013, 132, 72–80.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keulers, L.; Van Der Meer, A.N.; Ten Brinke, A. Sputum analysis reveals eosinophilic inflammation in difficult-to-control asthma patients with low blood eosinophils and FeNO. Eur. Respir. J. 2020, 56, 2254. [Google Scholar]
- Lay, J.C.; Peden, D.B.; Alexis, N.E. Flow cytometry of sputum: Assessing inflammation and immune response elements in the bronchial airways. Inhal. Toxicol. 2011, 23, 392–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, S.; Bellido-Casado, J.; Granel, C.; Crespo, A.; Plaza, V.; Juárez, C. Flow cytometry analysis of leukocytes in induced sputum from asthmatic patients. Immunobiology 2012, 217, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Thurau, A.M.; Schylz, U.; Wolf, V.; Krug, N.; Schauer, U. Identification of eosinophils by flow cytometry. Cytometry 1996, 23, 150–158. [Google Scholar] [CrossRef]
- Xenakis, J.J.; Howard, E.D.; Smith, K.M.; Olbrich, C.L.; Huang, Y.; Anketell, D.; Maldonado, S.; Cornwell, E.W.; Spencer, L.A. Resident intestinal eosinophils constitutively express antigen presentation markers and include two phenotypically distinct subsets of eosinophils. Immunology 2018, 154, 298–308. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Molofsky, A.B.; Liang, H.-E.; Ricardo-Gonzalez, R.R.; Jouihan, H.A.; Bando, J.K.; Chawla, A.; Locksley, R.M. Eosinophils Sustain Adipose Alternatively Activated Macrophages Associated with Glucose Homeostasis. Science 2011, 332, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, R.; Klebanoff, S.J. The eosinophilic leukocyte. Fine structure studies of changes in the uterus during the estrous cycle. J. Exp. Med. 1966, 124, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Weller, P.F.; Spencer, L.A. Functions of tissue-resident eosinophils. Nat. Rev. Immunol. 2017, 17, 746–760. [Google Scholar] [CrossRef]
- Marichal, T.; Mesnil, C.; Bureau, F. Homeostatic Eosinophils: Characteristics and Functions. Front. Med. 2017, 4, 101. [Google Scholar] [CrossRef] [Green Version]
- Mesnil, C.; Raulier, S.; Paulissen, G.; Xiao, X.; Birrell, M.A.; Pirottin, D.; Janss, T.; Starkl, P.; Ramery, E.; Henket, M.; et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J. Clin. Investig. 2016, 126, 3279–3295. [Google Scholar] [CrossRef] [PubMed]
- Januskevicius, A.; Jurkeviciute, E.; Janulaityte, I.; Kalinauskaite-Zukauske, V.; Miliauskas, S.; Malakauskas, K. Blood Eosinophils Subsets and Their Survivability in Asthma Patients. Cells 2020, 9, 1248. [Google Scholar] [CrossRef]
- Matucci, A.; Nencini, F.; Maggiore, G.; Chiccoli, F.; Accinno, M.; Vivarelli, E.; Bruno, C.; Locatello, L.G.; Palomba, A.; Nucci, E.; et al. High proportion of inflammatory CD62L low eosinophils in blood and nasal polyps of severe asthma patients. Clin. Exp. Allergy 2022. [Google Scholar] [CrossRef] [PubMed]
- in’t Veen, J.C.; Grootendorst, D.C.; Bel, E.H.; Smits, H.H.; Van Der Keur, M.; Sterk, P.J.; Hiemstra, P.S. CD11b and L-selectin expression on eosinophils and neutrophils in blood and induced sputum of patients with asthma compared with normal subjects. Clin. Exp. Allergy 1998, 28, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Vega, J.M.; Badia, X.; Badiola, C.; López-Viña, A.; Olaguíbel, J.M.; Picado, C.; Sastre, J.; Dal-Ré, R.; Covalair Investigator Group. Validation of the Spanish version of the Asthma Control Test (ACT). J. Asthma 2007, 44, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Djukanović, R.; Sterk, P.J.; Fahy, J.V.; Hargreave, F.E. Standardised methodology of sputum induction and processing. Eur. Respir. J. Suppl. 2002, 37, 1s–2s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzichini, E.; Pizzichini, M.; Efthimiadis, A.; Evans, S.; Morris, M.M.; Squillace, D.; Gleich, G.J.; Dolovich, J.; E Hargreave, F. Indices of airway inflammation in induced sputum: Reproducibility and validity of cell and fluid-phase measurements. Am. J. Respir. Crit. Care Med. 1996, 154 Pt 1, 308–317. [Google Scholar] [CrossRef]
- Yoon, J.; Terada, A.; Kita, H. CD66b Regulates Adhesion and Activation of Human Eosinophils. J. Immunol. 2007, 179, 8454–8462. [Google Scholar] [CrossRef] [Green Version]
- Kerr, M.A.; Stocks, S.C. The role of CD15-(Le(X))-related carbohydrates in neutrophil adhesion. Histochem. J. 1992, 24, 811–826. [Google Scholar] [CrossRef]
- Satoh, T.; Knowles, A.; Li, M.S.; Sun, L.; A Tooze, J.; Zabucchi, G.; Spry, C.J. Expression of lacto-N-fucopentaose III (CD15)- and sialyl-Lewis X-bearing molecules and their functional properties in eosinophils from patients with the idiopathic hypereosinophilic syndrome. Immunology 1994, 83, 313–318. [Google Scholar]
- Bieńkowska-Haba, M.; Cembrzyńska-Nowak, M.; Liebhart, J.; Dobek, R.; Liebhart, E.; Siemieniec, I.; Panaszek, B.; Obojski, A.; Małolepszy, J. Comparison of leukocyte populations from bronchoalveolar lavage and induced sputum in the evaluation of cellular composition and nitric oxide production in patients with bronchial asthma. Arch. Immunol. Ther. Exp. 2002, 50, 75–82. [Google Scholar]
- Maestrelli, P.; Saetta, M.; Di Stefano, A.; Calcagni, P.G.; Turato, G.; Ruggieri, M.P.; Roggeri, A.; Mapp, C.E.; Fabbri, L.M. Comparison of leukocyte counts in sputum, bronchial biopsies, and bronchoalveolar lavage. Am. J. Respir. Crit. Care Med. 1995, 152, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaikhly, T.; Murphy, R.C.; Parker, A.; Lai, Y.; Altman, M.C.; Larmore, M.; Altemeier, W.A.; Frevert, C.W.; Debley, J.S.; Piliponsky, A.M.; et al. Location of eosinophils in the airway wall is critical for specific features of airway hyperresponsiveness and T2 inflammation in asthma. Eur. Respir. J. 2022, 60, 2101865. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.W. Activation states of blood eosinophils in asthma. Clin. Exp. Allergy 2014, 44, 482–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolitzky, A.; Grisaru-Tal, S.; Avlas, S.; Hazut, I.; Gordon, Y.; Itan, M.; Munitz, A. Mouse resident lung eosinophils are dependent on IL -5. Allergy 2022, 77, 2822–2825. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, E.A.; Jackson, D.J.; Heffler, E.; Mathur, S.K.; Bredenoord, A.J.; Pavord, I.D.; Akuthota, P.; Roufosse, F.; Rothenberg, M.E. Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Annu. Rev. Immunol. 2021, 39, 719–757. [Google Scholar] [CrossRef] [PubMed]
- Demarche, S.; Schleich, F.; Henket, M.; Paulus, V.; Van Hees, T.; Louis, R. Detailed analysis of sputum and systemic inflammation in asthma phenotypes: Are paucigranulocytic asthmatics really non-inflammatory? BMC Pulm. Med. 2016, 16, 46. [Google Scholar] [CrossRef] [Green Version]
- Possa, S.S.; Leick, E.A.; Prado, C.M.; Martins, M.A.; Tibério, I.F.L.C. Eosinophilic Inflammation in Allergic Asthma. Front. Pharmacol. 2013, 4, 46. [Google Scholar] [CrossRef] [Green Version]
- McGrath, K.W.; Icitovic, N.; Boushey, H.A.; Lazarus, S.C.; Sutherland, E.R.; Chinchilli, V.M.; Fahy, J.V.; Asthma Clinical Research Network of the National Heart, Lung, and Blood Institute. A Large Subgroup of Mild-to-Moderate Asthma Is Persistently Noneosinophilic. Am. J. Respir. Crit. Care Med. 2012, 185, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Humbert, M.; Taillé, C.; Mala, L.; Le Gros, V.; Just, J.; Molimard, M.; STELLAIR Investigators. Omalizumab effectiveness in patients with severe allergic asthma according to blood eosinophil count: The STELLAIR study. Eur. Respir. J. 2018, 51, 1702523. [Google Scholar] [CrossRef]
- Krisiukeniene, A.; Sitkauskiene, B.; Malakauskas, K.; Sakalauskas, R. Indukuotu skrepliu lastelines sudeties savybes sergant alergine ir nealergine astma [Peculiarities of induced sputum inflammatory cell counts in allergic versus non-allergic asthma]. Medicina (Kaunas) 2005, 41, 196–202. [Google Scholar] [PubMed]
- Imaoka, H.; Gauvreau, G.M.; Watson, R.M.; Strinich, T.; Obminksi, G.L.; Howie, K.; Killian, K.J.; O’Byrne, P.M. Sputum inflammatory cells and allergen-induced airway responses in allergic asthmatic subjects. Allergy 2011, 66, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Bakakos, P.; Schleich, F.; Alchanatis, M.; Louis, R. Induced sputum in asthma: From bench to bedside. Curr. Med. Chem. 2011, 18, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.M.; Leigh, R.; Horsewood, P.; Gleich, G.J.; Cox, G.; Hargreave, F.E. Induced sputum: Validity of fluid-phase IL-5 measurement. J. Allergy Clin. Immunol. 2000, 105 Pt 1, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
Variables Mean (SD)/n (%) | All (n = 62) | Paucigranulocytic (n = 10) | Neutrophilic (n = 10) | Eosinophilic (n = 24) | Mixed (n = 18) | p | |
---|---|---|---|---|---|---|---|
General characteristics | Age, years | 51.40 (10.79) | 41.80 (12.06) | 53.30 (11.02) | 52.38 (9.94) | 54.39 (8.69) | 0.017 |
Sex, female | 29 (48.3%) | 7 (70%) | 6 (60%) | 9 (37.5%) | 8 (44.4%) | 0.300 | |
BMI, kg/m2 | 28.60 (5.52) | 25.57 (5.62) | 27.76 (5.44) | 30.05 (6.19) | 28.82 (4.06) | 0.177 | |
Never smoked | 42 (70%) | 7 (70%) | 4 (40%) | 19 (79.2%) | 14 (77.8%) | 0.044 | |
Active smoker | 4 (6%) | 2 (20%) | 0 | 1 (4.2%) | 1 (5.6%) | ||
ICS dose, low | 18 (30) | 6 (60%) | 0 (0%) | 6 (25%) | 6 (33.3%) | 0.033 | |
ICS dose, medium | 27 (45%) | 3 (30%) | 5 (50%) | 12 (50%) | 8 (44.4%) | ||
ICS dose, high | 15 (25%) | 1 (10%) | 5 (50%) | 6 (25%) | 4 (22.2%) | ||
Exacerbations in the previous year | 1.15 (1.55) | 0.90 (0.99) | 1.00 (1.05) | 0.83 (0.91) | 1.78 (2.41) | 0.236 | |
ACT score | 18.82 (7.52) | 17.67 (6.68) | 14.60 (5.63) | 20.50 (8.47) | 19.00 (7.04) | 0.490 | |
Comorbidities | Rhinitis | 44 (73.3%) | 9 (90%) | 5 (50%) | 19 (79.2%) | 14 (75.8%) | 0.178 |
Nasal polyps | 16 (26.7%) | 1(10%) | 0 (0%) | 7 (29.2%) | 8 (44.4%) | 0.042 | |
Blood test | Eosinophils (cells/mm3) | 352.5 (328.8) | 142 (137.5) | 255 (228.78) | 430.4 (300.37) | 428.1 (438.77) | 0.062 |
Total IgE (U/L) | 269.56 (415.38) | 141.43 (138.18) | 169.04 (138.10) | 250.90 (306.41) | 436.61 (683.06) | 0.282 | |
Lung function | FEV1/FVC | 66.50 (13.78) | 74.80 (8.70) | 62.54 (14.11) | 69.41 (15.00) | 64.05 (12.81) | 0.143 |
FEV1 (% ref) | 80.36 (22.73) | 93.70 (13.31) | 80.83 (22.55) | 78.97 (21.88) | 75.44 (25.44) | 0.212 | |
FEV1 (L) | 2.49 (0.88) | 2.99 (0.75) | 2.30 (0.75) | 2.50 (0.94) | 2.36 (0.87) | 0.252 | |
FeNO (ppb) | 37.58 (33.03) | 37.21 (30.64) | 26.22 (11.82) | 42.14 (35.08) | 38.04 (39.92) | 0.479 | |
Microscopy induced sputum | Eosinophils, % | 11.71 (16.48) | 0.80 (0.63) | 1.15 (0.66) | 22.70 (21.66) | 9.00 (5.07) | 0.000 |
Neutrophils, % | 58.47 (18.60) | 42.00 (15.92) | 76.65 (10.19) | 48.45 (16.68) | 70.88 (4.17) | 0.000 | |
Macrophages, % | 27.44 (17.33) | 54.80 (15.58) | 20.00 (9.95) | 26.04 (15.14) | 18.22 (4.64) | 0.000 | |
Bronchial cells, % | 2.06 (0.62) | 2.30 (0.48) | 1.60 (0.69) | 2.25 (0.44) | 1.94 (0.72) | 0.017 | |
Lymphocytes, % | 1.79 (0.72) | 1.90 (0.56) | 1.65 (0.66) | 1.87 (0.74) | 1.72 (0.82) | 0.787 |
Variables Mean (SD)/n (%) | All (n = 62) | Paucigranulocytic (n = 10) | Neutrophilic (n = 10) | Eosinophilic (n = 24) | Mixed (n = 18) | p | |
---|---|---|---|---|---|---|---|
Flow cytometry | Eosinophils, % | 17.75 (22.30) | 5.73 (10.21) | 6.78 (9.08) | 25.93 (27.16) | 18.94 (20.53) | 0.036 |
Neutrophils, % | 64.36 (25.26) | 63.05 (27.49) | 78.82 (13.66) | 56.52 (27.99) | 67.45 (22.72) | 0.115 | |
Macrophages, % | 0.42 (0.48) | 0.51 (0.44) | 0.40 (0.30) | 0.46 (0.64) | 0.34 (0.34) | 0.812 | |
Lymphocytes, % | 6.46 (6.94) | 12.49 (7.91) | 3.17 (1.53) | 6.65 (8.19) | 5.01 (4.56) | 0.016 | |
Phenotypes | E1, % | 13.57 (19.51) | 3.25 (7.58) | 3.85 (7.59) | 20.86 (24.91) | 14.42 (16.11) | 0.034 * |
E2, % | 4.52 (6.44) | 2.46 (3.13) | 2.51 (2.58) | 6.27 (8.00) | 4.31 (6.52) | 0.302 | |
E1 CD15 | 55.13 (39.92) | 66.61 (46.05) | 57.70 (35.98) | 50.94 (39.29) | 53.54 (41.85) | 0.791 | |
E2 CD15 | 9.69 (17.63) | 25.48 (31.61) | 6.22 (16.01) | 6.65 (11.43) | 7.76 (12.60) | 0.032 ** | |
Supernatant | IL-5 (pg/mL) | 6.83 (4.80) | *** | 7.44 **** | 3.59 (1.86) | 8.80 (6.28) | 0.604 |
IL-4 (pg/mL) | 15.50 (17.40) | 6.27 (4.92) | 9.61 (10.09) | 21.90 (23.53) | 15.97 (14.15) | 0.447 | |
IL-13 (pg/mL) | 8.77 (6.79) | 6.13 (3.77) | 7.38 (5.12) | 11.54 (8.99) | 7.21 (4.53) | 0.320 | |
Eotaxin(pg/mL) | 15.33 (20.52) | 13.80 (13.29) | 28.66 (47.42) | 12.31 (9.92) | 12.67 (7.90) | 0.487 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curto, E.; Mateus-Medina, É.F.; Crespo-Lessmann, A.; Osuna-Gómez, R.; Ujaldón-Miró, C.; García-Moral, A.; Galván-Blasco, P.; Soto-Retes, L.; Ramos-Barbón, D.; Plaza, V. Identification of Two Eosinophil Subsets in Induced Sputum from Patients with Allergic Asthma According to CD15 and CD66b Expression. Int. J. Environ. Res. Public Health 2022, 19, 13400. https://doi.org/10.3390/ijerph192013400
Curto E, Mateus-Medina ÉF, Crespo-Lessmann A, Osuna-Gómez R, Ujaldón-Miró C, García-Moral A, Galván-Blasco P, Soto-Retes L, Ramos-Barbón D, Plaza V. Identification of Two Eosinophil Subsets in Induced Sputum from Patients with Allergic Asthma According to CD15 and CD66b Expression. International Journal of Environmental Research and Public Health. 2022; 19(20):13400. https://doi.org/10.3390/ijerph192013400
Chicago/Turabian StyleCurto, Elena, Éder F. Mateus-Medina, Astrid Crespo-Lessmann, Rubén Osuna-Gómez, Cristina Ujaldón-Miró, Alba García-Moral, Paula Galván-Blasco, Lorena Soto-Retes, David Ramos-Barbón, and Vicente Plaza. 2022. "Identification of Two Eosinophil Subsets in Induced Sputum from Patients with Allergic Asthma According to CD15 and CD66b Expression" International Journal of Environmental Research and Public Health 19, no. 20: 13400. https://doi.org/10.3390/ijerph192013400
APA StyleCurto, E., Mateus-Medina, É. F., Crespo-Lessmann, A., Osuna-Gómez, R., Ujaldón-Miró, C., García-Moral, A., Galván-Blasco, P., Soto-Retes, L., Ramos-Barbón, D., & Plaza, V. (2022). Identification of Two Eosinophil Subsets in Induced Sputum from Patients with Allergic Asthma According to CD15 and CD66b Expression. International Journal of Environmental Research and Public Health, 19(20), 13400. https://doi.org/10.3390/ijerph192013400