Carfilzomib’s Real-World Safety Outcomes in Korea: Target Trial Emulation Study Using Electronic Health Records
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Design
2.3. Study Population
2.4. Exposures
2.5. Outcomes
2.6. Covariates
2.7. Statistical Analysis
3. Results
3.1. Demographics
3.2. Risk of Safety Outcomes in KRd Users
3.3. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kazandjian, D. Multiple myeloma epidemiology and survival: A unique malignancy. Semin. Oncol. 2016, 43, 676–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annual Report of Cancer Statistics in Korea in 2018. Available online: https://ncc.re.kr/cancerStatsView.ncc?bbsnum=558&searchKey=total&searchValue=&pageNum=1 (accessed on 30 November 2021).
- Nijhof, I.S.; van de Donk, N.W.C.J.; Zweegman, S.; Lokhorst, H.M. Current and New Therapeutic Strategies for Relapsed and Refractory Multiple Myeloma: An Update. Drugs 2018, 78, 19–37. [Google Scholar] [CrossRef] [Green Version]
- Chim, C.S.; Kumar, S.K.; Orlowski, R.Z.; Cook, G.; Richardson, P.G.; Gertz, M.A.; Giralt, S.; Mateos, M.V.; Leleu, X.; Anderson, K.C. Management of relapsed and refractory multiple myeloma: Novel agents, antibodies, immunotherapies and beyond. Leukemia 2018, 32, 252–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rifkin, R.M.; Medhekar, R.; Amirian, E.S.; Aguilar, K.M.; Wilson, T.; Boyd, M.; Mezzi, K.; Panjabi, S. A real-world comparative analysis of carfilzomib and other systemic multiple myeloma chemotherapies in a US community oncology setting. Adv. Hematol 2019, 10, 2040620718816699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herndon, T.M.; Deisseroth, A.; Kaminskas, E.; Kane, R.C.; Koti, K.M.; Rothmann, M.D.; Habtemariam, B.; Bullock, J.; Bray, J.D.; Hawes, J.; et al. US Food and Drug Administration approval: Carfilzomib for the treatment of multiple myeloma. Clin. Cancer Res. 2013, 19, 4559–4563. [Google Scholar] [CrossRef] [Green Version]
- Myeloma. Available online: https://www.nccn.org/professionals/physician_gls/pdf/myeloma.pdf (accessed on 29 November 2021).
- Yoon, S.-S. Optimizing carfilzomib use in multiple myeloma treatment. Blood Res. 2019, 54, 159–161. [Google Scholar] [CrossRef] [Green Version]
- Stewart, A.K.; Rajkumar, S.V.; Dimopoulos, M.A.; Masszi, T.; Špička, I.; Oriol, A.; Hájek, R.; Rosiñol, L.; Siegel, D.S.; Mihaylov, G.G.; et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N. Eng. J. Med. 2015, 372, 142–152. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Moreau, P.; Palumbo, A.; Joshua, D.; Pour, L.; Hájek, R.; Facon, T.; Ludwig, H.; Oriol, A.; Goldschmidt, H.; et al. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): A randomised, phase 3, open-label, multicentre study. Lancet Oncol 2016, 17, 27–38. [Google Scholar] [CrossRef]
- Chari, A.; Stewart, A.K.; Russell, S.D.; Moreau, P.; Herrmann, J.; Banchs, J.; Hajek, R.; Groarke, J.; Lyon, A.R.; Batty, G.N.; et al. Analysis of carfilzomib cardiovascular safety profile across relapsed and/or refractory multiple myeloma clinical trials. Blood Adv. 2018, 2, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Waxman, A.J.; Clasen, S.; Hwang, W.-T.; Garfall, A.; Vogl, D.T.; Carver, J.; O’Quinn, R.; Cohen, A.D.; Stadtmauer, E.A.; Ky, B.; et al. Carfilzomib-associated cardiovascular adverse events. JAMA Oncol 2018, 4, e174519. [Google Scholar] [CrossRef]
- Cornell, R.F.; Ky, B.; Weiss, B.M.; Dahm, C.N.; Gupta, D.K.; Du, L.; Carver, J.R.; Cohen, A.D.; Engelhardt, B.G.; Garfall, A.L.; et al. Prospective study of cardiac events during proteasome inhibitor therapy for relapsed multiple myeloma. J. Clin. Oncol. 2019, 37, 1946–1955. [Google Scholar] [CrossRef] [PubMed]
- Bishnoi, R.; Xie, Z.; Shah, C.; Bian, J.; Murthy, H.S.; Wingard, J.R.; Farhadfar, N. Real-world experience of carfilzomib-associated cardiovascular adverse events: SEER-Medicare data set analysis. Cancer Med. 2021, 10, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Ye, X.; Hu, F.; Xu, J.; Guo, X.; Cao, Y.; Lin, Z.; Zhou, X.; Guo, Z.; He, J. Cardiovascular toxicity of carfilzomib: The real-world evidence based on the adverse event reporting system database of the FDA, the United States. Front. Cardiovasc. Med. 2021, 8, 735466. [Google Scholar] [CrossRef] [PubMed]
- Hájek, R.; Masszi, T.; Petrucci, M.T.; Palumbo, A.; Rosiñol, L.; Nagler, A.; Yong, K.L.; Oriol, A.; Minarik, J.; Pour, L.; et al. A randomized phase III study of carfilzomib vs low-dose corticosteroids with optional cyclophosphamide in relapsed and refractory multiple myeloma (FOCUS). Leukemia 2017, 31, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, S.; Tacchetti, P.; Pantani, L.; Mancuso, K.; Rizzello, I.; di Giovanni Bezzi, C.; Scalese, M.; Dozza, L.; Marzocchi, G.; Martello, M.; et al. A real-world efficacy and safety analysis of combined carfilzomib, lenalidomide, and dexamethasone (KRd) in relapsed/refractory multiple myeloma. Hematol. Oncol. 2021, 39, 41–50. [Google Scholar] [CrossRef]
- Mangla, A.; Paydary, K.; Liu, J.; Mbachi, C.; Yim, B.; Lad, T.E. Carfilzomib-associated cardiovascular adverse events in a non-Caucasian cohort of patients with multiple myeloma: A real-world experience. Hematol. Oncol. 2018, 36, 715–717. [Google Scholar] [CrossRef]
- Nakao, S.; Uchida, M.; Satoki, A.; Okamoto, K.; Uesawa, Y.; Shimizu, T. Evaluation of cardiac adverse events associated with carfilzomib using a Japanese real-world database. Oncology 2022, 100, 60–64. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, Y.; Kang, K.-W.; Lee, J.-J.; Lee, H.S.; Eom, H.-S.; Do, Y.R.; Kim, J.S.; Yoon, S.-S.; Shin, D.-Y.; et al. Carfilzomib in addition to lenalidomide and dexamethasone in Asian patients with RRMM outside of a clinical trial. Ann. Hematol. 2021, 100, 2051–2059. [Google Scholar] [CrossRef]
- Hernán, M.A.; Robins, J.M. Using big data to emulate a target trial when a randomized trial is not available. Am. J. Epidemiol. 2016, 183, 758–764. Available online: https://academic.oup.com/aje/article-pdf/183/8/758/6652570/kwv254.pdf (accessed on 30 November 2021). [CrossRef] [Green Version]
- Admon, A.J.; Donnelly, J.P.; Casey, J.D.; Janz, D.R.; Russell, D.W.; Joffe, A.M.; Vonderhaar, D.J.; Dischert, K.M.; Stempek, S.B.; Dargin, J.M.; et al. Emulating a novel clinical trial using existing observational data predicting results of the PreVent study. Ann. Am. Thorac. Soc. 2019, 16, 998–1007. [Google Scholar] [CrossRef]
- Groenwold, R.H.H. Trial emulation and real-world evidence. JAMA Netw. Open 2021, 4, e213845. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Shinozaki, T.; Kumamaru, H.; Hiramatsu, T.; Matsuyama, Y. Analyzing intent-to-treat and per-protocol effects on safety outcomes using a medical information database: An application to the risk assessment of antibiotic-induced liver injury. Expert Opin. Drug Saf. 2018, 17, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Danaei, G.; Rodríguez, L.A.G.; Cantero, O.F.; Logan, R.; Hernán, M.A. Observational data for comparative effectiveness research: An emulation of randomised trials of statins and primary prevention of coronary heart disease. Stat. Methods Med. Res. 2013, 22, 70–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Common Terminology Criteria for Adverse Events (CTCAE). Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf (accessed on 29 November 2021).
- Cutter, G.; Aban, I. The Confusing World of Clinical Trials: A Guide for Patients and Families; Multiple Sclerosis Association of America: Hackensack, NJ, USA, 2007. [Google Scholar]
- Lund, J.L.; Richardson, D.B.; Stürmer, T. The active comparator, new user study design in pharmacoepidemiology: Historical foundations and contemporary application. Curr. Epidemiol. Rep. 2015, 2, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, K.J.; Jang, Y.; Oh, D.J.; Oh, B.H.; Lee, S.H.; Park, S.W.; Seung, K.B.; Kim, H.K.; Yun, Y.D.; Choi, S.H.; et al. The ACC/AHA 2013 pooled cohort equations compared to a Korean Risk Prediction Model for atherosclerotic cardiovascular disease. Atherosclerosis 2015, 242, 367–375. [Google Scholar] [CrossRef]
- Pancheri, E.; Guglielmi, V.; Wilczynski, G.M.; Malatesta, M.; Tonin, P.; Tomelleri, G.; Nowis, D.; Vattemi, G. Non-Hematologic Toxicity of bortezomib in multiple myeloma: The neuromuscular and cardiovascular adverse effects. Cancers 2020, 12, 2540. [Google Scholar] [CrossRef]
- Hasinoff, B.B.; Patel, D. Myocyte-damaging effects and binding kinetics of boronic acid and epoxyketone proteasomal-targeted drugs. Cardiovasc. Toxicol. 2018, 18, 557–568. [Google Scholar] [CrossRef]
- Wang, X. Vascular spasm: A newly unraveled cause for cardiovascular adversity of proteasome inhibition. EBioMedicine 2017, 21, 51–52. [Google Scholar] [CrossRef] [Green Version]
- Mikhail, P.; Rogers, J.; Forsyth, C.; Ford, T.J. Proteasome inhibitor-induced coronary vasospasm in multiple myeloma: A case report. Eur. Heart J. Case Rep. 2021, 5, ytab076. [Google Scholar] [CrossRef]
- Forghani, P.; Rashid, A.; Sun, F.; Liu, R.; Li, D.; Lee, M.R.; Hwang, H.; Maxwell, J.T.; Mandawat, A.; Wu, R.; et al. Carfilzomib treatment causes molecular and functional alterations of human induced pluripotent stem cell–derived cardiomyocytes. J. Am. Heart Assoc. 2021, 10, e022247. [Google Scholar] [CrossRef]
- Chen-Scarabelli, C.; Corsetti, G.; Pasini, E.; Dioguardi, F.S.; Sahni, G.; Narula, J.; Gavazzoni, M.; Patel, H.; Saravolatz, L.; Knight, R.; et al. Spasmogenic effects of the proteasome inhibitor carfilzomib on coronary resistance, vascular tone and reactivity. EBioMedicine 2017, 21, 206–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, A.; Luthi, J.; Belohlavek, M.; Kortum, K.M.; Mookadam, F.; Mayo, A.; Fonseca, R.; Bergsagel, P.L.; Reeder, C.B.; Mikhael, J.R.; et al. Carfilzomib and the cardiorenal system in myeloma: An endothelial effect? Blood Cancer J. 2016, 6, e384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yui, J.C.; Van Keer, J.; Weiss, B.M.; Waxman, A.J.; Palmer, M.B.; D’Agati, V.D.; Kastritis, E.; Dimopoulos, M.A.; Vij, R.; Bansal, D.; et al. Proteasome inhibitor associated thrombotic microangiopathy. Am. J. Hematol. 2016, 91, E348–E352. [Google Scholar] [CrossRef]
- Hobeika, L.; Self, S.E.; Velez, J.C. Renal thrombotic microangiopathy and podocytopathy associated with the use of carfilzomib in a patient with multiple myeloma. BMC Nephrol. 2014, 15, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nooka, A.K. Management of hematologic adverse events in patients with relapsed and/or refractory multiple myeloma treated with single-agent carfilzomib. Oncology 2013, 27 (Suppl. S3), 11–18. [Google Scholar] [PubMed]
- Siegel, D.; Martin, T.; Nooka, A.; Harvey, R.D.; Vij, R.; Niesvizky, R.; Badros, A.Z.; Jagannath, S.; McCulloch, L.; Rajangam, K.; et al. Integrated safety profile of single-agent carfilzomib: Experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica 2013, 98, 1753–1761. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, D.; Lee, J.; Chang, Y.; Jin, J.; Jo, D.; Bang, S.; Kim, H.; Kim, J.; Kim, K.; et al. The Korean Multiple Myeloma Working Party. Int. J. Hematol. 2010, 92, 52–57. [Google Scholar] [CrossRef]
KRd (n = 69) | Rd (n = 69) | p-Value | |
---|---|---|---|
Age—years ‡ | 64 (45–80) | 67 (39–85) | 0.04 * |
Male sex † | 40 (58.0) | 39 (56.5) | 0.86 |
Number of prior regimens § | 2.0 ± 1.0 | 2.0 ± 1.2 | 0.76 |
Disease stage at initial diagnosis † | |||
I | 15 (21.7) | 4 (5.8) | 0.11 |
II | 18 (26.1) | 16 (23.2) | |
III | 13 (18.8) | 13 (18.8) | |
Unknown | 23 (33.3) | 36 (52.2) | |
Creatinine clearance—mL/min § | 84.0 ± 39.4 | 60.1 ± 21.0 | 0.76 |
<50mL/min † | 14 (20.3) | 19 (27.5) | 0.32 |
≥50mL/min † | 55 (79.7) | 50 (72.5) | 0.32 |
Prior therapies † | |||
Bortezomib | 64 (92.8) | 62 (90.0) | 0.55 |
Lenalidomide | 1 (1.4) | 0 | 0.48 |
Any immunomodulatory agent | 16 (23.2) | 25 (36.2) | 0.09 |
Concurrent conditions† | |||
Major surgery | 0 (0) | 2 (2.9) | 0.24 |
Active infection requiring treatments | 2 (2.9) | 3 (4.3) | 0.55 |
Human immunodeficiency virus infection | 0 (0) | 0 (0) | - |
Active hepatitis B or C infection | 7 (10.1) | 4 (5.8) | 0.35 |
Other malignancy | 4 (5.8) | 4 (5.8) | 1.00 |
Peripheral neuropathy | 30 (43.5) | 34 (49.3) | 0.50 |
Ongoing graft-vs-host disease | 0 (0) | 1 (1.4) | 0.48 |
Pleural effusion or ascites | 0 (0) | 0 (0) | - |
Cardiac conditions † | |||
Myocardial infarction | 0 (0) | 1 (1.4) | 0.48 |
Heart failure | 2 (2.9) | 4 (5.8) | 0.40 |
Angina | 3 (4.3) | 1 (1.4) | 0.31 |
Coronary artery disease | 1 (1.4) | 3 (4.3) | 0.31 |
Ventricular arrhythmia | 0 (0) | 0 (0) | - |
Sick sinus syndrome | 1 (1.4) | 1 (1.4) | 1.00 |
Acute ischemia | 0 (0) | 0 (0) | - |
Conduction system abnormalities | 0 (0) | 0 (0) | - |
Hypertension | 18 (26.1) | 23 (33.3) | 0.35 |
Diabetes | 16 (23.2) | 16 (23.2) | 1.00 |
KRd (n = 69) | Incidence Rate in Each Cycle (%) | Rd (n = 69) | Incidence Rate in Each Cycle (%) | |
---|---|---|---|---|
Treatment cycles during specified period † | ||||
Cycles 1–6 | 69 (100.0) | - | 69 (100.0) | - |
Cycles 7–12 | 29 (42.0) | 44 (63.8) | ||
Cycles 13–18 | 7 (10.1) | 31 (44.9) | ||
Number of treatment cycles ‡ | 6 (1-18) | 12 (1-18) | ||
Adverse event by treatment cycle † | ||||
Nonhematologic adverse events | ||||
Dyspnea | ||||
Cycles 1–6 | 25 | (36.2) | 16 | (23.2) |
Cycles 7–12 | 4 | (13.8) | 2 | (4.5) |
Cycles 13–18 | 1 | (14.3) | 1 | (3.2) |
Hypertension | ||||
Cycles 1–6 | 17 | (24.6) | 19 | (27.5) |
Cycles 7–12 | 5 | (17.2) | 2 | (4.5) |
Cycles 13–18 | 1 | (14.3) | 5 | (16.1) |
Acute renal failure | ||||
Cycles 1–6 | 9 | (13.0) | 9 | (13.0) |
Cycles 7–12 | 2 | (6.9) | 1 | (2.3) |
Cycles 13–18 | 0 | 0 | 0 | 0 |
Cardiac failure | ||||
Cycles 1–6 | 9 | (13.0) | 9 | (13.0) |
Cycles 7–12 | 1 | (3.4) | 2 | (4.5) |
Cycles 13–18 | 1 | (14.3) | 0 | 0 |
Ischemic heart disease | ||||
Cycles 1–6 | 5 | (7.2) | 7 | (10.1) |
Cycles 7–12 | 1 | (3.4) | 1 | (2.3) |
Cycles 13–18 | 0 | 0 | 1 | (3.2) |
Diarrhea | ||||
Cycles 1–6 | 11 | (15.9) | 17 | (24.6) |
Cycles 7–12 | 5 | (17.2) | 2 | (4.5) |
Cycles 13–18 | 1 | (14.3) | 0 | 0 |
Cough | ||||
Cycles 1–6 | 9 | (13.0) | 11 | (15.9) |
Cycles 7–12 | 2 | (6.9) | 2 | (4.5) |
Cycles 13–18 | 0 | (0.0) | 0 | 0 |
Pyrexia | ||||
Cycles 1–6 | 23 | (33.3) | 15 | (21.7) |
Cycles 7–12 | 3 | (10.3) | 5 | (11.4) |
Cycles 13–18 | 2 | (28.6) | 1 | (3.2) |
Upper respiratory tract infection | ||||
Cycles 1–6 | 9 | (13.0) | 5 | (7.2) |
Cycles 7–12 | 2 | (6.9) | 4 | (9.1) |
Cycles 13–18 | 0 | 0 | 1 | (3.2) |
Hypokalemia | ||||
Cycles 1–6 | 6 | (8.7) | 3 | (4.3) |
Cycles 7–12 | 3 | (10.3) | 2 | (4.5) |
Cycles 13–18 | 0 | 0 | 0 | 0 |
Muscle spasm | ||||
Cycles 1–6 | 8 | (11.6) | 2 | (2.9) |
Cycles 7–12 | 1 | (3.4) | 0 | 0 |
Cycles 13–18 | 0 | 0 | 0 | 0 |
Hematologic adverse events | ||||
Thrombocytopenia | ||||
Cycles 1–6 | 29 | (42.0) | 24 | (34.8) |
Cycles 7–12 | 8 | (27.6) | 3 | (6.8) |
Cycles 13–18 | 1 | (14.3) | 1 | (3.2) |
KRd (n = 69) | Rd (n = 69) | Adjusted HR ¥ (95% CI) | |||
---|---|---|---|---|---|
Events | Events/100-Patient Cycle | Events | Events/100-Patient Cycle | ||
Nonhematologic adverse reactions | |||||
Dyspnea | 30 | 9.84 | 19 | 3.11 | 2.27 (1.24–4.16) |
Hypertension | 23 | 6.04 | 26 | 4.44 | 1.32 (0.73–2.41) |
Acute renal failure | 11 | 2.66 | 10 | 1.41 | 1.3 (0.53–3.16) |
Cardiac failure | 11 | 2.66 | 11 | 1.63 | 1.45 (0.61–3.48) |
Ischemic heart disease | 6 | 1.38 | 9 | 1.36 | 1 (0.34–2.92) |
Diarrhea ¶ | 17 | 4.51 | 19 | 3.13 | 1.02 (0.52–2.01) |
Cough ¶ | 11 | 2.95 | 13 | 1.99 | 1.06 (0.45–2.46) |
Pyrexia ¶ | 28 | 8.14 | 21 | 3.33 | 1.79 (0.99–3.26) |
Upper respiratory tract infection ¶ | 11 | 2.96 | 10 | 1.53 | 1.45 (0.59–3.57) |
Hypokalemia ¶ | 9 | 2.05 | 5 | 0.7 | 1.91 (0.62–5.88) |
Muscle spasm ¶ | 9 | 2.24 | 2 | 0.27 | 5.12 (1.05–24.94) |
Hematologic adverse reactions | |||||
Thrombocytopenia ¶ | 38 | 12.71 | 28 | 5.12 | 1.84 (1.1–3.06) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, H.Y.; Lee, H.K.; Kim, C.J.; Yoon, S.-S.; Kim, I.-W.; Oh, J.M. Carfilzomib’s Real-World Safety Outcomes in Korea: Target Trial Emulation Study Using Electronic Health Records. Int. J. Environ. Res. Public Health 2022, 19, 13560. https://doi.org/10.3390/ijerph192013560
Jang HY, Lee HK, Kim CJ, Yoon S-S, Kim I-W, Oh JM. Carfilzomib’s Real-World Safety Outcomes in Korea: Target Trial Emulation Study Using Electronic Health Records. International Journal of Environmental Research and Public Health. 2022; 19(20):13560. https://doi.org/10.3390/ijerph192013560
Chicago/Turabian StyleJang, Ha Young, Hyun Kyung Lee, Chae Jeong Kim, Sung-Soo Yoon, In-Wha Kim, and Jung Mi Oh. 2022. "Carfilzomib’s Real-World Safety Outcomes in Korea: Target Trial Emulation Study Using Electronic Health Records" International Journal of Environmental Research and Public Health 19, no. 20: 13560. https://doi.org/10.3390/ijerph192013560
APA StyleJang, H. Y., Lee, H. K., Kim, C. J., Yoon, S. -S., Kim, I. -W., & Oh, J. M. (2022). Carfilzomib’s Real-World Safety Outcomes in Korea: Target Trial Emulation Study Using Electronic Health Records. International Journal of Environmental Research and Public Health, 19(20), 13560. https://doi.org/10.3390/ijerph192013560