Associations of Dietary-Lifestyle Patterns with Obesity and Metabolic Health: Two-Year Changes in MeDiSH® Study Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Dietary and Lifestyle Behaviours
2.3. Dietary-Lifestyle Patterns (DLPs)
2.4. Adiposity and Metabolic Outcomes
2.5. Family, Socio-Economic and Demographic Variables
2.6. Statistical Analysis
3. Results
3.1. Sociodemographic Sample Characteristics
3.2. Sample Characteristics: Dietary, Adiposity and Metabolic Outcomes
3.3. Changes in Family Socio-Economic Status, Demographic Status and Lifestyle Factors after 2-Years across the DLP Patterns
3.4. Changes in Diet, Adiposity and Metabolic Outcomes after 2-Years across the DLP Patterns
4. Discussion
Strenghts and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levinson, D.J. A conception of adult development. Am. Psychol. 1986, 41, 3–13. [Google Scholar] [CrossRef]
- Lawrence, E.M.; Mollborn, S.; Hummer, R.A. Health lifestyles across the transition to adulthood: Implications for health. Soc. Sci. Med. 2017, 193, 23–32. [Google Scholar] [CrossRef]
- Mize, T.D. Profiles in health: Multiple roles and health lifestyles in early adulthood. Soc. Sci. Med. 2017, 178, 196–205. [Google Scholar] [CrossRef] [PubMed]
- White, A.; McKee, M.; De Sousa, B.; De Visser, R.; Hogston, R.; Madsen, S.A.; Makara, P.; Richardson, N.; Zatoński, W.; Raine, G. An examination of the association between premature mortality and life expectancy among men in Europe. Eur. J. Public Health 2014, 24, 673–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckart, R.E.; Shry, E.A.; Burke, A.P.; McNear, J.A.; Appel, D.A.; Castillo-Rojas, L.M.; Avedissian, L.; Pearse, L.A.; Potter, R.N.; Tremaine, L.; et al. Sudden Death in Young Adults: An Autopsy-Based Series of a Population Undergoing Active Surveillance. J. Am. Coll. Cardiol. 2011, 58, 1254–1261. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Moran, A.E. Trends in the Prevalence, Awareness, Treatment, and Control of Hypertension Among Young Adults in the United States, 1999 to 2014. Hypertension 2017, 70, 736–742. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C. Heart disease and stroke statistics-2016 update a report from the American Heart Association. Circulation 2017, 133, e38–e48. [Google Scholar]
- Olson, J.S.; Hummer, R.A.; Harris, K.M. Gender and Health Behavior Clustering among U.S. Young Adults. Biodemography Soc. Biol. 2017, 63, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Gooding, H.C.; Shay, C.M.; Ning, H.; Gillman, M.W.; Chiuve, S.E.; Reis, J.P.; Allen, N.B.; Lloyd-Jones, D.M. Optimal Lifestyle Components in Young Adulthood Are Associated with Maintaining the Ideal Cardiovascular Health Profile Into Middle Age. J. Am. Heart Assoc. 2015, 4, e002048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royal Australian College of General Practitioners. Smoking, Nutrition, Alcohol and Physical Activity (SNAP). A Population Health Guide to Behavioural Risk Factors in Gen-754eral Practice; The Royal Australian College of General Practitioners: Melbourne, Australian, 2004; Available online: https://www.racgp.org.au/clinical-resources/clinical-guidelines/key-racgp-guidelines/view-all-racgp-guidelines/snap (accessed on 1 January 2020).
- Ding, D.; Rogers, K.; van der Ploeg, H.; Stamatakis, E.A.; Bauman, A.E. Traditional and Emerging Lifestyle Risk Behaviors and All-Cause Mortality in Middle-Aged and Older Adults: Evidence from a Large Population-Based Australian Cohort. PLoS Med. 2015, 12, e1001917. [Google Scholar] [CrossRef]
- Sotos-Prieto, M.; Bhupathiraju, S.; Falcon, L.; Gao, X.; Tucker, K.; Mattei, J. Association between a Healthy Lifestyle Score and inflammatory markers among Puerto Rican adults. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Gherasim, A.; Arhire, L.I.; Niță, O.; Popa, A.D.; Graur, M.; Mihalache, L. The relationship between lifestyle components and dietary patterns. Proc. Nutr. Soc. 2020, 79, 311–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patino-Alonso, M.C.; Recio-Rodríguez, J.I.; Magdalena-Belio, J.F.; Giné-Garriga, M.; Martínez-Vizcaino, V.; Fernández-Alonso, C.; Arietaleanizbeaskoa, M.S.; Galindo-Villardon, M.P.; Gómez-Marcos, M.A.; García-Ortiz, L. Clustering of lifestyle characteristics and their association with cardio-metabolic health: The Lifestyles and Endothelial Dysfunction (EVIDENT) study. Br. J. Nutr. 2015, 114, 943–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bel-Serrat, S.; Mouratidou, T.; Santaliestra-Pasías, A.M.; Iacoviello, L.; Kourides, Y.A.; Marild, S.; Molnár, D.; Reisch, L.; Siani, A.; et al.; on behalf of the IDEFICS consortium Clustering of multiple lifestyle behaviours and its association to cardiovascular risk factors in children: The IDEFICS study. Eur. J. Clin. Nutr. 2013, 67, 848–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leech, R.M.; McNaughton, S.A.; Timperio, A. The clustering of diet, physical activity and sedentary behavior in children and adolescents: A review. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B.; Rimm, E.; Smith-Warner, S.A.; Feskanich, D.; Stampfer, M.J.; Ascherio, A.; Sampson, L.; Willett, W.C. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am. J. Clin. Nutr. 1999, 69, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B.; Rimm, E.B.; Stampfer, M.J.; Ascherio, A.; Spiegelman, D.; Willett, W.C. Prospective study of major dietary patterns and risk of coronary heart disease in men. Am. J. Clin. Nutr. 2000, 72, 912–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twisk, J.; Kemper, H.; Mellenbergh, G.; van Mechelen, W.; Post, G. Relation between the longitudinal development of lipoprotein levels and lifestyle parameters during adolescence and young adulthood. Ann. Epidemiol. 1996, 6, 246–256. [Google Scholar] [CrossRef]
- Appannah, G.; Murray, K.; Trapp, G.; Dymock, M.; Oddy, W.H.; Ambrosini, G.L. Dietary pattern trajectories across adolescence and early adulthood and their associations with childhood and parental factors. Am. J. Clin. Nutr. 2021, 113, 36–46. [Google Scholar] [CrossRef]
- Noble, N.; Paul, C.; Turon, H.; Oldmeadow, C. Which modifiable health risk behaviours are related? A systematic review of the clustering of Smoking, Nutrition, Alcohol and Physical activity (‘SNAP’) health risk factors. Prev. Med. 2015, 81, 16–41. [Google Scholar] [CrossRef] [PubMed]
- Śmigielski, J.; Bielecki, W.; Drygas, W. Health and life style-related determinants of survival rate in the male residents of the city of Łódź. Int. J. Occup. Med. Environ. Health 2013, 26, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.K.K.K. Dietary patterns: Biomarkers and chronic disease riskThis paper is one of a selection of papers published in the CSCN–CSNS 2009 Conference, entitled Are dietary patterns the best way to make nutrition recommendations for chronic disease prevention? Appl. Physiol. Nutr. Metab. 2010, 35, 199–206. [Google Scholar] [CrossRef]
- Northstone, K.; Emmett, P. Dietary patterns of men in ALSPAC: Associations with socio-demographic and lifestyle characteristics, nutrient intake and comparison with women’s dietary patterns. Eur. J. Clin. Nutr. 2010, 64, 978–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Smeden, M.; Moons, K.G.; De Groot, J.A.; Collins, G.S.; Altman, D.G.; Eijkemans, M.J.; Reitsma, J.B. Sample size for binary logistic prediction models: Beyond events per variable criteria. Stat. Methods Med. Res. 2019, 28, 2455–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Movassagh, E.Z.; Baxter-Jones, A.D.G.; Kontulainen, S.; Whiting, S.J.; Vatanparast, H. Tracking Dietary Patterns over 20 Years from Childhood through Adolescence into Young Adulthood: The Saskatchewan Pediatric Bone Mineral Accrual Study. Nutrients 2017, 9, 990. [Google Scholar] [CrossRef]
- Luque, V.; Escribano, J.; Closa-Monasterolo, R.; Zaragoza-Jordana, M.; Ferré, N.; Grote, V.; Koletzko, B.; Totzauer, M.; Verduci, E.; ReDionigi, A.; et al. Unhealthy Dietary Patterns Established in Infancy Track to Mid-Childhood: The EU Childhood Obesity Project. J. Nutr. 2018, 148, 752–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talegawkar, S.A.; Jin, Y.; Xue, Q.-L.; Tanaka, T.; Simonsick, E.M.; Tucker, K.L.; Ferrucci, L. Dietary Pattern Trajectories in Middle Age and Physical Function in Older Age. J. Gerontol. Ser. A 2021, 76, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Lonnie, M.; Wadolowska, L.; Kowalkowska, J.; Bandurska-Stankiewicz, E. Sociodemographic and family correlates of dietary-lifestyle patterns in young men: Cross-sectional study (MeDiSH Project). Proc. Nutr. Soc. 2020, 79, E203. [Google Scholar] [CrossRef]
- Lonnie, M.; Wadolowska, L.; Bandurska-Stankiewicz, E. Dietary-Lifestyle Patterns Associated with Adiposity and Metabolic Abnormalities in Adult Men under 40 Years Old: A Cross-Sectional Study (MeDiSH Project). Nutrients 2020, 12, 751. [Google Scholar] [CrossRef] [Green Version]
- Gawecki, J. (Ed.) Dietary Habits and Nutrition Beliefs Questionnaire and the Manual for Developing Nutritional Data; Committee of Human Nutrition Science, Polish Academy of Sciences: Olsztyn, Poland, 2018; Available online: https://knozc.pan.pl/images/stories/MLonnie/KomPAN_manual_english_version_25-11-2020_last_korekta_2021.pdf (accessed on 25 November 2020).
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Czlapka-Matyasik, M.; Galinski, G.; Jezewska-Zychowicz, M.; Bronkowska, M.; Dlugosz, A.; Loboda, D.; Wyka, J. Reproducibility of a Questionnaire for Dietary Habits, Lifestyle and Nutrition Knowledge Assessment (KomPAN) in Polish Adolescents and Adults. Nutrients 2018, 10, 1845. [Google Scholar] [CrossRef] [PubMed]
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; Sage Publications: London, UK, 2009. [Google Scholar]
- ISAK. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Potchefstroom, South Africa, 2001; Available online: http://www.ceap.br/material/MAT17032011184632.pdf (accessed on 17 July 2018).
- Obesity: Preventing and managing the global epidemic Report of a WHO consultation. World Health Organ. Technol. Rep. Ser. 2000, 894, 1–253.
- World Health Organization (WHO). Waist Circumference and Waist-Hip Ratio; Report of WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2008.
- Dympna, G.; Heymsfield, S.B.; Heo, M.; Jebb, S.; Murgatroyd, P.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar]
- National Institute for Health and Care Excellence (NICE). Hypertension in Adults: Diagnosis and Managment. Clinical Guideline NG136. Available online: https://www.nice.org.uk/guidance/ng136 (accessed on 14 September 2019).
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults[M1]. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noronha, J.C.; Thom, G.; Lean, M.E.J. Total Diet Replacement within an Integrated Intensive Lifestyle Intervention for Remission of Type 2 Diabetes: Lessons from DiRECT. Front. Endocrinol. 2022, 13, 888557. [Google Scholar] [CrossRef] [PubMed]
- Osadnik, K.; Osadnik, T.; Lonnie, M.; Lejawa, M.; Reguła, R.; Fronczek, M.; Gawlita, M.; Wądołowska, L.; Gąsior, M.; Pawlas, N. Metabolically healthy obese and metabolic syndrome of the lean: The importance of diet quality. Analysis of MAGNETIC cohort. Nutr. J. 2020, 19, 19. [Google Scholar] [CrossRef] [PubMed]
- Coenen, P.; Huysmans, M.A.; Holtermann, A.; Krause, N.; Van Mechelen, W.; Straker, L.M.; Van Der Beek, A.J. Do highly physically active workers die early? A systematic review with meta-analysis of data from 193,696 participants. Br. J. Sports Med. 2018, 52, 1320–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halperin, R.O.; Gaziano, J.M.; Sesso, H.D. Smoking and the Risk of Incident Hypertension in Middle-aged and Older Men. Am. J. Hypertens. 2008, 21, 148–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.A.; Szeto, A.; Farewell, R.; Shek, A.; Fan, D.; Quach, K.N.; Bhattacharyya, M.; Elmiari, J.; Chan, W.; O’Dell, K.; et al. Impact of High Volume Energy Drink Consumption on Electrocardiographic and Blood Pressure Parameters: A Randomized Trial. J. Am. Heart Assoc. 2019, 8, e011318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roerecke, M.; Kaczorowski, J.; Tobe, S.W.; Gmel, G.; Hasan, O.S.M.; Rehm, J. The effect of a reduction in alcohol consumption on blood pressure: A systematic review and meta-analysis. Lancet Public Health 2017, 2, e108–e120. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Trieu, K.; Yoshimura, S.; Neal, B.; Woodward, M.; Campbell, N.R.C.; Li, Q.; Lackland, D.T.; Leung, A.A.; Anderson, C.A.M.; et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: Systematic review and meta-analysis of randomised trials. BMJ 2020, 368, m315. [Google Scholar] [CrossRef] [PubMed]
- Nunnally, J.C. Psychometric Theory, 2nd ed.; McGraw Hill: New York, NY, USA, 1978. [Google Scholar]
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Galinski, G.; Dlugosz, A.; Loboda, D.; Czlapka-Matyasik, M. Data-Driven Dietary Patterns and Diet Quality Scores: Reproducibility and Consistency in Sex and Age Subgroups of Poles Aged 15–65 Years. Nutrients 2020, 12, 3598. [Google Scholar] [CrossRef]
Variables | Total Sample | Sub-Sample before | p-Value # | Sub-Sample after 2 Years | p-Value § |
---|---|---|---|---|---|
Number of subjects | 358 | 95 | 95 | ||
Socio-economic and demographic status | |||||
Age (years) ¥ | 30.1 (5.9) | 31.8 (5.3) | 0.011 | 33.7 (5.3) | 0.014 |
Age groups: n (%) | 0.001 | 0.035 | |||
19–30 years | 43 | 25 | 13 | ||
31–40 years | 57 | 75 | 83 | ||
Place of residence | 0.044 | 0.626 | |||
Villages and towns | 36 | 25 | 22 | ||
Big cities | 63 | 75 | 78 | ||
Economic status | 0.439 | 0.214 | |||
Modest | 27 | 31 | 23 | ||
Comfortable or wealthy | 73 | 69 | 77 | ||
Education | 0.013 | 0.530 | |||
Secondary or lower | 42 | 28 | 24 | ||
Higher | 58 | 72 | 76 | ||
Family status (%) | |||||
In relationship | 0.141 | 0.524 | |||
Yes | 65 | 73 | 77 | ||
No | 35 | 27 | 23 | ||
Having children | 0.285 | 0.129 | |||
Yes | 37 | 43 | 54 | ||
No | 63 | 57 | 46 | ||
Lifestyle factors | |||||
Number of meals per day | 0.268 | 0.529 | |||
Three or less | 34 | 28 | 33 | ||
Four or more | 66 | 72 | 67 | ||
Physical activity at work or school | 0.862 | 0.783 | |||
Low | 50 | 51 | 53 | ||
Moderate or high | 50 | 49 | 47 | ||
Rereational physical activity | 0.354 | 0.054 | |||
Low | 16 | 20 | 10 | ||
Moderate or high | 84 | 80 | 90 | ||
Current smoking | 0.471 | 0.824 | |||
Yes | 16 | 13 | 12 | ||
No | 84 | 87 | 88 | ||
Smoking in the past | 0.722 | 1.000 | |||
Yes | 39 | 37 | 37 | ||
No | 61 | 63 | 63 | ||
Screen time | 0.015 | 1.000 | |||
6 h per day or more | 44 | 58 | 58 | ||
Less than 6 h | 56 | 42 | 42 | ||
Diet quality scores: mean (SD) | |||||
pHDI | 25.4 (11.6) | 25.0 (10.8) | 0.761 | 24.4 (9.8) | 0.555 |
nHDI | 19.7 (7.9) | 18.9 (8.1) | 0.371 | 17.4 (8.3) | 0.086 |
Adiposity outcomes: mean (SD) | |||||
BMI [kg/m2] | 26.0 (3.7) | 26.1 (3.2) | 0.751 | 26.4 (3.6) | 0.111 |
WC [cm] | 89.9 (10.4) | 90.5 (9.9) | 0.642 | 92.7 (10.4) | 0.002 |
WHtR [–] | 0.50 (0.1) | 0.50 (0.1) | 1.00 | 0.51 (0.06) | 0.002 |
Body fat [%] | 22.2 (6.8) | 23.2 (6.7) | 0.202 | 23.6 (6.4) | 0.246 |
Visceral fat tissue [l] | 1.96 (2.2) | 2.1 (3.2) | 0.620 | 2.2 (1.5) | 0.731 |
Skeletal muscle mass [%] | 38.8 (3.2) | 38.3 (3.2) | 0.177 | 37.8 (3.8) | 0.063 |
Metabolic outcomes: mean (SD) | |||||
FBG [mg/dL] | 85.0 (13.4) | 85.5 (12.3) | 0.743 | 83.6 (14.3) | 0.288 |
TG [mg/dL] | 143.1 (99.3) | 125.4 (75.8) | 0.107 | 136.0 (87.4) | 0.378 |
TC [mg/dL] | 185.6 (40.2) | 193.5 (34.8) | 0.081 | 197.6 (42.1) | 0.309 |
SBP [mmHg] | 126.1 (12.0) | 126.9 (13.2) | 0.572 | 132.1 (13.0) | 0.001 |
DBP [mmHg] | 77.4 (9.5) | 77.9 (9.4) | 0.648 | 79.0 (9.1) | 0.160 |
Variables | Sub-Sample (n = 95) | Protein Food, Fried-Food and Recreational Physical Activity (n = 32) | Sandwiches and Convenience Foods (n = 31) | Fast Foods and Stimulants (n = 23) | Healthy Diet, Activity at Work, Former Smoking (n = 30) | |||||
---|---|---|---|---|---|---|---|---|---|---|
RD | p-Value | RD | p-Value | RD | p-Value | RD | p-Value | RD | p-Value | |
Diet quality scores | ||||||||||
pHDI | 8.3 | 0.555 | −13.6 | 0.011 | 18.6 | 0.576 | 14.8 | 0.953 | −14.6 | 0.005 |
nHDI | 1.3 | 0.086 | −0.8 | 0.270 | −25.3 | <0.001 | −7.0 | 0.151 | 6.1 | 0.328 |
Socio-economic and demographic status | ||||||||||
Age (years) ¥ | 6 | 0.014 | 6 | 0.187 | 6 | 0.142 | 6 | 0.306 | 6 | 0.119 |
Age 19–30 years (vs. 31–40 years) | −48 | 0.035 | −29 | 0.396 | −17 | 0.756 | −23 | 0.536 | −26 | 0.519 |
Place of residence: Villages and towns (vs. big cities) | −12 | 0.626 | −11 | 0.777 | −10 | 0.776 | −37 | 0.326 | 35 | 0.519 |
Economic status: Modest (vs. comfortable or wealthy) | −26 | 0.214 | 0 | 1.00 | −54 | 0.082 | −57 | 0.153 | 0 | 1.00 |
Education: Secondary or lower (vs. higher) | −14 | 0.530 | 17 | 0.590 | −34 | 0.374 | −19 | 0.552 | −15 | 0.766 |
Family status | ||||||||||
In relationship Yes (vs. No) | 5 | 0.524 | −48 | 0.140 | −4 | 0.776 | 14 | 0.522 | 3 | 0.640 |
Having children Yes (vs. No) | 26 | 0.129 | 20 | 0.453 | 33 | 0.200 | 46 | 0.238 | 8 | 0.780 |
Lifestyle factors | ||||||||||
Number of meals per day: 4 or more (vs. 3 or less) | 18 | 0.529 | 433 | 0.086 | −9 | 0.788 | −19 | 0.552 | 143 | 0.228 |
Physical activity at work or school Low (vs. moderate or high) | 4 | 0.783 | 32 | 0.434 | 7 | 0.793 | 23 | 0.552 | 21 | 0.592 |
Rereational physical activity Low (vs. moderate or high) | −50 | 0.054 | 0 | 1.00 | −54 | 0.082 | −43 | 0.300 | −100 | 0.313 |
Current smoking Yes (vs. No) | −8 | 0.824 | 117 | 0.391 | −32 | 0.490 | −49 | 0.116 | 0 | 1.00 |
Smoking in the past Yes (vs. No) | 0 | 1.000 | 23 | 0.599 | 0 | 1.00 | 0 | 1.00 | −9 | 0.602 |
Screen time 6 h per day or more (vs. less than 6 h) | 0 | 1.000 | 21 | 0.606 | 0 | 1.00 | −8 | 0.768 | 16 | 0.598 |
Variables | Sub-Sample (n = 95) | Protein Food, Fried-Food and Recreational Physical Activity (n = 32) | Sandwiches and Convenience Foods (n = 31) | Fast Foods and Stimulants (n = 23) | Healthy Diet, Activity at Work, Former Smoking (n = 30) | |||||
---|---|---|---|---|---|---|---|---|---|---|
RD | p-Value | RD | p-Value | RD | p-Value | RD | p-Value | RD | p-Value | |
Diet quality scores | ||||||||||
pHDI | 8.3 | 0.555 | −13.6 | 0.011 | 18.6 | 0.576 | 14.8 | 0.953 | −14.6 | 0.005 |
nHDI | 1.3 | 0.086 | −0.8 | 0.270 | −25.3 | <0.001 | −7.0 | 0.151 | 6.1 | 0.328 |
Adiposity outcomes | ||||||||||
BMI | 1.1 | 0.111 | 1.6 | 0.251 | 0.4 | 0.903 | 2.4 | 0.076 | 1.1 | 0.222 |
WC | 2.7 | 0.002 | 2.6 | 0.098 | 1.2 | 0.559 | 4.4 | 0.003 | 3.0 | 0.045 |
WHtR | 2.6 | 0.002 | 2.5 | 0.085 | 1.0 | 0.608 | 4.5 | 0.003 | 3.4 | 0.024 |
Body fat | 5.2 | 0.246 | 9.7 | 0.330 | 0.0 | 0.516 | 1.8 | 0.557 | 3.7 | 0.500 |
Visceral fat tissue | 68.2 | 0.731 | 100.1 | 0.099 | 35.5 | 0.494 | 48.8 | 0.659 | 72.4 | 0.026 |
Skeletal muscle mass | −1.3 | 0.063 | −1.2 | 0.248 | −0.1 | 0.731 | −1.0 | 0.280 | −0.8 | 0.247 |
Metabolic outcomes | ||||||||||
FBG | −0.6 | 0.289 | 6.5 | 0.352 | −6.1 | 0.014 | −3.5 | 0.200 | 4.9 | 0.600 |
TG | 31.5 | 0.378 | 37.1 | 0.284 | 34.3 | 0.183 | 14.2 | 0.680 | 18.5 | 0.939 |
TC | 4.1 | 0.309 | 2.6 | 0.683 | 2.8 | 0.762 | 6.1 | 0.181 | −0.6 | 0.626 |
SBP | 3.4 | 0.001 | 3.1 | 0.088 | 3.4 | 0.062 | 5.1 | 0.047 | 3.0 | 0.058 |
DBP | 1.9 | 0.160 | 1.8 | 0.301 | −0.4 | 0.710 | 3.8 | 0.187 | 1.5 | 0.500 |
Adiposity abnormalities occurence | ||||||||||
Normal weight (BMI = 18.5–24.9 kg/m2) | −2.6 | 0.887 | −10.7 | 0.207 | −13.5 | 0.854 | −23.1 | 0.674 | 0.0 | 0.578 |
Overweight (BMI = 25–29.9 kg/m2) | −3.8 | 0.783 | −8.3 | 21.9 | 33.3 | −8.2 | ||||
Obesity (BMI ≥ 30 kg/m2) | 44.4 | 0.378 | - | 0.0 | −22.7 | 233.3 | ||||
Central obesity (WC ≥ 102 cm) | 5.9 | 0.853 | 0.0 | 1.00 | −17.4 | 0.755 | 34.6 | 0.178 | −57.1 | 0.554 |
Central obesity (WHtR ≥ 0.5) | 23.3 | 0.168 | 29.3 | 0.316 | 0.0 | 1.00 | 45.8 | 0.002 | 54.1 | 0.121 |
General obesity (Body fat ≥ 25%) | 2.6 | 0.887 | 54.5 | 0.266 | −18.8 | 0.44 | 0.0 | 1.00 | 35.0 | 0.541 |
Excess of visceral fat tissue (≥Me, i.e., 1.565 l) | 30.2 | 0.024 | 68.3 | 0.024 | 29.1 | 0.189 | 36.8 | 0.020 | 82.5 | 0.009 |
Increased skeletal muscle mass (≥Me, i.e., 37%) | −1.6 | 0.887 | −11.1 | 0.376 | 0.0 | 1.00 | −6.6 | 0.575 | −7.2 | 0.519 |
Metabolic abnormalities occurence | ||||||||||
Elevated FBG (≥100 mg/dL) | −22.2 | 0.601 | 200.0 | 0.302 | −76.9 | 0.162 | −76.5 | 0.004 | 0.0 | 1.00 |
Elevated TG (≥150 mg/dL) | 29.2 | 0.329 | 0.0 | 1.00 | 73.7 | 0.246 | 50.0 | 0.056 | 17.4 | 0.766 |
Elevated TC (≥200 mg/dL) | 6.7 | 0.663 | 39.5 | 0.209 | 10.9 | 0.607 | 0.0 | 1.00 | −20.0 | 0.436 |
Elevated SBP (≥130 mmHg) or DBP (≥85 mmHg) | 31.8 | 0.059 | 55.3 | 0.080 | 37.8 | 0.203 | 27.9 | 0.011 | 54.1 | 0.121 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lonnie, M.; Wadolowska, L.; Morze, J.; Bandurska-Stankiewicz, E. Associations of Dietary-Lifestyle Patterns with Obesity and Metabolic Health: Two-Year Changes in MeDiSH® Study Cohort. Int. J. Environ. Res. Public Health 2022, 19, 13647. https://doi.org/10.3390/ijerph192013647
Lonnie M, Wadolowska L, Morze J, Bandurska-Stankiewicz E. Associations of Dietary-Lifestyle Patterns with Obesity and Metabolic Health: Two-Year Changes in MeDiSH® Study Cohort. International Journal of Environmental Research and Public Health. 2022; 19(20):13647. https://doi.org/10.3390/ijerph192013647
Chicago/Turabian StyleLonnie, Marta, Lidia Wadolowska, Jakub Morze, and Elzbieta Bandurska-Stankiewicz. 2022. "Associations of Dietary-Lifestyle Patterns with Obesity and Metabolic Health: Two-Year Changes in MeDiSH® Study Cohort" International Journal of Environmental Research and Public Health 19, no. 20: 13647. https://doi.org/10.3390/ijerph192013647
APA StyleLonnie, M., Wadolowska, L., Morze, J., & Bandurska-Stankiewicz, E. (2022). Associations of Dietary-Lifestyle Patterns with Obesity and Metabolic Health: Two-Year Changes in MeDiSH® Study Cohort. International Journal of Environmental Research and Public Health, 19(20), 13647. https://doi.org/10.3390/ijerph192013647