How Thermal Perceptual Schema Mediates Landscape Quality Evaluation and Activity Willingness
Abstract
:1. Introduction
2. Literature Review
2.1. Spatial Features and TPS
2.2. Thermal Perception, LQE and Activity Willingness
2.3. Relationship between Thermal Perception and TPS
2.4. Research Questions
- (1)
- Whether TPS varies across populations.
- (2)
- To verify the role of TPS in the relationship between LQE and activity intentions.
- (3)
- To analyze the role of landscape parameter configuration on TPS, LQE, and activity willingness.
3. Methods
3.1. Experimental Materials and Scene Simulation
3.2. Pretest
3.3. Experimental Settings and Participants
3.4. Data Analysis
4. Results
4.1. Reliability
4.2. Description of Findings on Demographic Variables
4.3. Demographic Characteristics Associated with TPS in Two Groups
4.4. How Will TPS, LQE, and Activity Willingness Relate to Landscape Configuration Parameters and Site Characteristics?
4.5. How Will TPS, LQE, and Activity Willingness Relate to Landscape Configuration Parameters and Site Characteristics?
4.6. Mediating Effects between Landscape Parameters and TPS, LQE, and Activity Willingness
5. Discussion
5.1. Demographic Variables and TPS
5.2. Relationship between TPS, LQE, and Activity Willingness
5.3. Relationship between Landscape Configuration in TPS, LQE, and Activity Willingness
5.4. Advantages, Limitations, and Future Work
6. Conclusions
- The research in this paper shows that the older age groups tend to perceive the site-specific TPS as cooler, which means that both groups are more likely to enter the space for activities even in hot conditions; to cater to the unique needs of the elderly who visit parks for TPS, it is recommended that planning and design should optimize cooling and thermal comfort capabilities, such as adding trees, water ponds, and shade facilities to their open spaces, along with design approaches that are effective in regulating microclimates to provide a more comfortable activity environment. For SES levels, while earlier studies have shown that less affluent and poorer residents use urban parks more seriously as thermal refuges, some essential and less costly landscape elements found in this study can be effective in increasing their willingness to move, such as replacing expensive pavilions and landscape corridors with more trees, and reducing the use of shrubs in community spaces in favor of easy-to-care-for grass.
- In both groups of samples, no matter how the environment changes, we found that trees have formed cool inherent TPS in residents’ minds, and always have a positive relationship with AVQ and activity willingness. In addition, placing tree ponds for resting under trees can increase residents’ activity willingness, even in hot conditions. Increasing the proportion of grass in urban spaces and avoiding large areas of hard ground pavement can improve the TPS and LQE perceptions of space residents and increase activity willingness.
- In recent years, light-colored materials with high reflectivity have been applied to the built environment in the construction of green cities, such as roofs, fences, floors, etc. However, in this study, it was found that light-colored materials may not be suitable for large-area use as floor coverings in urban spaces, and it may be an important limiting factor, especially in scenarios with high temperature and radiation, which can affect outdoor citizens’ willingness to move around in outdoor spaces.
- The use of pavilions or trees in outdoor spaces that are chronically hot stimulates residents’ willingness to move more than the use of porches; in cities with chronically cool weather, the presence of landscape corridors can increase residents’ desire to move because of its increased LQE. However, pavilions may become a more viable solution for narrow roadsides in outdoor spaces, where growing space is insufficient and soil volume is limited.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eliasson, I.; Knez, I.; Westerberg, U.; Thorsson, S.; Lindberg, F. Climate and behaviour in a Nordic city. Landsc. Urban Plan. 2007, 82, 72–84. [Google Scholar] [CrossRef]
- Kántor, N.; Unger, J. Benefits and opportunities of adopting GIS in thermal comfort studies in resting places: An urban park as an example. Landsc. Urban Plan. 2010, 98, 36–46. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort—Analysis and Applications in Environmental Engineering; Mc Graw Hill: New York, NY, USA, 1970; pp. 19–43. [Google Scholar]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicol, F.; Roaf, S. Rethinking thermal comfort. Build. Res. Inf. 2017, 45, 711–716. [Google Scholar] [CrossRef]
- Dear, R.; Brager, G. Developing an adaptive model of thermal comfort and preference. UC Berkeley: Center for the Built Environment. ASHRAE Trans. 1998, 104, 145–167. [Google Scholar]
- De Dear, R. Thermal comfort in practice. Indoor Air 2004, 14 (Suppl. 7), 32–39. [Google Scholar] [CrossRef]
- De Dear, R.; Akimoto, T.; Arens, E.A.; Brager, G.; Candido, C.; Cheong, K.W.D.; Li, B.; Nishihara, N.; Sekhar, S.C.; Tanabe, S.; et al. Progress in thermal comfort research over the last twenty years. Indoor Air 2013, 23, 442–461. [Google Scholar]
- Nikolopoulou, M.; Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build. 2003, 35, 95–101. [Google Scholar] [CrossRef]
- Bao, S.; Zou, S.; Zhao, M.; Chen, Q.; Li, B. Experimental Study on the Modular Vertical Greening Shading in Summer. Int. J. Environ. Res. Public Health 2022, 19, 11648. [Google Scholar] [CrossRef]
- Jansson, M.; Fors, H.; Lindgren, T.; Wiström, B. Perceived personal safety in relation to urban woodland vegetation–A review. Urban For. Urban Green. 2013, 12, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Lenzholzer, S.; Koh, J. Immersed in microclimatic space: Microclimate experience and perception of spatial configurations in Dutch squares. Landsc. Urban Plan. 2010, 95, 1–15. [Google Scholar] [CrossRef]
- Chatzipoulka, C.; Steemers, K.; Nikolopoulou, M. Density and coverage values as indicators of thermal diversity in open spaces: Comparative analysis of London and Paris based on sun and wind shadow maps. Cities 2020, 100, 102645. [Google Scholar] [CrossRef]
- Carballo, R.R.; León, C.J.; Carballo, M.M. The perception of risk by international travellers. Worldw. Hosp. Tour. Themes 2017, 9, 534–542. [Google Scholar] [CrossRef]
- Chew, E.Y.T.; Jahari, S.A. Destination image as a mediator between perceived risks and revisit intention: A case of post-disaster Japan. Tour. Manag. 2014, 40, 382–393. [Google Scholar] [CrossRef]
- Peng, Y.; Feng, T.; Timmermans, H.J.P. Timmermans, Expanded comfort assessment in outdoor urban public spaces using Box-Cox transformation. Landsc. Urban Plan. 2019, 190, 103594. [Google Scholar] [CrossRef]
- Rosso, F.; Pisello, A.L.; Cotana, F.; Ferrero, M. On the thermal and visual pedestrians’ perception about cool natural stones for urban paving: A field survey in summer conditions. Build. Environ. 2016, 107, 198–214. [Google Scholar] [CrossRef]
- Zhang, T.; Hong, B.; Su, X.; Li, Y.; Song, L. Effects of tree seasonal characteristics on thermal-visual perception and thermal comfort. Build. Environ. 2022, 212, 108793. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; van Hove, B. Street greenery and its physical and psychological impact on thermal comfort. Landsc. Urban Plan. 2015, 138, 87–98. [Google Scholar] [CrossRef]
- Gao, S.; Liu, S. Exploration and Analysis of the Aesthetic Cognitive Schema of Contemporary Western Urban Landscapes. Int. J. Environ. Res. Public Health 2021, 18, 5152. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Thermal comfort in outdoor urban spaces: Understanding the human parameter. Sol. Energy 2001, 70, 227–235. [Google Scholar] [CrossRef]
- Manavvi, S.; Rajasekar, E. Evaluating outdoor thermal comfort in “Haats”—The open air markets in a humid subtropical region. Build. Environ. 2021, 190, 107527. [Google Scholar] [CrossRef]
- Lau, K.K.; Choi, C.Y. The influence of perceived aesthetic and acoustic quality on outdoor thermal comfort in urban environment. Build. Environ. 2021, 206, 108333. [Google Scholar] [CrossRef]
- Su, B.; Jadresin Milic, R.; McPherson, P.; Wu, L. Thermal Performance of School Buildings: Impacts beyond Thermal Comfort. Int. J. Environ. Res. Public Health 2022, 19, 5811. [Google Scholar] [CrossRef] [PubMed]
- Rohles, F. Temperature & Temperament: A psychologist looks at comfort. ASHRAE J. 2007, 49, 14–22. [Google Scholar]
- Lin, T.P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Bruner, J. The narrative construction of reality. Crit. Inq. 1991, 18, 1–21. [Google Scholar] [CrossRef]
- Jacobs, M. The Production of Mindscapes: A Comprehensive Theory of Landscape Experience; Wageningen University and Research: Wageningen, The Netherlands, 2006; pp. 16–20. [Google Scholar]
- Lenzholzer, S.; de Vries, S. Exploring outdoor thermal perception—A revised model. Int. J. Biometeorol. 2020, 64, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Rapoport, A. Human Aspects of Urban Form: Towards a Man–Environment Approach to Urban Form and Design; Pergamon: Oxford, UK, 1977. [Google Scholar]
- Lu, S.; Oh, W.; Ooka, R.; Wang, L. Effects of Environmental Features in Small Public Urban Green Spaces on Older Adults’ Mental Restoration: Evidence from Tokyo. Int. J. Environ. Res. Public Health 2022, 19, 5477. [Google Scholar] [CrossRef] [PubMed]
- Clayton, S.D. (Ed.) The Oxford Handbook of Environmental and Conservation Psychology; Oxford University Press: Oxford, UK, 2012; pp. 1–21. [Google Scholar]
- Mishra, A.K.; Ramgopal, M. Field studies on human thermal comfort—An overview. Build. Environ. 2013, 64, 94–106. [Google Scholar] [CrossRef]
- Bruce, V.; Green, P.R.; Georgeson, M.A. Visual Perception, Physiology Psychology and Ecology; Psychology Press: Eastbourne, UK, 1996. [Google Scholar]
- Dick, A.O. Iconic memory and its relation to perceptual processing and other memory mechanisms. Percept. Psychophys. 1974, 16, 575–596. [Google Scholar] [CrossRef]
- Cortesão, J.; Brandão Alves, F.; Raaphorst, K. Photographic comparison: A method for qualitative outdoor thermal perception surveys. Int. J. Biometeorol. 2020, 64, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- Lam, C.K.C.; Yang, H.; Yang, X.; Liu, J.; Ou, C.; Cui, S.; Kong, X.; Hang, J. Cross-modal effects of thermal and visual conditions on outdoor thermal and visual comfort perception. Build. Environ. 2020, 186, 107297. [Google Scholar] [CrossRef]
- Fanger, P.O.; Breum, N.O.; Jerking, E. Can Colour and Noise Influence Man’s Thermal Comfort? Ergonomics 1997, 20, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Moon, H.J. Cross-modal effects of noise and thermal conditions on indoor environmental perception and speech recognition. Appl. Acoust. 2018, 141, 1–8. [Google Scholar] [CrossRef]
- Nassauer, J.I. Framing the landscape in photographic simulation. J. Environ. Manag. 1983, 17, 1–16. [Google Scholar]
- Palmer, J.F.; Hoffman, R.E. Rating reliability and representation validity in scenic landscape assessments. Landsc. Urban Plan. 2001, 54, 149–161. [Google Scholar] [CrossRef]
- Van Cauwenberg, J.; De Bourdeaudhuij, I.; Clarys, P.; Nasar, J.; Salmon, J.; Goubert, L.; Deforche, B. Street characteristics preferred for transportation walking among older adults: A choice-based conjoint analysis with manipulated photographs. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 6. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, J.K.S. Use of Landscape Perception Methods in Tourism Studies: A Review of Photo-Based Research Approaches. Tour. Geogr. 2007, 9, 234–253. [Google Scholar] [CrossRef]
- Van Dongen, R.P.; Timmermans, H.J. Preference for different urban greenscape designs: A choice experiment using virtual environments. Urban For. Urban Green. 2019, 44, 126435. [Google Scholar] [CrossRef]
- Dupont, L.; Antrop, M.; Van Eetvelde, V. Eye-tracking Analysis in Landscape Perception Research: Influence of Photograph Properties and Landscape Characteristics. Landsc. Res. 2014, 39, 417–432. [Google Scholar] [CrossRef]
- Suppakittpaisarn, P.; Jiang, B.; Slavenas, M.; Sullivan, W.C. Does density of green infrastructure predict preference? Urban For. Urban Green. 2019, 40, 236–244. [Google Scholar] [CrossRef]
- Wang, X.; Rodiek, S.; Wu, C.; Chen, Y.; Li, Y. Stress recovery and restorative effects of viewing different urban park scenes in Shanghai, China. Urban For. Urban Green. 2016, 15, 112–122. [Google Scholar] [CrossRef]
- Van Hecke, L.; Ghekiere, A.; Van Cauwenberg, J.; Veitch, J.; De Bourdeaudhuij, I.; Van Dyck, D.; Clarys, P.; Van De Weghe, N.; Deforche, B. Park characteristics preferred for adolescent park visitation and physical activity: A choice-based conjoint analysis using manipulated photographs. Landsc. Urban Plan. 2018, 178, 144–155. [Google Scholar] [CrossRef]
- Nasar, J.L.; Julian, D.A. The Psychological Sense of Community in the Neighborhood. J. Am. Plan. Assoc. 1995, 61, 178–184. [Google Scholar] [CrossRef]
- Lund, H. Pedestrian environments and sense of community. J. Plan. Educ. Res. 2002, 21, 301–312. [Google Scholar] [CrossRef]
- Lehto, C.; Hedblom, M.; Öckinger, E.; Ranius, T. Landscape usage by recreationists is shaped by availability: Insights from a national PPGIS survey in Sweden. Landsc. Urban Plan. 2022, 227, 104519. [Google Scholar] [CrossRef]
- Krippendorff, K. Content Analysis:An Introduction to its Methodology; Sage: Beverly Hills, CA, USA, 1980; pp. 1–40. [Google Scholar]
- Agapito, D.; Pinto, P.; Mendes, J. Tourists’ memories, sensory impressions and loyalty: In loco and post-visit study in Southwest Portugal. Tour. Manag. 2017, 58, 108–118. [Google Scholar] [CrossRef]
- Lv, X.; Li, C.; McCabe, S. Expanding theory of tourists’ destination loyalty: The role of sensory impressions. Tour. Manag. 2020, 77, 104026. [Google Scholar] [CrossRef]
- Aoki, Y.; Yasuoka, Y.; Naito, M. Assessing the impression of street—Side greenery. Landsc. Res. 1985, 10, 9–13. [Google Scholar] [CrossRef]
- Sharifi, E.; Boland, J. Limits of thermal adaptation in cities: Outdoor heat-activity dynamics in Sydney, Melbourne and Adelaide. Archit. Sci. Rev. 2018, 61, 191–201. [Google Scholar] [CrossRef]
- Knez, I.; Thorsson, S.; Eliasson, I.; Lindberg, F. Psychological mechanisms in outdoor place and weather assessment: Towards a conceptual model. Int. J. Biometeorol. 2009, 53, 101–111. [Google Scholar] [CrossRef]
- Erell, E.; Pearlmutter, D.; Boneh, D.; Kutiel, P.B. Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Clim. 2014, 10, 367–386. [Google Scholar] [CrossRef]
- Wartmann, F.M.; Frick, J.; Kienast, F.; Hunziker, M. Factors influencing visual landscape quality perceived by the public. Results from a national survey. Landsc. Urban Plan. 2021, 208, 104024. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, S.-H. Affective appraisal of residents and visual elements in the neighborhood: A case study in an established suburban community. Landsc. Urban Plan. 2011, 101, 11–21. [Google Scholar] [CrossRef]
- Daniel, T.C. Whither scenic beauty? Visual landscape quality assessment in the 21st century. Landsc. Urban Plan. 2001, 54, 267–281. [Google Scholar] [CrossRef]
- Lu, Y. The Association of Urban Greenness and Walking Behavior: Using Google Street View and Deep Learning Techniques to Estimate Residents’ Exposure to Urban Greenness. Int. J. Environ. Res. Public Health 2018, 15, 1576. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Int. Biom. Soc. 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Ting, G.; Yan, J.; Hu, X.; Liu, D. Comparison of the Degree of Environmental Responsibility in the North and South of the Qinling Mountains; Science Publishers: Beijing, China, 2006; pp. 1–2. (In Chinese) [Google Scholar]
- Cena, K.M.; Spotila, J.R.; Ryan, E.B. Effect of Behavioral Strategies and Activity on Thermal Comfort of the Elderly; Drexel University: Philadelphia, PA, USA, 1988. [Google Scholar]
- Howe, P.D.; Marlon, J.R.; Wang, X.; Leiserowitz, A. Public perceptions of the health risks of extreme heat across US states, counties, and neighborhoods. Proc. Natl. Acad. Sci. USA 2019, 116, 6743–6748. [Google Scholar] [CrossRef] [Green Version]
- Vouligny, É.; Domon, G.; Ruiz, J. An assessment of ordinary landscapes by an expert and by its residents: Landscape values in areas of intensive agricultural use. Land Use Policy 2009, 26, 890–900. [Google Scholar] [CrossRef]
- Alhadad, S.B.; Tan, P.M.S.; Lee, J.K.W. Efficacy of Heat Mitigation Strategies on Core Temperature and Endurance Exercise: A Meta-Analysis. Front. Physiol. 2019, 10, 71. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef]
- Sampson, N.R.; Gronlund, C.J.; Buxton, M.A.; Catalano, L.; White-Newsome, J.L.; Conlon, K.C.; O’Neill, M.S.; McCormick, S.; Parker, E.A. Staying cool in a changing climate: Reaching vulnerable populations during heat events. Glob. Environ. Chang. 2013, 23, 475–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farbotko, C.; Waitt, G. Residential air-conditioning and climate change: Voices of the vulnerable. Health Promot. J. Aust. 2011, 22, 13–15. [Google Scholar]
- Hansen, A.; Nitschke, M.; Bi, P.; Pisaniello, D.; Newbury, J.; Kitson, A.; Tucker, G.; Avery, J.; Grande, E.D.; Zhang, Y.; et al. Heat-health behaviours of older people in two Australian statesAust. J. Ageing 2014, 34, 19–25. [Google Scholar] [CrossRef]
- Aljawabra, F.; Nikolopoulou, M. Influence of hot arid climate on the use of outdoor urban spaces and thermal comfort: Do cultural and social backgrounds matter? Intell. Build. Int. 2010, 2, 198–217. [Google Scholar]
- Cohen, P.; Potchter, O.; Matzarakis, A. Human thermal perception of Coastal Mediterranean outdoor urban environments. Appl. Geogr. 2013, 37, 1–10. [Google Scholar] [CrossRef]
- Wilkinson, S.; Feitosa, R.C. Retrofitting housing with lightweight green roof technology in Sydney, Australia, and Rio de Janeiro, Brazil. Sustainability 2015, 7, 1081–1098. [Google Scholar] [CrossRef] [Green Version]
- Zografos, C.; Anguelovski, I.; Grigorova, M. When exposure to climate change is not enough: Exploring heatwave adaptive capacity of a multi-ethnic, low-income urban community in Australia. Urban Clim. 2016, 17, 248–265. [Google Scholar] [CrossRef]
- Yip, A.O.-N.; Mah, D.N.-Y.; Barber, L.B. Revealing hidden energy poverty in Hong Kong: A multi-dimensional framework for examining and understanding energy poverty. Local Environ. 2020, 25, 473–491. [Google Scholar] [CrossRef]
- Kaplan, S.; Kaplan, R. Cognition and Environment: Functioning in an Uncertain World; Preager: New York, NY, USA, 1982. [Google Scholar]
- Ode, Å.; Hagerhall, C.M.; Sang, N. Analysing Visual Landscape Complexity: Theory and Application. Landsc. Res. 2010, 35, 111–131. [Google Scholar] [CrossRef]
- Wang, X.; Rodiek, S. Older Adults’ Preference for Landscape Features Along Urban Park Walkways in Nanjing, China. Int. J. Environ. Res. Public Health 2019, 16, 3808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grahn, P.; Stigsdotter, U.K. The relation between perceived sensory dimensions of urban green space and stress restoration. Landsc. Urban Plan. 2010, 94, 264–275. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Meitner, M.J. Urban woodland understory characteristics in relation to aesthetic and recreational preference. Urban For. Urban Green. 2017, 24, 55–61. [Google Scholar] [CrossRef]
- Altman, I. The Environment and Social Behavior; Brooks/Cole: Monterey, CA, USA, 1975. [Google Scholar]
- Choudhry, K.Z.; Coles, R.; Qureshi, S.; Ashford, R.; Khan, S.; Mir, R.R. A review of methodologies used in studies investigating human behaviour as determinant of outcome for exposure to ‘naturalistic and urban environments’. Urban For. Urban Green. 2015, 14, 527–537. [Google Scholar] [CrossRef]
- Caldera, A.; Perera, N.G. Influence of tree shade level on comfort perception—A case study of outdoor public spaces of Viharamahadevi park, Colombo. In Proceedings of the 11th International Conference of Faculty of Architecture Research Unit, Galle, Sri Lanka, 30 April 2018. [Google Scholar]
- Tveit, M.S. Indicators of visual scale as predictors of landscape preference—A comparison between groups. J. Environ. Manag. 2009, 90, 2882–2888. [Google Scholar] [CrossRef]
- Dobbinson, S.J.; Simmons, J.; Chamberlain, J.A.; MacInnis, R.J.; Salmon, J.; Staiger, P.K.; Wakefield, M.; Veitch, J. Examining Health-Related Effects of Refurbishment to Parks in a Lower Socioeconomic Area: The ShadePlus Natural Experiment. Int. J. Environ. Res. Public Health 2020, 17, 6102. [Google Scholar] [CrossRef]
- Cohen, D.; Lapham, S.; Evenson, K.; Williamson, S.; Golinelli, D.; Ward, P.; Hillier, A.; McKenzie, T. Use of neighbourhood parks: Does socio-economic status matter? A four-city study. Public Health 2013, 127, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Galindo, M.P.; Hidalgo, M.C. Aesthetic preferences and the attribution of meaning: Environmental categorization processes in the evaluation of urban scenes. Int. J. Psychol. 2005, 40, 19–27. [Google Scholar] [CrossRef]
- Vanos, J.K.; Herdt, A.J.; Lochbaum, M.R. Effects of physical activity and shade on the heat balance and thermal perceptions of children in a playground microclimate. Build. Environ. 2017, 126, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Pisello, A.L.; Rosso, F. Natural Materials for Thermal Insulation and Passive Cooling Application. Key Eng. Mater. 2015, 666, 1–16. [Google Scholar] [CrossRef]
- Chinazzo, G.; Wienold, J.; Andersen, M. Daylight affects human thermal perception. Sci. Rep. 2019, 9, 13690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djekic, J.; Djukic, A.; Vukmirovic, M.; Djekic, P.; Brankovic, M.D. Thermal comfort of pedestrian spaces and the influence of pavement materials on warming up during summer. Energy Build. 2018, 159, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.; Xiong, J.; Qin, H.; Hu, J.; Deng, J.; Han, G.; Yan, J. Influence of thermal comfort of green spaces on physical activity: Empirical study in an urban park in Chongqing, China. Build. Environ. 2022, 219, 109168. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, M.; Lin, S.; Qian, C. Relationship between Children’s Independent Activities and the Built Environment of Outdoor Activity Space in Residential Neighborhoods: A Case Study of Nanjing. Int. J. Environ. Res. Public Health 2022, 19, 9860. [Google Scholar] [CrossRef]
- Huynen, M.M.; Martens, P.; Schram, D.; Weijenberg, M.P.; Kunst, A.E. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ. Health Perspect 2001, 109, 463–470. [Google Scholar] [CrossRef]
- Huang, H.W.; Wang, W.C.; Lin, C.C.K. Influence of age on thermal thresholds, thermal pain thresholds, and reaction time. J. Clin. Neurosci. 2010, 17, 722–726. [Google Scholar] [CrossRef]
- Indraganti, M.; Rao, K.D. Effect of age, gender, economic group and tenure on thermal comfort: A field study in residential buildings in hot and dry climate with seasonal variations. Energy Build. 2010, 42, 273–281. [Google Scholar] [CrossRef]
- Cheung, P.K.; Jim, C.Y. Subjective outdoor thermal comfort and urban green space usage in humid-subtropical Hong Kong. Energy Build. 2018, 173, 150–162. [Google Scholar] [CrossRef]
- Rissetto, R.; Rambow, R.; Schweiker, M. Assessing comfort in the workplace: A unified theory of behavioral and thermal expectations. Build. Environ. 2022, 216, 109015. [Google Scholar] [CrossRef]
- Jowkar, M.; Rijal, H.B.; Montazami, A.; Brusey, J.; Temeljotov-Salaj, A. The influence of acclimatization, age and gender-related differences on thermal perception in university buildings: Case studies in Scotland and England. Build. Environ. 2020, 179, 106933. [Google Scholar] [CrossRef]
- Gobster, P.H. Urban parks as green walls or green magnets? Interracial relations in neighborhood boundary parks. Landsc. Urban Plan. 1998, 41, 43–55. [Google Scholar] [CrossRef]
- Gobster, P.H. Perception and use of a metropolitan greenway system for recreation. Landsc. Urban Plan. 1995, 33, 401–413. [Google Scholar] [CrossRef]
- Reynolds, K.D.; Wolch, J.; Byrne, J.; Chou, C.-P.; Feng, G.; Weaver, S.; Jerrett, M. Trail characteristics as correlates of urban trail use. Am. J. Health Promot. 2007, 21, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Hamstead, Z.A.; Fisher, D.; Ilieva, R.T.; Wood, S.A.; McPhearson, T.; Kremer, P. Geolocated social media as a rapid indicator of park visitation and equitable park access. Comput. Environ. Urban Syst. 2018, 72, 38–50. [Google Scholar] [CrossRef]
Environmental Characteristics of Old Residential Communities (n = 921) | Coding Scores and Percentages | Environmental Characteristics of Old Residential Communities (n = 921) | Coding Scores and Percentages |
---|---|---|---|
Site rest features | Shading facility features | ||
Tree pond with plants | (621) 67.40% | trees | (521) 56.5% |
Wooden benches | (211) 22.9% | Landscape corridor | (119) 12.9% |
Single stone bench | (41) 4.4% | Pavilion | (63) 6.8% |
Table and chair sets | (36) 3.9% | No shading facilities | (140) 15.2% |
Others | (12) 1.3% | Others | (25) 2.7% |
Common site activity type characteristics | Common site activity type characteristics | ||
Concrete pavement | (421) 45.7% | Leisure type venues | (435) 47.2% |
Permeable brick pavement | (312) 33.8% | Children’s activity type venues | (110) 11.9% |
Tile pavement | (98) 10.6% | Fitness activity type venue | (320) 34.70% |
Plastic cement pavement | (39) 4.2% | Sport Type Venue | (37) 4% |
Others | (51) 5.5% | Others | (19) 2% |
Architectural wall features | |||
Concrete walls | (351) 38.1% | ||
Painting with Coatings | (269) 29.2% | ||
Accompanied by climbing plants | (98) 10.6% | ||
Graffiti | (65) 7% | ||
Others | (108) 11.7% |
Variables | Questions and Measurement Scale | ||
---|---|---|---|
TPSV | It would be very cold to be in this scene. | 1.___2.___3.___4.___5.___6.___7.___ | It would be very hot to be in this scene. |
LQE | This scene is not beautiful at all | 1.___2.___3.___4.___5.___6.___7.___ | This scene is very beautiful |
This scene is very boring | 1.___2.___3.___4.___5.___6.___7.___ | This scene is very interesting | |
The environment here does not attractive to me at all. | 1.___2.___3.___4.___5.___6.___7.___ | The environment here is very attractive to me | |
The environment here doesn’t appeal to me at all. | 1.___2.___3.___4.___5.___6.___7.___ | The environment here is very appealing to me | |
Willingness to be actively involved | I do not want to do activities in this scene. | 1.___2.___3.___4.___5.___6.___7.___ | I want to do activities in this scene |
Variables to Be Recoded and Regrouped | Ordinal Groups | ||
---|---|---|---|
0 | 1 | 2 | |
GROUP1-TPSV | Score < 4 | / | Score > 4 |
GROUP2-TPSV | Score < 4 | / | Score > 4 |
GENDER | Male | / | Female |
AGE | <25 years | 26~35 years | >36 years |
Access Frequency | <Twice a week | / | >Three times a week |
Activity Duration | <30 min | 31~60 min | >60 min |
Living Area | Southern Cities | / | Northern Cities |
Years of residence | <5 years | / | >5 years |
Filename | Buildings | Sky | Ground | Trees | Tree Ponds | Shrubs | Grass | Pavilion | Landscape Corridor | Tables and Chairs | Children’s Facilities | Leisure Facilities | Sports Facilities |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.352 | 0.082 | 0.342 | 0.000 | 0.044 | 0.061 | 0.000 | 0.000 | 0.069 | 0.000 | 0.000 | 0.000 | 0.000 |
A2 | 0.354 | 0.081 | 0.209 | 0.000 | 0.045 | 0.062 | 0.098 | 0.000 | 0.060 | 0.000 | 0.000 | 0.000 | 0.000 |
A3 | 0.163 | 0.061 | 0.163 | 0.274 | 0.046 | 0.000 | 0.166 | 0.000 | 0.036 | 0.000 | 0.000 | 0.000 | 0.000 |
A4 | 0.163 | 0.062 | 0.101 | 0.281 | 0.044 | 0.087 | 0.245 | 0.000 | 0.024 | 0.000 | 0.000 | 0.000 | 0.000 |
B1 | 0.263 | 0.001 | 0.321 | 0.269 | 0.044 | 0.000 | 0.000 | 0.000 | 0.036 | 0.000 | 0.000 | 0.010 | 0.000 |
B2 | 0.183 | 0.082 | 0.329 | 0.269 | 0.043 | 0.000 | 0.000 | 0.000 | 0.037 | 0.000 | 0.000 | 0.010 | 0.000 |
B3 | 0.154 | 0.133 | 0.321 | 0.270 | 0.045 | 0.000 | 0.000 | 0.000 | 0.033 | 0.000 | 0.000 | 0.010 | 0.000 |
B4 | 0.071 | 0.181 | 0.322 | 0.271 | 0.043 | 0.000 | 0.000 | 0.000 | 0.036 | 0.022 | 0.000 | 0.010 | 0.000 |
C1 | 0.281 | 0.082 | 0.361 | 0.133 | 0.022 | 0.011 | 0.021 | 0.000 | 0.000 | 0.022 | 0.000 | 0.000 | 0.000 |
C2 | 0.208 | 0.083 | 0.178 | 0.134 | 0.021 | 0.010 | 0.022 | 0.000 | 0.232 | 0.022 | 0.000 | 0.000 | 0.000 |
C3 | 0.126 | 0.032 | 0.165 | 0.133 | 0.020 | 0.009 | 0.022 | 0.335 | 0.000 | 0.022 | 0.000 | 0.000 | 0.000 |
C4 | 0.101 | 0.043 | 0.271 | 0.381 | 0.081 | 0.010 | 0.022 | 0.000 | 0.000 | 0.022 | 0.000 | 0.000 | 0.000 |
D1 | 0.171 | 0.082 | 0.351 | 0.241 | 0.044 | 0.000 | 0.000 | 0.000 | 0.031 | 0.000 | 0.000 | 0.010 | 0.000 |
D2 | 0.163 | 0.083 | 0.351 | 0.241 | 0.046 | 0.000 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 | 0.010 | 0.000 |
D3 | 0.165 | 0.082 | 0.351 | 0.243 | 0.044 | 0.000 | 0.000 | 0.000 | 0.031 | 0.000 | 0.000 | 0.010 | 0.000 |
D4 | 0.163 | 0.081 | 0.351 | 0.241 | 0.041 | 0.000 | 0.000 | 0.000 | 0.034 | 0.000 | 0.000 | 0.010 | 0.000 |
E1 | 0.191 | 0.081 | 0.355 | 0.198 | 0.012 | 0.000 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 | 0.041 | 0.000 |
E2 | 0.191 | 0.082 | 0.355 | 0.198 | 0.011 | 0.000 | 0.000 | 0.000 | 0.033 | 0.000 | 0.078 | 0.000 | 0.000 |
E3 | 0.192 | 0.081 | 0.353 | 0.198 | 0.012 | 0.000 | 0.000 | 0.000 | 0.033 | 0.089 | 0.000 | 0.000 | 0.000 |
E4 | 0.193 | 0.081 | 0.351 | 0.198 | 0.011 | 0.000 | 0.000 | 0.000 | 0.036 | 0.011 | 0.000 | 0.000 | 0.070 |
Demographic Characteristics | Group 1 (n = 1773) | F/P | Group 2 (n = 1662) | F/P | |
---|---|---|---|---|---|
Gender | Male | 855 (48.2%) | F = 0.337 p = 0.561 | 845 (50.8%) | F = 0.006 p = 0.936 |
Female | 918 (51.8%) | 817 (49.2%) | |||
Age group | <15 years | 43 (2.4%) | F = 51.143 p < 0.001 | 159 (9.5%) | F = 21.419 p < 0.001 |
16~25 years | 588 (33.2%) | 501 (30.1%) | |||
26~35 years | 490 (27.6%) | 485 (29.2%) | |||
36~45 years | 302 (17%) | 281 (16.9%) | |||
>45 years | 350 (19.7%) | 236 (14.2%) | |||
Years of residence | <1 years | 278 (15.7%) | F = 1.666 p = 0.172 | 208 (12.5%) | F = 1.031 p < 0.378 |
1~5 years | 546 (30.8%) | 411 (24.7%) | |||
5~10 years | 582 (32.8%) | 607 (36.5%) | |||
>10 years | 367 (20.7%) | 436 (26.2%) | |||
Occupation Type | Retired | 254 (14.3%) | F = 51.127 p < 0.001 | 55 (3.3%) | F = 29.864 p < 0.001 |
Student | 537 (30.3%) | 280 (16.8%) | |||
manual labor | 326 (18.4%) | 652 (39.2%) | |||
intellectual labor | 656 (37%) | 675 (40.6%) | |||
Educational Background | primary school | 232 (13.1%) | F = 31.169 p < 0.001 | 76 (4.6%) | F = 24.539 p < 0.001 |
middle school | 183 (10.3%) | 211 (12.7%) | |||
high school | 306 (17.3%) | 199 (12.0%) | |||
Bachelor’s degree | 778 (43.9%) | 857 (51.6%) | |||
Master’s degree and above | 274 (15.5%) | 319 (19.2%) | |||
Monthly income level (RMB) | <3000 | 650 (36.7%) | F = 18.233 p < 0.001 | 310 (18.7%) | F = 19.459 p < 0.001 |
3000~5000 | 336 (19%) | 427 (25.7%) | |||
5000~7000 | 253 (14.3%) | 418 (25.2%) | |||
7000~9000 | 236 (13.3%) | 258 (15.5%) | |||
>9000 | 298 (16.8%) | 247 (14.9%) | |||
Frequency of Visit | Rarely used | 296 (16.7%) | F = 2.317 p = 0.074 | 381 (22.9%) | F = 0.233 p = 0.873 |
1~2 times a week | 608 (34.3%) | 508 (30.6%) | |||
3~4 times a week | 550 (31%) | 524 (31.5%) | |||
More than 5 times a week | 319 (18%) | 249 (15.0%) | |||
Activity Duration | <15 min | 309 (17.4%) | F = 2.094 p = 0.079 | 387 (23.3%) | F = 1.064 p = 0.373 |
16~30 min | 429 (24.2%) | 437 (26.3%) | |||
31~60 min | 483 (27.2%) | 436 (26.2%) | |||
60~90 min | 382 (21.5%) | 202 (12.2%) | |||
>90 min | 170 (9.6%) | 200 (12.0%) | |||
Living Area | Southern Cities | 1035 (58.4%) | F = 2.749 p = 0.097 | 807 (48.6%) | F = 0.109 p = 0.742 |
Northern Cities | 738 (41.6%) | 855 (51.4%) |
Group 1 | Group 2 | ||||
---|---|---|---|---|---|
TPSV < 4 (Ref. TPSV > 4) | TPSV < 4 (Ref. TPSV > 4) | ||||
Odds Ration | p | Odds Ration | p | ||
(95% CI) | (95% CI) | ||||
Age | Ref. (<25 years) | ||||
26~35 years | 1.081 (0.765, 1.528) | 0.657 | 0.329 (0.218, 0.498) | <0.001 *** | |
>35 years | 0.266 (0.200, 0.354) | <0.001 *** | 0.188 (0.128, 0.275) | <0.001 *** | |
Ref (>35 years) | |||||
26~35 years | 4.062 (2.965, 5.565) | <0.001 *** | 1.754 (1.245, 2.471) | <0.01 ** | |
Socioeconomic Status | SES | 1.581 (1.383, 1.807) | <0.001 *** | 2.349 (2.005, 2.752) | <0.001 *** |
Pseudo-R2 | 0.113 | 0.112 | |||
Hosmer-Lemeshow | 0.817 | 0.521 |
Landscape Parameters Configuration (Group 1) | 1 | 2 | 3 | 4 | Overall | F-Stats | p-Value | Post-Hoc LSD |
---|---|---|---|---|---|---|---|---|
A-Green Dimension (n = 402) | ||||||||
TPSV: | 5.41 | 4.84 | 3.89 | 3.41 | 4.42 | 47.788 | p < 0.001 *** | A1 to A2,A1 to A3,A1 to A4, A2 to A3,A2 to A4,A3 to A4 |
LQE: | 3.33 | 3.99 | 4.84 | 5.58 | 4.39 | 68.857 | p < 0.001 *** | A1 to A2,A1 to A3,A1 to A4, A2 to A3,A2 to A4,A3 to A4 |
Activity willingness: | 3.10 | 3.58 | 4.93 | 3.90 | 3.91 | 32.889 | p < 0.001 *** | A1 to A2,A1 to A3,A1 to A4, A2 to A3,A2 to A4,A3 to A4 |
B-sky Dimension (n = 360) | ||||||||
TPSV: | 4.11 | 4.95 | 5.22 | 5.25 | 4.86 | 16.016 | p < 0.001 *** | B1 to B2,B1 to B3,B1 to B4, B2 to B4 |
LQE: | 3.86 | 4.46 | 5.20 | 5.11 | 4.64 | 27.533 | p < 0.001 *** | B1 to B2,B1 to B3,B1 to B4, B2 to B3,B2 to B4 |
Activity willingness: | 4.36 | 4.53 | 5.09 | 4.96 | 4.73 | 7.515 | p < 0.001 *** | B1 to B3,B1 to B4,B2 to B3, B2 to B4 |
C-Shade type dimension (n = 327) | ||||||||
TPSV: | 4.68 | 3.84 | 4.24 | 3.68 | 4.11 | 6.410 | p < 0.001 *** | C1 to C2,C1 to C4,C3 to C4 |
LQE: | 4.02 | 4.63 | 5.02 | 5.36 | 4.71 | 13.19 | p < 0.001 *** | C1 to C2,C1 to C3,C1 to C4, C2 to C4 |
Activity willingness: | 4.11 | 4.78 | 5.20 | 5.16 | 4.81 | 8.844 | p < 0.001 *** | C1 to C2,C1 to C3,C1 to C4 |
D-Pavement type dimension (n = 327) | ||||||||
TPSV: | 5.01 | 4.56 | 5.26 | 4.60 | 4.86 | 4.236 | p < 0.01 ** | D1 to D4,D2 to D3,D3 to D4 |
LQE: | 4.48 | 4.14 | 3.49 | 4.72 | 4.21 | 10.411 | p < 0.001 *** | D1 to D3,D2 to D3,D2 to D4, D3 to D4 |
Activity willingness: | 4.14 | 4.44 | 3.74 | 4.30 | 4.16 | 3.101 | p < 0.01 ** | D2 to D3,D3 to D4 |
E-Activity Type Dimension (n = 357) | ||||||||
TPSV: | 4.72 | 5.31 | 4.89 | 5.04 | 5.29 | 4.559 | p < 0.01 ** | E1 to E2,E1 to E4,E2 to E3, E3 to E4 |
LQE: | 4.28 | 3.94 | 4.24 | 4.73 | 4.30 | 6.008 | p < 0.01 ** | E1 to E4,E2 to E4,E3 to E4 |
Activity willingness: | 4.18 | 4.06 | 4.09 | 4.79 | 4.27 | 4.821 | p < 0.01 ** | E1 to E4,E2 to E4,E3 to E4 |
Landscape Parameters Configuration (Group 2) | 1 | 2 | 3 | 4 | Overall | F-Stats | p-Value | Post-Hoc LSD |
---|---|---|---|---|---|---|---|---|
A-Green Dimension (n = 329) | ||||||||
TPSV: | 5.68 | 4.98 | 4.58 | 3.92 | 4.79 | 24.346 | p < 0.001 *** | A1 to A2,A1 to A3,A1 to A4, A2 to A4,A3 to A4 |
LQE: | 2.93 | 3.21 | 4.59 | 5.58 | 5.03 | 53.582 | p < 0.001 *** | A1 to A3,A1 to A4,A2 to A3, A2 to A4,A3 to A4 |
Activity willingness: | 3.19 | 3.26 | 4.80 | 5.45 | 4.17 | 53.662 | p < 0.001 *** | A1 to A3,A1 to A4,A2 to A3, A2 to A4,A3 to A4 |
B-sky Dimension (n = 333) | ||||||||
TPSV: | 4.05 | 4.99 | 5.20 | 5.79 | 5.01 | 18.972 | p < 0.001 *** | B1 to B2,B1 to B3,B1 to B4, B2 to B4,B3 to B4 |
LQE: | 4.65 | 4.42 | 4.14 | 3.69 | 4.22 | 6.024 | p < 0.01 ** | B1 to B3,B1 to B4,B2 to B4 |
Activity willingness: | 4.60 | 4.45 | 3.75 | 3.44 | 4.06 | 11.033 | p < 0.001 *** | B1 to B3,B1 to B4,B2 to B3, B2 to B4 |
C-Shade type dimension (n = 332) | ||||||||
TPSV: | 5.37 | 4.83 | 4.25 | 4.20 | 4.67 | 10.762 | p < 0.001 *** | C1 to C2,C1 to C3,C1 to C4, C2 to C3,C2 to C4 |
LQE: | 3.78 | 4.35 | 4.59 | 5.05 | 4.44 | 13.19 | p < 0.001 *** | C1 to C2,C1 to C3,C1 to C4, C2 to C4,C3 to C4 |
Activity willingness: | 3.24 | 3.83 | 4.90 | 5.65 | 4.43 | 45.451 | p < 0.001 *** | C1 to C2,C1 to C3,C1 to C4, C2 to C3,C2 to C4,C3 to C4 |
D-Pavement type dimension (n = 333) | ||||||||
TPSV: | 5.24 | 4.98 | 5.34 | 5.11 | 5.17 | 1.045 | p = 0.373 | |
LQE: | 4.21 | 4.46 | 3.56 | 4.60 | 4.21 | 10.794 | p < 0.001 *** | D1 to D3,D1 to D4,D2 to D3, D3 to D4 |
Activity willingness: | 3.95 | 4.61 | 3.64 | 3.93 | 4.04 | 6.279 | p < 0.001 *** | D1 to D2,D2 to D3,D2 to D4 |
E-Activity Type Dimension (n = 357) | ||||||||
TPSV: | 5.05 | 5.29 | 5.07 | 5.36 | 5.19 | 1.101 | p = 0.349 | |
LQE: | 3.92 | 3.51 | 3.67 | 3.77 | 3.72 | 1.682 | p = 0.171 | |
Activity willingness: | 3.24 | 3.28 | 3.36 | 3.13 | 3.25 | 0.315 | p = 0.814 |
Group 1 | TPSV | LQE | Activity Willingness | |
---|---|---|---|---|
Adj.R2 | 0.165 | 0.211 | 0.158 | |
Building | R2partial | −0.024 | 0.090 | 0.063 |
b | −0.056 | −0.197 ** | −0.169 ** | |
Sky | R2partial | 0.168 | 0.108 | 0.124 |
b | 0.165 *** | 0.129 *** | 0.179 *** | |
Ground | R2partial | 0.241 | −0.131 | −0.162 |
b | 0.256 *** | −0.171 *** | −0.124 *** | |
Trees | R2partial | −0.159 | 0.271 | 0.093 |
b | −0.157 *** | 0.338 *** | 0.251 *** | |
Tree ponds | R2partial | 0.071 | −0.003 | 0.111 |
b | 0.077 ** | −0.004 | 0.131 *** | |
Shrubs | R2partial | −0.023 | 0.101 | −0.163 |
b | −0.039 | 0.145 *** | −0.278 *** | |
Grass | R2partial | −0.026 | 0.032 | −0.046 |
b | −0.036 | 0.022 | −0.076 | |
Pavilion | R2partial | 0.040 | 0.047 | 0.117 |
b | 0.047 | 0.059 | 0.115 *** | |
Landscape corridor | R2partial | −0.056 | −0.024 | 0.037 |
b | −0.058 * | −0.027 | 0.047 | |
Children’s facilities | R2partial | 0.080 | −0.062 | 0.007 |
b | 0.079 ** | −0.058 * | 0.007 | |
Leisure facilities | R2partial | −0.003 | −0.008 | 0.020 |
b | −0.003 | −0.007 | 0.021 | |
Sports facilities | R2partial | 0.080 | −0.062 | 0.007 |
b | 0.079 ** | −0.058 * | 0.007 |
Group 2 | TPSV | LQE | Activity Willingness | |
---|---|---|---|---|
Adj.R2 | 0.117 | 0.161 | 0.108 | |
Building | R2partial | −0.019 | 0.010 | −0.007 |
b | −0.040 | 0.020 | −0.023 | |
Sky | R2partial | 0.215 | −0.127 | −0.155 |
b | 0.216 *** | −0.123 *** | −0.148 *** | |
Ground | R2partial | 0.167 | −0.220 | −0.113 |
b | 0.166 *** | −0.158 *** | −0.136 *** | |
Trees | R2partial | −0.155 | 0.318 | 0.204 |
b | −0.134 *** | 0.308 *** | 0.320 *** | |
Tree ponds | R2partial | −0.052 | 0.009 | 0.070 |
b | −0.072 | 0.012 | 0.115 * | |
Shrubs | R2partial | −0.029 | −0.012 | −0.018 |
b | −0.038 | −0.015 | −0.051 | |
Grass | R2partial | −0.027 | 0.006 | 0.136 |
b | −0.028 | 0.006 | 0.155 *** | |
Pavilion | R2partial | 0.021 | 0.018 | 0.035 |
b | 0.022 | 0.017 | 0.046 | |
Landscape corridor | R2partial | 0.004 | −0.002 | −0.030 |
b | 0.005 | −0.002 | −0.031 | |
Children’s facilities | R2partial | 0.038 | −0.023 | −0.029 |
b | 0.036 | −0.021 | −0.028 | |
Leisure facilities | R2partial | 0.020 | −0.062 | 0.003 |
b | 0.019 | −0.059 * | 0.002 | |
Sports facilities | R2partial | 0.011 | 0.012 | 0.098 |
b | 0.010 | 0.012 | 0.109 *** |
LQE | Activity Willingness | |
---|---|---|
Group1-TPSV(models with a single a single predictor) | b = −0.279 *** | b = −0.226 *** |
R2 = 0.077 | R2 = 0.050 | |
Group1-TPSV (models with Control-related variables) | b = −0.160 *** | b = −0.069 ** |
R2partial = −0.190 | R2partial = −0.081 | |
Group2-TPSV(models with a single a single predictor) | b = −0.643 *** | b = −0.646 *** |
R2 = 0.413 | R2 = −0.417 | |
Group2-TPSV (models with Control-related variables) | b = −0.467 *** | b = −0.472 *** |
R2partial = −0.436 | R2partial = −0.441 |
Mediator | Indirect Effect | SE | Standardized Indirect Effect | Proportion Mediated (%) | 95% CI (Bootstrap n = 5000) | |
---|---|---|---|---|---|---|
LL | UL | |||||
Group1-TPSV→LQE→Activity willingness | −0.1595 | 0.0165 | −0.1572 | 69.5% | −0.1936 | −0.1279 |
Group2-TPSV→LQE→Activity willingness | −0.1770 | 0.0182 | −0.1610 | 25.2% | −0.2139 | −0.1420 |
Intermediate Variables | Group 1 | Group 2 | ||||
---|---|---|---|---|---|---|
Landscape parameters (%) | TPSV→Landscape parameters→Activity Willingness | TPSV→Landscape parameters→LQE | LQE→Landscape parameters→Activity Willingness | TPSV→Landscape parameters→Activity Willingness | TPSV→Landscape parameters→LQE | LQE→Landscape parameters→Activity Willingness |
Building | IE = 0.024 | IE = −0.039 | IE = −0.050 | IE = 0.014 | IE = −0.013 | IE = 0.026 |
IEP = 0.123 | IEP = 0.155 | IEP = 0.076 | IEP = 0.019 | IEP = 0.021 | IEP = 0.041 | |
Sky | IE = 0.022 | IE = 0.03 | IE = −0.001 | IE = −0.022 | IE = −0.004 | IE = 0.029 |
IEP = −0.010 | IEP = −0.141 | IEP = −0.003 | IEP = 0.032 | IEP = 0.006 | IEP = 0.045 | |
Ground | IE = −0.002 | IE = −0.050 | IE = −0.017 | IE = −0.031 | IE = −0.008 | IE = 0.035 |
IEP = 0.008 | IEP = 0.199 | IEP = −0.025 | IEP = 0.045 | IEP = −0.014 | IEP = 0.054 | |
Trees | IE = −0.050 | IE = −0.045 | IE = 0.055 | IE = −0.167 | IE = −0.027 | IE = 0.042 |
IEP = 0.216 | IEP = 0.178 | IEP = 0.084 | IEP = 0.121 | IEP = 0.045 | IEP = 0.065 | |
Tree ponds | IE = −0.003 | IE = −0.008 | IE = −0.004 | IE = −0.022 | IE = −0.008 | IE = 0.034 |
IEP = 0.012 | IEP = 0.032 | IEP = −0.006 | IEP = 0.032 | IEP = 0.014 | IEP = 0.053 | |
Shrubs | IE = −0.003 | IE = −0.001 | IE = 0.029 | IE = 0.001 | IE = 0.004 | IE = −0.007 |
IEP = 0.012 | IEP = 0.003 | IEP = 0.044 | IEP = −0.001 | IEP = −0.006 | IEP = −0.011 | |
Grass | IE = 0.0235 | IE = −0.028 | IE = −0.040 | IE = −0.018 | IE = −0.003 | IE = 0.019 |
IEP = 0.102 | IEP = 0.113 | IEP = −0.058 | IEP = 0.024 | IEP = 0.005 | IEP = 0.030 | |
Pavilion | IE = −0.014 | IE = 0.005 | IE = 0.000 | IE = −0.0683 | IE = −0.0001 | IE = 0.007 |
IEP = 0.063 | IEP = 0.018 | IEP = 0.000 | IEP = 0.0973 | IEP = −0.0001 | IEP = 0.012 | |
Landscape corridor | IE = 0.004 | IE = 0.006 | IE = −0.001 | IE = −0.002 | IE = −0.001 | IE = 0.003 |
IEP = −0.016 | IEP = −0.233 | IEP = −0.001 | IEP = −0.003 | IEP = 0.001 | IEP = 0.005 | |
children’s facilities | IE = −0.000 | IE = −0.006 | IE = 0.000 | IE = −0.036 | IE = −0.003 | IE = 0.005 |
IEP = 0.001 | IEP = 0.029 | IEP = 0.000 | IEP = 0.0509 | IEP = 0.0496 | IEP = 0.008 | |
Leisure facilities | IE = 0.002 | IE = −0.000 | IE = −0.001 | IE = −0.010 | IE = 0.001 | IE = 0.006 |
IEP = −0.008 | IEP = 0.000 | IEP = −0.001 | IEP = 0.014 | IEP = −0.001 | IEP = 0.010 | |
Sports facilities | IE = 0.009 | IE = 0.006 | IE = 0.000 | IE = 0.005 | IE = −0.000 | IE = 0.001 |
IEP = 0.038 | IEP = 0.024 | IEP = 0.000 | IEP = 0.008 | IEP = −0.000 | IEP = 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wu, J.; Xu, W.; Zhong, Y.; Wang, Z. How Thermal Perceptual Schema Mediates Landscape Quality Evaluation and Activity Willingness. Int. J. Environ. Res. Public Health 2022, 19, 13681. https://doi.org/10.3390/ijerph192013681
Li W, Wu J, Xu W, Zhong Y, Wang Z. How Thermal Perceptual Schema Mediates Landscape Quality Evaluation and Activity Willingness. International Journal of Environmental Research and Public Health. 2022; 19(20):13681. https://doi.org/10.3390/ijerph192013681
Chicago/Turabian StyleLi, Wenbo, Jiaqi Wu, Wenting Xu, Ye Zhong, and Zhihao Wang. 2022. "How Thermal Perceptual Schema Mediates Landscape Quality Evaluation and Activity Willingness" International Journal of Environmental Research and Public Health 19, no. 20: 13681. https://doi.org/10.3390/ijerph192013681
APA StyleLi, W., Wu, J., Xu, W., Zhong, Y., & Wang, Z. (2022). How Thermal Perceptual Schema Mediates Landscape Quality Evaluation and Activity Willingness. International Journal of Environmental Research and Public Health, 19(20), 13681. https://doi.org/10.3390/ijerph192013681