Effects of Aging and Fitness on Hopping Biomechanics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Size
2.3. Testing Procedures
2.4. Data Processing
- Flight time (FT): duration of the flying phase of the hop, that is, time interval in which the subject has no contact with the ground;
- Ground contact time (GCT): interval of time in which the subject’s leg is contact with the ground after the FT;
- Maximum GRF: peak GRF registered during the GCT after landing, and prior to the next hop;
- Hopping height (HH). Calculated from flight time using the equation of uniformly accelerated motions [15]:g—gravity acceleration constant (9.81 m/s2)FT—flight time
- Vertical acceleration (AV) of the center of mass (COM) over time. Calculated from GRF and subject’s body mass [16]:F(t)—GRF over timem—body massg—gravity acceleration constant (9.81 m/s2)
- Vertical velocity (VV) of the COM over time. Calculated from the integration in the time domain of the acceleration-time data [16]:AV(t)—Vertical acceleration over timeF(t)—GRF over timem—body massg—gravity acceleration constant (9.81 m/s2)c—integration constant
- Vertical displacement (DV) of the COM during ground contact. Calculated from numerical double integration in the time domain of the acceleration-time data, or equivalently, from the numerical integration in the time domain of the vertical velocity-time data [16,18]:VV(t)—Vertical velocity over timeF(t)—GRF over timem—body massg—gravity acceleration constant (9.81 m/s2)c—integration constant
- Max DV(t): Maximum vertical downward displacement of the COM during ground contact (also known as countermovement depth);
- Power output, normalized to subject’s body weight [20]:VV(t)—Vertical velocity over timeF(t)—GRF over timem—body mass
- Vertical stiffness (K), calculated for each hop as the ratio between the peak GRF and maximum COM displacement, according to the spring–mass model [18,21,22]. Since body size influences stiffness [23], K was normalized by body mass for each subject and expressed as kN/m/kg [19,24]:max F(t)—Maximum GRF;m—body mass.
2.5. Statistical Analysis
3. Results
3.1. Participants Characteristics
3.2. Biomechanical Parameters
3.3. Hopping Height
3.4. Ground Contact Time
3.5. Maximum Ground Reaction Forces
3.6. Maximum DV
3.7. Vertical Stiffness
3.8. Maximum Power
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beard, J.R.; Officer, A.; de Carvalho, I.A.; Sadana, R.; Pot, A.M.; Michel, J.P.; Lloyd-Sherlock, P.; Epping-Jordan, J.E.; Peeters, G.M.E.E.; Mahanani, W.R.; et al. The World Report on Ageing and Health: A Policy Framework for Healthy Ageing. Lancet 2016, 387, 2145–2154. [Google Scholar] [CrossRef] [Green Version]
- Reid, K.F.; Fielding, R.A. Skeletal Muscle Power: A Critical Determinant of Physical Functioning In Older Adults. Exerc. Sport Sci. Rev. 2012, 40, 4. [Google Scholar] [CrossRef]
- Runge, M.; Rittweger, J.; Russo, C.R.; Schiessl, H.; Felsenberg, D. Is Muscle Power Output a Key Factor in the Age-Related Decline in Physical Performance? A Comparison of Muscle Cross Section, Chair-Rising Test and Jumping Power. Clin. Physiol. Funct. Imaging 2004, 24, 335–340. [Google Scholar] [CrossRef]
- Tanaka, H.; Tarumi, T.; Rittweger, J. Aging and Physiological Lessons from Master Athletes. Compr. Physiol. 2020, 10, 261–296. [Google Scholar] [CrossRef]
- Michaelis, I.; Kwiet, A.; Gast, U.; Boshof, A.; Antvorskov, T.; Jung, T.; Rittweger, J.; Felsenberg, D. Decline of Specific Peak Jumping Power with Age in Master Runners. J. Musculoskelet. Neuronal Interact. 2008, 8, 64–70. [Google Scholar]
- Ireland, A.; Mittag, U.; Degens, H.; Felsenberg, D.; Heinonen, A.; Koltai, E.; Korhonen, M.T.; McPhee, J.S.; Mekjavic, I.; Pisot, R.; et al. Age-Related Declines in Lower Limb Muscle Function Are Similar in Power and Endurance Athletes of Both Sexes: A Longitudinal Study of Master Athletes. Calcif. Tissue Int. 2022, 110, 196–203. [Google Scholar] [CrossRef]
- Alvero-Cruz, J.R.; Brikis, M.; Chilibeck, P.; Frings-Meuthen, P.; Vico Guzmán, J.F.; Mittag, U.; Michely, S.; Mulder, E.; Tanaka, H.; Tank, J.; et al. Age-Related Decline in Vertical Jumping Performance in Masters Track and Field Athletes: Concomitant Influence of Body Composition. Front. Physiol. 2021, 12, 404. [Google Scholar] [CrossRef]
- Härdi, I.; Bridenbaugh, S.A.; Cress, M.E.; Kressig, R.W. Validity of the German Version of the Continuous-Scale Physical Functional Performance 10 Test. J. Aging Res. 2017, 2017, 9575214. [Google Scholar] [CrossRef]
- Frey, I.; Berg, A.; Grathwohl, D.K.; Keul, J. Freiburg Questionnaire of Physical Activity—Development, Evaluation and Application. Soz. Prav. 1999, 44, 55–64. [Google Scholar] [CrossRef]
- An, J.Y.; Zheng, J.X.; Li, J.Y.; Zeng, D.; Qu, L.J.; Xu, G.Y.; Yang, N. Effect of Myofiber Characteristics and Thickness of Perimysium and Endomysium on Meat Tenderness of Chickens. Poult. Sci. 2010, 89, 1750–1754. [Google Scholar] [CrossRef]
- Rittweger, J.; Schiessl, H.; Felsenberg, D.; Runge, M. Reproducibility of the Jumping Mechanography as a Test of Mechanical Power Output in Physically Competent Adult and Elderly Subjects. J. Am. Geriatr. Soc. 2004, 52, 128–131. [Google Scholar] [CrossRef]
- Lang, I.; Busche, P.; Rakhimi, N.; Martin, D.D. Mechanography in Childhood: References for Grip Force, Multiple One-Leg Hopping Force and Whole Body Stiffness. J. Musculoskelet. Neuronal Interact. 2013, 13, 227–235. [Google Scholar]
- Matheson, L.; Duffy, S.; Maroof, A.; Gibbons, R.; Duffy, C.; Roth, J. Intra-and Inter-Rater Reliability of Jumping Mechanography Muscle Function Assessments. J. Musculoskelet. Neuronal Interact. 2013, 13, 480–486. [Google Scholar]
- Veilleux, L.; Rauch, F. Reproducibility of Jumping Mechanography in Healthy Children and Adults. J. Musculoskelet. Neuronal Interact. 2010, 10, 256–266. [Google Scholar]
- Moir, G.L. Three Different Methods of Calculating Vertical Jump Height from Force Platform Data in Men and Women. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 207–218. [Google Scholar] [CrossRef]
- Cavagna, G.A. Force Platforms as Ergometers. J. Appl. Physiol. 1975, 39, 174–179. [Google Scholar] [CrossRef]
- Dalleau, G.; Belli, A.; Viale, F.; Lacour, J.R.; Bourdin, M. A Simple Method for Field Measurements of Leg Stiffness in Hopping. Int. J. Sports Med. 2004, 25, 170–176. [Google Scholar] [CrossRef]
- Hobara, H.; Kobayashi, Y.; Yoshida, E.; Mochimaru, M. Leg Stiffness of Older and Younger Individuals over a Range of Hopping Frequencies. J. Electromyogr. Kinesiol. 2015, 25, 305–309. [Google Scholar] [CrossRef]
- Padua, D.A.; Garcia, C.R.; Arnold, B.L.; Granata, K.P. Gender Differences in Leg Stiffness and Stiffness Recruitment Strategy during Two-Legged Hopping. J. Mot. Behav. 2005, 37, 111–126. [Google Scholar] [CrossRef] [Green Version]
- Harman, E.A.; Rosenstein, M.T.; Frykman, P.N.; Rosenstein, R.M.; Kraemer, W.J. Estimation of Human Power Output from Vertical Jump. J. Strength Cond. Res. 1991, 5, 116–120. [Google Scholar] [CrossRef]
- Cavagna, G.A.; Franzetti, P.; Heglund, N.C.; Willems, P. The Determinants of the Step Frequency in Running, Trotting and Hopping in Man and Other Vertebrates. J. Physiol. 1988, 399, 81–92. [Google Scholar] [CrossRef]
- Blickhan, R. The Spring-Mass Model for Running and Hopping. J. Biomech. 1989, 22, 1217–1227. [Google Scholar] [CrossRef]
- Farley, C.T.; Glasheen, J.; McMahon, T.A. Running Springs: Speed and Animal Size. J. Exp. Biol. 1993, 185, 71–86. [Google Scholar] [CrossRef]
- Hobara, H.; Kanosue, K.; Suzuki, S. Changes in Muscle Activity with Increase in Leg Stiffness during Hopping. Neurosci. Lett. 2007, 418, 55–59. [Google Scholar]
- Farley, C.T.; Morgenroth, D.C. Leg Stiffness Primarily Depends on Ankle Stiffness during Human Hopping. J. Biomech. 1999, 32, 267–273. [Google Scholar] [CrossRef]
- Alcazar, J.; Aagaard, P.; Haddock, B.; Kamper, R.S.; Hansen, S.K.; Prescott, E.; Alegre, L.M.; Frandsen, U.; Suetta, C.; Toledo, G. Age- and Sex-Specific Changes in Lower-Limb Muscle Power throughout the Lifespan. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 1369–1378. [Google Scholar] [CrossRef]
- Alcazar, J.; Rodriguez-Lopez, C.; Ara, I.; Alfaro-Acha, A.; Rodríguez-Gómez, I.; Navarro-Cruz, R.; Losa-Reyna, J.; García-García, F.J.; Alegre, L.M. Force-Velocity Profiling in Older Adults: An Adequate Tool for the Management of Functional Trajectories with Aging. Exp. Gerontol. 2018, 108, 1–6. [Google Scholar] [CrossRef]
- Shur, N.F.; Creedon, L.; Skirrow, S.; Atherton, P.J.; MacDonald, I.A.; Lund, J.; Greenhaff, P.L. Age-Related Changes in Muscle Architecture and Metabolism in Humans: The Likely Contribution of Physical Inactivity to Age-Related Functional Decline. Ageing Res. Rev. 2021, 68, 101344. [Google Scholar] [CrossRef]
- Crane, J.D.; MacNeil, L.G.; Tarnopolsky, M.A. Long-Term Aerobic Exercise Is Associated with Greater Muscle Strength throughout the Life Span. J. Gerontol. Ser. A 2013, 68, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Zampieri, S.; Pietrangelo, L.; Loefler, S.; Fruhmann, H.; Vogelauer, M.; Burggraf, S.; Pond, A.; Grim-Stieger, M.; Cvecka, J.; Sedliak, M.; et al. Lifelong Physical Exercise Delays Age-Associated Skeletal Muscle Decline. J. Gerontol. Ser. A 2015, 70, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Gudiksen, A.; Qoqaj, A.; Ringholm, S.; Wojtaszewski, J.; Plomgaard, P.; Pilegaard, H. Ameliorating Effects of Lifelong Physical Activity on Healthy Aging and Mitochondrial Function in Human White Adipose Tissue. J. Gerontol. Ser. A 2022, 77, 1101–1111. [Google Scholar] [CrossRef]
- Molmen, H.E.; Wisloff, U.; Aamot, I.L.; Stoylen, A.; Ingul, C.B. Aerobic Interval Training Compensates Age Related Decline in Cardiac Function. Scand. Cardiovasc. J. 2012, 46, 163–171. [Google Scholar] [CrossRef]
- Glenmark, B.; Nilsson, M.; Gao, H.; Gustafsson, J.Å.; Dahlman-Wright, K.; Westerblad, H. Difference in Skeletal Muscle Function in Males vs. Females: Role of Estrogen Receptor-β. Am. J. Physiol. Endocrinol. Metab. 2004, 287, 1125–1131. [Google Scholar] [CrossRef]
Young Athletes | Young Controls | Senior Athletes | Senior Controls | |
---|---|---|---|---|
N | 10 | 12 | 10 | 11 |
Height [cm] | 178.9 ± 7.7 | 180.8 ± 6.7 | 177.6 ± 7.6 | 176.9 ± 5.8 |
Weight [kg] | 76.2 ± 13.7 | 75.4 ± 13.0 | 74.8 ± 8.4 | 79.8 ± 8.8 |
Age [years] | 23.9 ± 2.3 | 28.9 ± 4.5 | 65.1 ± 4.1 | 66.1 ± 4.8 |
Activity Level [METs/week] | 55.4 ± 22.8 | 20.4 ± 42.9 | 94.3 ± 39.5 | 23.9 ± 13.2 |
Young Athletes | Young Controls | Senior Athletes | Senior Controls | |
---|---|---|---|---|
Hopping Height [cm] | 16.6 ± 3.3 | 11.8 ± 2.5 | 10.7 ± 3.4 | 6.9 ± 2.3 |
Ground Contact Time [ms] | 275 ± 48 | 320 ± 50 | 303 ± 53 | 348 ± 48 |
Max GRF [kN] | 2.87 ± 0.52 | 2.32 ± 0.57 | 2.31 ± 0.31 | 2.26 ± 0.30 |
Max DV [%] | 9.3 ± 1.8 | 9.8 ± 1.7 | 9.7 ± 2.3 | 9.0 ± 1.8 |
Vertical Stiffness [N/m/kg] | 230 ± 86 | 165 ± 49 | 180 ± 59 | 191 ± 55 |
Max Power [W/kg] | 32.9 ± 6.5 | 25.5 ± 4.8 | 22.7 ± 4.9 | 18.1 ± 3.2 |
Comparison | Mean Difference | SE | df | t | p-Value | Cohen’s d | 95% C.I. | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Young − Seniors | 5.40 | 0.913 | 36.0 | 5.92 | <0.001 | 1.88 | 1.09 | 2.66 |
Athletes − Controls | 4.26 | 0.913 | 36.0 | 4.67 | <0.001 | 1.48 | 0.747 | 2.21 |
Young athletes − Young controls | 4.73 | 1.29 | 36.0 | 3.658 | 0.004 | 1.644 | 0.651 | 2.637 |
Young athletes − Senior athletes | 5.87 | 1.32 | 36.0 | 4.436 | <0.001 | 2.038 | 0.987 | 3.090 |
Young athletes − Senior controls | 9.66 | 1.32 | 36.0 | 7.305 | <0.001 | 3.356 | 2.127 | 4.586 |
Young controls − Senior athletes | 1.14 | 1.26 | 36.0 | 0.903 | 0.803 | −0.394 | −1.286 | 0.497 |
Young controls − Senior controls | 4.93 | 1.26 | 36.0 | 3.919 | 0.002 | 1.712 | 0.736 | 2.689 |
Senior athletes − Senior controls | 3.79 | 1.29 | 36.0 | 2.947 | 0.027 | 1.318 | 0.358 | 2.278 |
Comparison | Mean Difference | SE | df | t | p-Value | Cohen’s d | 95% C.I. | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Young − Seniors | −28.0 | 15.8 | 36.0 | −1.78 | 0.084 | −0.564 | −1.22 | 0.0932 |
Athletes − Controls | −45.4 | 15.8 | 36.0 | −2.88 | 0.007 | −0.913 | −1.59 | −0.234 |
Young athletes − Young controls | −45.4 | 22.3 | 36.0 | −2.032 | 0.195 | −0.913 | −1.85 | 0.0240 |
Young athletes − Senior athletes | −28.0 | 22.8 | 36.0 | −1.227 | 0.614 | −0.564 | −1.51 | 0.3776 |
Young athletes − Senior controls | −73.4 | 22.8 | 36.0 | −3.214 | 0.014 | −1.477 | −2.47 | −0.4804 |
Young controls − Senior athletes | 17.4 | 21.7 | 36.0 | 0.800 | 0.854 | −0.349 | −1.24 | 0.5407 |
Young controls − Senior controls | −28.0 | 21.7 | 36.0 | −1.290 | 0.575 | −0.563 | −1.46 | 0.3329 |
Senior athletes − Senior controls | −45.4 | 22.2 | 36.0 | −2.041 | 0.192 | −0.913 | −1.85 | 0.0200 |
Comparison | Mean Difference | SE | df | t | p-Value | Cohen’s d | 95% C.I. | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Young − Seniors | 0.312 | 0.140 | 36.0 | 2.23 | 0.032 | 0.707 | 0.0421 | 1.37 |
Athletes − Controls | 0.299 | 0.140 | 36.0 | 2.14 | 0.040 | 0.677 | 0.0141 | 1.34 |
Young athletes − Young controls | 0.5546 | 0.198 | 36.0 | 2.7979 | 0.039 | 1.2576 | 0.298 | 2.217 |
Young athletes − Senior athletes | 0.5677 | 0.203 | 36.0 | 2.8018 | 0.039 | 1.2873 | 0.306 | 2.269 |
Young athletes − Senior controls | 0.6103 | 0.203 | 36.0 | 3.0121 | 0.023 | 1.3840 | 0.395 | 2.373 |
Young controls − Senior athletes | 0.0131 | 0.193 | 36.0 | 0.0681 | 1.000 | −0.0298 | −0.916 | 0.856 |
Young controls − Senior controls | 0.0557 | 0.193 | 36.0 | 0.2893 | 0.991 | 0.1264 | −0.760 | 1.013 |
Senior athletes − Senior controls | 0.0426 | 0.197 | 36.0 | 0.2161 | 0.996 | 0.0966 | −0.811 | 1.004 |
Comparison | Mean Difference | SE | df | t | p-Value | Cohen’s d | 95% C.I. | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Young − Seniors | 0.00186 | 0.00601 | 36.0 | 0.309 | 0.759 | 0.0980 | −0.545 | 0.741 |
Athletes − Controls | 0.00148 | 0.00601 | 36.0 | 0.247 | 0.806 | 0.0783 | −0.565 | 0.721 |
Young athletes − Young controls | −0.00443 | 0.00852 | 36.0 | −0.5201 | 0.954 | −0.2338 | −1.147 | 0.680 |
Young athletes − Senior athletes | −0.00406 | 0.00871 | 36.0 | −0.4658 | 0.966 | −0.2140 | −1.147 | 0.719 |
Young athletes − Senior controls | 0.00334 | 0.00871 | 36.0 | 0.3836 | 0.980 | 0.1763 | −0.757 | 1.109 |
Young controls − Senior athletes | 0.000375 | 0.00828 | 36.0 | 0.0452 | 1.000 | −0.0198 | −0.906 | 0.866 |
Young controls − Senior controls | 0.00777 | 0.00828 | 36.0 | 0.9384 | 0.784 | 0.4100 | −0.482 | 1.302 |
Senior athletes − Senior controls | 0.00740 | 0.00848 | 36.0 | 0.8727 | 0.819 | 0.3903 | −0.521 | 1.302 |
Comparison | Mean Difference | SE | df | t | p-Value | Cohen’s d | 95% C.I. | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Young − Seniors | 12.3 | 19.8 | 36.0 | 0.621 | 0.539 | 0.197 | −0.448 | 0.841 |
Athletes − Controls | 27.0 | 19.8 | 36.0 | 1.36 | 0.182 | 0.431 | −0.220 | 1.08 |
Young athletes − Young controls | 64.9 | 28.1 | 36.0 | 2.309 | 0.115 | 1.038 | 0.0931 | 1.982 |
Young athletes − Senior athletes | 50.2 | 28.7 | 36.0 | 1.748 | 0.315 | 0.803 | −0.1484 | 1.754 |
Young athletes − Senior controls | 39.3 | 28.7 | 36.0 | 1.367 | 0.528 | 0.628 | −0.3157 | 1.572 |
Young controls − Senior athletes | −14.7 | 27.3 | 36.0 | −0.537 | 0.949 | 0.235 | −0.6532 | 1.123 |
Young controls − Senior controls | −25.6 | 27.3 | 36.0 | −0.937 | 0.785 | −0.410 | −1.3011 | 0.482 |
Senior athletes − Senior controls | −10.9 | 28.0 | 36.0 | −0.391 | 0.979 | −0.175 | −1.0828 | 0.733 |
Comparison | Mean Difference | SE | df | t | p-Value | Cohen’s d | 95% C.I. | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Young − Seniors | 0.890 | 0.160 | 36.0 | 5.58 | <0.001 | 1.77 | 0.999 | 2.54 |
Athletes − Controls | 0.607 | 0.160 | 36.0 | 3.80 | <0.001 | 1.21 | 0.501 | 1.91 |
Young athletes − Young controls | 0.754 | 0.226 | 36.0 | 3.33 | 0.010 | 1.497 | 0.5178 | 2.476 |
Young athletes − Senior athletes | 1.037 | 0.231 | 36.0 | 4.48 | <0.001 | 2.060 | 1.0061 | 3.114 |
Young athletes − Senior controls | 1.497 | 0.231 | 36.0 | 6.47 | <0.001 | 2.973 | 1.8014 | 4.145 |
Young controls − Senior athletes | 0.283 | 0.220 | 36.0 | 1.29 | 0.576 | −0.563 | −1.4592 | 0.333 |
Young controls − Senior controls | 0.743 | 0.220 | 36.0 | 3.38 | 0.009 | 1.476 | 0.5224 | 2.430 |
Senior athletes − Senior controls | 0.460 | 0.225 | 36.0 | 2.04 | 0.192 | 0.913 | −0.0196 | 1.846 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Trigo, H.; Zange, J.; Sies, W.; Böcker, J.; Sañudo, B.; Rittweger, J. Effects of Aging and Fitness on Hopping Biomechanics. Int. J. Environ. Res. Public Health 2022, 19, 13696. https://doi.org/10.3390/ijerph192013696
Sanchez-Trigo H, Zange J, Sies W, Böcker J, Sañudo B, Rittweger J. Effects of Aging and Fitness on Hopping Biomechanics. International Journal of Environmental Research and Public Health. 2022; 19(20):13696. https://doi.org/10.3390/ijerph192013696
Chicago/Turabian StyleSanchez-Trigo, Horacio, Jochen Zange, Wolfram Sies, Jonas Böcker, Borja Sañudo, and Jörn Rittweger. 2022. "Effects of Aging and Fitness on Hopping Biomechanics" International Journal of Environmental Research and Public Health 19, no. 20: 13696. https://doi.org/10.3390/ijerph192013696
APA StyleSanchez-Trigo, H., Zange, J., Sies, W., Böcker, J., Sañudo, B., & Rittweger, J. (2022). Effects of Aging and Fitness on Hopping Biomechanics. International Journal of Environmental Research and Public Health, 19(20), 13696. https://doi.org/10.3390/ijerph192013696