The Evaluation of Rural Outdoor Dining Environment from Consumer Perspective
Abstract
:1. Introduction
1.1. Rural Outdoor Dining Environment
1.2. The Use of Social Media Data in Landscapes
- Study consumer preferences for the landscape environment of rural ODEs through social media user-generated content.
- To explore which type of landscape in rural ODEs is most preferred by consumers to improve the quality of rural tourism services.
- Provide suggestions for the construction of rural ODEs to promote the integrated development of rural culture and tourism, protect rural landscapes, and upgrade the quality of rural tourism.
2. Materials and Methods
2.1. Data Collection
2.2. Data Classification
2.3. Data Processing
2.4. Validation of the Fitting Effect
3. Results
3.1. Overall Fitting Results
3.2. Fitting Results of Parent-Child Group
3.3. Fitting Results of Elder Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henderson, J.C. Food tourism reviewed. Brit. Food J. 2009, 111, 317–326. [Google Scholar] [CrossRef]
- Huang, Z.F.; Zhang, Y.G.; Jia, W.T.; Hong, X.T.; Yu, R.Z. The research process and trend of development in the New Era of rural tourism in China. J. Nat. Resour. 2021, 36, 2615–2633. [Google Scholar] [CrossRef]
- He, Y.; Wang, J.; Gao, X.; Wang, Y.; Choi, B.R. Rural tourism: Does it matter for sustainable farmers’ income. Sustain. Sci. 2021, 13, 10440. [Google Scholar] [CrossRef]
- Yang, M.; Luo, S. Effects of rural restaurants’ outdoor dining environment dimensions on customers’ satisfaction: A consumer perspective. Foods 2021, 10, 2172. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Liu, Y.; Li, X.; Chen, Y. Building new countryside in China: A geographical perspective. Land Use Policy 2010, 27, 457–470. [Google Scholar] [CrossRef]
- Liu, Y.X.; Gao, Y.; Liu, L.L.; Yang, Z.C. Exploration of “people-oriented” village planning and its practice: A case study of Zhunao village, Daxing district, Beijing city. China Land Sci. 2020, 34, 18–27, 68. [Google Scholar] [CrossRef]
- Brouder, P.; Karlsson, S.; Lundmark, L. Hyper-production: A new metric of multifunctionality. Eur. Countrys. 2015, 7, 134–143. [Google Scholar] [CrossRef] [Green Version]
- Torquati, B.; Tempesta, T.; Vecchiato, D.; Venanzi, S.; Paffarini, C. The value of traditional rural landscape and nature protected areas in tourism demand: A study on agritourists’ preferences. Landsc. Online 2017, 53, 1–18. [Google Scholar] [CrossRef]
- Devesa, M.; Laguna, M.; Palacios, A. The role of motivation in visitor satisfaction: Empirical evidence in rural tourism. Tour. Manag. 2010, 31, 547–552. [Google Scholar] [CrossRef]
- Cavicchi, A.; Stancova, K.C. Food and gastronomy as elements of regional innovation strategies. In Spain: European Commission, Joint Research Centre; Institute for Prospective Technological Studies: Seville, Spain, 2016; pp. 30–34. [Google Scholar]
- Findlay, A.M.; Short, D.; Stockdale, A. The labour-market impact of migration to rural areas. Appl. Geogr. 2000, 20, 333–348. [Google Scholar] [CrossRef]
- Lundmark, L. Restructuring and employment change in sparsely populated areas. In Examples from northern Sweden and Finland; Gerum, Kulturgeografiska Institutionen, Umeå Universitet: Umeå, Sweden, 2006. [Google Scholar]
- Scozzafava, G.; Contini, C.; Romano, C.; Casini, L. Eating out: Which restaurant to choose. Brit. Food J. 2017, 119, 1870–1883. [Google Scholar] [CrossRef]
- Rinaldi, C. Food and gastronomy for sustainable place development: A multidisciplinary analysis of different theoretical approaches. Sustainability 2017, 9, 1748. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, N.; Perito, M.A. Consumers’willingness to consume sustainable and local wine in italy. Ital. J. Food Sci. 2020, 32, 222–233. [Google Scholar] [CrossRef]
- Palmieri, N.; Forleo, M.B. The potential of edible seaweed within the western diet. A segmentation of Italian consumers. Int. J. Gastron. Food Sci. 2020, 20, 100202. [Google Scholar] [CrossRef]
- Liu, Y.; Jang, S.S. Perceptions of Chinese restaurants in the US: What affects customer satisfaction and behavioral intentions. Int. J. Hosp. Manag. 2009, 28, 338–348. [Google Scholar] [CrossRef]
- Auty, S. Consumer choice and segmentation in the restaurant industry. Serv. Ind. J. 1992, 12, 324–339. [Google Scholar] [CrossRef]
- Hul, M.K.; Dube, L.; Chebat, J. The impact of music on consumers’ reactions to waiting for services. J. Retail. 1997, 73, 87–104. [Google Scholar] [CrossRef]
- Robson, S.K. Turning the tables: The psychology of design for high-volume restaurants. Cornell Hotel. Restaur. Adm. Q. 1999, 40, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Ryu, K.; Jang, S. DINESCAPE: A scale for customers’ perception of dining environments. J. Foodserv. Bus. Res. 2008, 11, 2–22. [Google Scholar] [CrossRef]
- Ryu, K.; Jang, S.S. The effect of environmental perceptions on behavioral intentions through emotions: The case of upscale restaurants. J. Hosp. Tour. Res. 2007, 31, 56–72. [Google Scholar] [CrossRef]
- Horng, J.; Hsu, H. A holistic aesthetic experience model: Creating a harmonious dining environment to increase customers’ perceived pleasure. J. Hosp. Tour. Manag. 2020, 45, 520–534. [Google Scholar] [CrossRef]
- Albright, C.L.; Flora, J.A.; Fortmann, S.P. Restaurant menu labeling: Impact of nutrition information on entree sales and patron attitudes. Health Educ Q. 1990, 17, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Wang, M.; Yang, Y.; Gong, S. Food safety in restaurants: The consumer perspective. Int. J. Hosp. Manag. 2019, 77, 139–146. [Google Scholar] [CrossRef]
- Breuste, J.H. Decision making, planning and design for the conservation of indigenous vegetation within urban development.Landsc. Urban Plan. 2004, 68, 439–452. [Google Scholar] [CrossRef]
- Luque-Ayala, A.; Marvin, S. Developing a critical understanding of smart urbanism? Urban Stud. 2015, 52, 2105–2116. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Zhen, F.; Wei, Z. The discussion of urban research in the future: Data driven or human-oriented driven. Sci. Geogr. Sin. 2019, 39, 31–40. [Google Scholar]
- Biltgen, P.; Ryan, S. Activity-Based Intelligence: Principles and Applications; Artech House: Boston, MA, USA, 2016. [Google Scholar]
- Guan, C.; Song, J.; Keith, M.; Zhang, B.; Akiyama, Y.; Da, L.; Shibasaki, R.; Sato, T. Seasonal variations of park visitor volume and park service area in Tokyo: A mixed-method approach combining big data and field observations. Urban For. Urban Green. 2021, 58, 126973. [Google Scholar] [CrossRef]
- Tieskens, K.F.; Van Zanten, B.T.; Schulp, C.J.; Verburg, P.H. Aesthetic appreciation of the cultural landscape through social media: An analysis of revealed preference in the Dutch river landscape. Landsc. Urban Plan. 2018, 177, 128–137. [Google Scholar] [CrossRef]
- Li, Y.; Xie, L.; Zhang, L.; Huang, L.; Lin, Y.; Su, Y.; AmirReza, S.; He, S.; Zhu, C.; Li, S. Understanding different cultural ecosystem services: An exploration of rural landscape preferences based on geographic and social media data. J. Environ. Manag. 2022, 317, 115487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, D.; Zhang, N. Research on Landscape Perception and Visual Attributes Based on Social Media Data—A Case Study on Wuhan University. Appl. Sci. 2022, 12, 8346. [Google Scholar] [CrossRef]
- Huang, L. Application of big data in improving landscape plant landscaping method. J. Phys. Conf. Ser. 2021, 1852, 32024. [Google Scholar] [CrossRef]
- Qin, X.; Zhen, F.; Zhu, S.; Xi, G. Spatial pattern of catering industry in Nanjing urban area based on the degree of public praise from internet: A case study of Dianping. Com. Sci. Geogr. 2014, 34, 810–817. [Google Scholar] [CrossRef]
- Jung, H.; Yoon, H.; Song, M. A Study on Dining-Out Trends Using Big Data: Focusing on Changes since COVID-19. Sustainability 2021, 13, 11480. [Google Scholar] [CrossRef]
- Koufie, M.G.E.; Kesa, H. Millennials motivation for sharing restaurant dining experiences on social media. Afr. J. Hosp. Tour. Leis. 2020, 9, 1–25. [Google Scholar]
- Zhu, D.; Li, B. Behavioral science and public policy: Pursuit of policy effectiveness. Chin. Public Adm. 2018, 8, 59–64. [Google Scholar] [CrossRef]
- Kim, W.G.; Li, J.J.; Brymer, R.A. The impact of social media reviews on restaurant performance: The moderating role of excellence certificate. Int. J. Hosp. Manag. 2016, 55, 41–51. [Google Scholar] [CrossRef]
- Introduction to Huaguo Village, Shanquan Town. Available online: http://www.longquanyi.gov.cn/lqyqzfmhwz_gb/c151772/2022/04/08/content_b211846c19334066a99bd05a96579b01.shtml (accessed on 8 April 2022).
- Lu, L.; Li, H.; Ding, Z.; Guo, Q. An improved target detection method based on multiscale features fusion. Microw. Opt. Technol. Lett. 2020, 62, 3051–3059. [Google Scholar] [CrossRef]
- Taze, D.; Hartley, C.; Morgan, A.W.; Chakrabarty, A.; Mackie, S.L.; Griffin, K.J. Developing consensus in Histopathology: The role of the Delphi method. Histopathology 2022, 81, 159–167. [Google Scholar] [CrossRef]
- Bao, Y.H.; Ren, J. Wetland landscape classification based on the BP neural network in DaLinor lake area. Procedia Environ. Sci. 2011, 10, 2360–2366. [Google Scholar] [CrossRef] [Green Version]
- Mokhtar, M.K.; Mohamed, F.; Sunar, M.S.; Aziz, A.; Sidik, M. Image Features Detection and Tracking for Image Based Target Augmented Reality Application. In Proceedings of the 2019 IEEE Conference on Graphics and Media (GAME), Pulau Pinang, Malaysia, 19–21 November 2019. [Google Scholar]
- Raghunandan, A.; Mohana; Raghav, P.; Aradhya, H. Object detection algorithms for video surveillance applications. In Proceedings of the 2018 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 3–5 April 2018. [Google Scholar]
- Guo, R.; Li, S.; Wang, K. Research on YOLOv3 algorithm based on darknet framework. J. Phys. Conf. Ser. 2020, 1629, 12062. [Google Scholar] [CrossRef]
- Koyuncu, H. Determination of positioning accuracies by using fingerprint localisation and artificial neural networks. Therm. Sci. 2019, 23, 99–111. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, R.; Ojha, M.; Singh, K.P. A comparative analysis of various regularization techniques to solve overfitting problem in artificial neural network. In Proceedings of the International Conference on Recent Developments in Science, Singapore, 22–24 June 2017. [Google Scholar]
- Lim, Y.; Weaver, P.A. Customer-based brand equity for a destination: The effect of destination image on preference for products associated with a destination brand. Int. J. Tour. Res. 2014, 16, 223–231. [Google Scholar] [CrossRef]
- Ohe, Y.; Kurihara, S. Evaluating the complementary relationship between local brand farm products and rural tourism: Evidence from Japan. Tourism Manag. 2013, 35, 278–283. [Google Scholar] [CrossRef]
- Whiting, J.W.; Larson, L.R.; Green, G.T.; Kralowec, C. Outdoor recreation motivation and site preferences across diverse racial/ethnic groups: A case study of Georgia state parks. J. Outdoor Rec. Tour. 2017, 18, 10–21. [Google Scholar] [CrossRef]
- Wilson, K.; Ramella, K.; Poulos, A. Building school connectedness through structured recreation during school: A concurrent Mixed-Methods study. J. Sch. Health 2022, 92, 1013–1021. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.; Xiong, Y.; Yang, Y. Effects of soundscape perception on visiting experience in a renovated historical block. Build. Environ. 2019, 165, 106375. [Google Scholar] [CrossRef]
- Su, M.M.; Dong, Y.; Wall, G.; Sun, Y. A value-based analysis of the tourism use of agricultural heritage systems: Duotian Agrosystem, Jiangsu Province, China. J. Sustain. Tour. 2020, 28, 2136–2155. [Google Scholar] [CrossRef]
- Rossetti, T.A.S.; Lobel, H.; Rocco, V.I.C.; Hurtubia, R. Explaining subjective perceptions of public spaces as a function of the built environment: A massive data approach. Landsc. Urban Plan. 2019, 181, 169–178. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, B.; Liu, L.; Liu, Y.; Fung, H.H.; Lin, H.; Ratti, C. Measuring human perceptions of a large-scale urban region using machine learning. Landsc. Urban Plan. 2018, 180, 148–160. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Dong, R.; Deng, H.; Fu, X.; Wang, C.; Yu, T.; Jia, T.; Zhao, J. Quantifying physical and psychological perceptions of urban scenes using deep learning. Land Use Policy 2021, 111, 105762. [Google Scholar] [CrossRef]
- Liu, W.; Li, C.; Tong, Y.; Zhang, J.; Ma, Z. The places children go: Understanding spatial patterns and formation mechanism for children’s commercial activity space in changchun city, china. Sustainability 2020, 12, 1377. [Google Scholar] [CrossRef] [Green Version]
- Labrecque, J.A.; Ricard, L. Children’s influence on family decision-making: A restaurant study. J. Bus. Res. 2001, 54, 173–176. [Google Scholar] [CrossRef]
- Isele, P.C.; Mussi, A.Q. Inclusive Architecture: Landscape Codesign in Children’s Playgrounds. J. Civ. Eng. Archit. 2021, 15, 429–436. [Google Scholar] [CrossRef]
- Sharifi, A.; Khavarian-Garmsir, A.R. The COVID-19 pandemic: Impacts on cities and major lessons for urban planning, design, and management. Sci. Total Environ. 2020, 749, 142391. [Google Scholar] [CrossRef]
- Ulrich, R.S. Human responses to vegetation and landscapes. Landsc. Urban Plan. 1986, 13, 29–44. [Google Scholar] [CrossRef]
- Zube, E.H.; Sell, J.L.; Taylor, J.G. Landscape perception: Research, application and theory. Landsc. Plan. 1982, 9, 1–33. [Google Scholar] [CrossRef]
- Angelaki, S.; Triantafyllidis, G.A.; Besenecker, U. Lighting in Kindergartens: Towards Innovative Design Concepts for Lighting Design in Kindergartens Based on Children’s Perception of Space. Sustainability 2022, 14, 2302. [Google Scholar] [CrossRef]
- Yalciner, I.P.; Hasirci, D. Preschool children and sunlight. In ICERI2018 Proceedings; IATED: Seville, Spain, 2018. [Google Scholar]
- Ganesan, L.; Abu Bakar, A.Z.; Othman, M. A qualitative study on factors influencing older consumer dining out behaviour. In Proceedings of the 3rd UUM International Qualitative Research Conference (QRC), Melaka, Malaysia, 10–12 July 2018. [Google Scholar]
- Tveit, M.; Ode, A.S.; Fry, G. Key concepts in a framework for analysing visual landscape character. Landsc. Res. 2006, 31, 229–255. [Google Scholar] [CrossRef]
- Tveit, M.S. Indicators of visual scale as predictors of landscape preference; A comparison between groups. J. Environ. Manag. 2009, 90, 2882–2888. [Google Scholar] [CrossRef]
- Hollands, R.G. The Routledge Companion to Smart Cities, 1st ed.; Routledge: London, UK, 2020. [Google Scholar]
- The American Presidency Project. Executive Order 13707-Using Behavioral Science Insights to Better Serve the American People. Available online: http://www.presidency.ucsb.edu/ws/index.php?pid=110815 (accessed on 8 September 2022).
- Gibson, J.; Olivia, S.; Boe-Gibson, G. Night Lights in Economics: Sources and Uses1. J. Econ. Surv. 2020, 34, 955–980. [Google Scholar] [CrossRef]
- Ugolini, F.; Massetti, L.; Calaza-Martínez, P.; Cariñanos, P.; Dobbs, C.; Ostoić, S.K.; Marin, A.M.; Pearlmutter, D.; Saaroni, H.; Šaulienė, I.; et al. Effects of the COVID-19 pandemic on the use and perceptions of urban green space: An international exploratory study. Urban For. Urban Green. 2020, 56, 126888. [Google Scholar] [CrossRef] [PubMed]
- Jia, S. Analyzing restaurant customers’ evolution of dining patterns and satisfaction during COVID-19 for sustainable business insights. Sustainability 2021, 9, 4981. [Google Scholar] [CrossRef]
Classification No. | Category | Landscape No. | Element | Frequency | Landscape No. | Element | Frequency |
---|---|---|---|---|---|---|---|
I | Production landscape | 1 | Orchard | 1289 | 2 | Flower garden | 1380 |
II | Recreation facilities | 3 | Table | 6480 | 4 | Sunshade | 4233 |
5 | Chair | 6379 | 6 | Cassette | 5488 | ||
III | Sanitary facilities | 7 | Toilet | 444 | 8 | Dustbin | 1563 |
9 | Washbasin | 342 | |||||
IV | Lighting | 10 | Streetlight | 1700 | 11 | Light strip | 1722 |
12 | Lawn light | 4438 | 13 | Spotlight | 2293 | ||
V | Guided tour | 14 | Art board | 1745 | 15 | Billboard | 1791 |
16 | Road sign | 1506 | |||||
VI | Service | 17 | Dress code | 787 | 18 | Catering decoration | 4073 |
19 | Catering setting | 5511 | |||||
VII | Children’s facilities | 20 | Slide | 1768 | 21 | Swing | 1905 |
22 | Sandpit | 1243 | 23 | Seesaw | 1118 | ||
VIII | Landscape | 24 | Viewing platform | 2430 | 25 | Waterscape | 4255 |
26 | Tree | 8340 | 27 | Shrub | 7564 | ||
28 | Grassland | 8751 | 29 | Landscape stone | 4917 | ||
30 | Rockery | 2475 | 31 | Feature wall | 1585 | ||
32 | Sculpture | 4415 | 33 | Railing | 4700 | ||
34 | Path | 3639 | 35 | Flower bowl | 4986 |
Category | Score | Element | Score | Element | Score |
---|---|---|---|---|---|
Production landscape | 0.8275 | Orchard | 0.797 | Flower garden | 0.858 |
Recreation facilities | 0.8475 | Table | 0.836 | Sunshade | 0.848 |
Chair | 0.838 | Cassette | 0.868 | ||
Sanitary facilities | 0.8393 | Toilet | 0.842 | Dustbin | 0.837 |
Washbasin | 0.839 | ||||
Lighting | 0.8593 | Streetlight | 0.860 | Light strip | 0.863 |
Lawn light | 0.856 | Spotlight | 0.858 | ||
Guided tour | 0.8237 | Art board | 0.851 | Billboard | 0.802 |
Road sign | 0.818 | ||||
Service | 0.8703 | Dress code | 0.872 | Catering decoration | 0.847 |
Catering setting | 0.892 | ||||
Children’s facilities | 0.8740 | Slide | 0.912 | Swing | 0.842 |
Sandpit | 0.841 | Seesaw | 0.901 | ||
Landscape | 0.8670 | Viewing platform | 0.892 | Waterscape | 0.866 |
Tree | 0.881 | Shrub | 0.853 | ||
Grassland | 0.864 | Landscape stone | 0.861 | ||
Rockery | 0.878 | Feature wall | 0.894 | ||
Sculpture | 0.878 | Railing | 0.803 | ||
Path | 0.859 | Flower bowl | 0.875 |
Category | Score | Element | Score | Element | Score |
---|---|---|---|---|---|
Production landscape | 0.8525 | Orchard | 0.850 | Flower garden | 0.855 |
Recreation facilities | 0.8560 | Table | 0.833 | Sunshade | 0.866 |
Chair | 0.868 | Cassette | 0.857 | ||
Sanitary facilities | 0.8706 | Toilet | 0.862 | Dustbin | 0.861 |
Washbasin | 0.889 | ||||
Lighting | 0.8567 | Streetlight | 0.854 | Light strip | 0.862 |
Lawn light | 0.861 | Spotlight | 0.850 | ||
Guided tour | 0.8170 | Art board | 0.814 | Billboard | 0.821 |
Road sign | 0.816 | ||||
Service | 0.8473 | Dress code | 0.852 | Catering decoration | 0.841 |
Catering setting | 0.849 | ||||
Children’s facilities | 0.8985 | Slide | 0.932 | Swing | 0.912 |
Sandpit | 0.921 | Seesaw | 0.929 | ||
Landscape | 0.8531 | Viewing platform | 0.834 | Waterscape | 0.802 |
Tree | 0.861 | Shrub | 0.863 | ||
Grassland | 0.862 | Landscape stone | 0.850 | ||
Rockery | 0.853 | Feature wall | 0.864 | ||
Sculpture | 0.879 | Railing | 0.876 | ||
Path | 0.837 | Flower bowl | 0.857 |
Category | Score | Element | Score | Element | Score |
---|---|---|---|---|---|
Production landscape | 0.8520 | Orchard | 0.837 | Flower garden | 0.867 |
Recreation facilities | 0.8840 | Table | 0.876 | Sunshade | 0.883 |
Chair | 0.897 | Cassette | 0.889 | ||
Sanitary facilities | 0.8516 | Toilet | 0.851 | Dustbin | 0.858 |
Washbasin | 0.846 | ||||
Lighting | 0.8067 | Streetlight | 0.849 | Light strip | 0.814 |
Lawn light | 0.797 | Spotlight | 0.767 | ||
Guided tour | 0.8213 | Art board | 0.819 | Billboard | 0.817 |
Road sign | 0.828 | ||||
Service | 0.8680 | Dress code | 0.868 | Catering decoration | 0.861 |
Catering setting | 0.875 | ||||
Children’s facilities | 0.8090 | Slide | 0.812 | Swing | 0.802 |
Sandpit | 0.791 | Seesaw | 0.831 | ||
Landscape | 0.8781 | Viewing platform | 0.903 | Waterscape | 0.855 |
Tree | 0.881 | Shrub | 0.863 | ||
Grassland | 0.874 | Landscape stone | 0.871 | ||
Rockery | 0.868 | Feature wall | 0.889 | ||
Sculpture | 0.853 | Railing | 0.879 | ||
Path | 0.832 | Flower bowl | 0.873 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Fan, W.; Qiu, J.; Zhang, S.; Li, J. The Evaluation of Rural Outdoor Dining Environment from Consumer Perspective. Int. J. Environ. Res. Public Health 2022, 19, 13767. https://doi.org/10.3390/ijerph192113767
Yang M, Fan W, Qiu J, Zhang S, Li J. The Evaluation of Rural Outdoor Dining Environment from Consumer Perspective. International Journal of Environmental Research and Public Health. 2022; 19(21):13767. https://doi.org/10.3390/ijerph192113767
Chicago/Turabian StyleYang, Mian, Wenjie Fan, Jian Qiu, Sining Zhang, and Jinting Li. 2022. "The Evaluation of Rural Outdoor Dining Environment from Consumer Perspective" International Journal of Environmental Research and Public Health 19, no. 21: 13767. https://doi.org/10.3390/ijerph192113767
APA StyleYang, M., Fan, W., Qiu, J., Zhang, S., & Li, J. (2022). The Evaluation of Rural Outdoor Dining Environment from Consumer Perspective. International Journal of Environmental Research and Public Health, 19(21), 13767. https://doi.org/10.3390/ijerph192113767