Associations of Gait Speed, Cadence, Gait Stability Ratio, and Body Balance with Falls in Older Adults
Abstract
:1. Introduction
2. Methods
2.1. Design and Participants
2.2. Data Collection
2.2.1. Demographics and Clinical Data
2.2.2. Falls
2.2.3. Anthropometry
2.2.4. Gait
2.2.5. Body Balance
2.3. Statistical Analysis
3. Results
3.1. Main Characteristics of the Participants
3.2. Results of the Correlation Matrix Coefficients of the Main Study Variables
3.3. Associations between GS, CAD, GSR, and BB with Falls (Continuous Variable)
3.4. Associations between GS, CAD, GSR, and BB with Falls (Terciles)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bradley, C.; Harrison, J.E. Trends in hospitalised injuries due to falls by older people, Australia 1999–2007. Inj. Prev. 2010, 16, A197. [Google Scholar] [CrossRef] [Green Version]
- Inouye, S.K.; Brown, C.J.; Tinetti, M.E. Medicare nonpayment, hospital falls, and unintended consequences. N. Engl. J. Med. 2009, 360, 2390–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35, ii37–ii41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical costs of fatal and nonfatal falls in older adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfortmueller, C.A.; Lindner, G.; Exadaktylos, A.K. Reducing fall risk in the elderly: Risk factors and fall prevention, a systematic review. Minerva Med. 2014, 105, 275–281. [Google Scholar]
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk factors for falls among older adults: A review of the literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef]
- Cunningham, C.; O’Sullivan, R.; Caserotti, P.; Tully, M.A. Consequences of physical inactivity in older adults: A systematic review of reviews and meta-analyses. Scand. J. Med. Sci. Sports 2020, 30, 816–827. [Google Scholar] [CrossRef]
- Schoene, D.; Heller, C.; Sieber, C.C.; Kemmler, W.; Freiberger, E. A systematic review on the influence of fear of falling on quality of life in older people: Is there a role for falls? Clin. Interv. Aging 2019, 14, 701–719. [Google Scholar] [CrossRef] [Green Version]
- Friedman, S.M.; Munoz, B.; West, S.K.; Ruben, G.S.; Fried, L.P. Falls and fear of falling: Which comes first? A longitudinal secondary prevention. J. Am. Geriatr. Soc. 2002, 50, 1329–1335. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Watson, W.L.; Milat, A.; Chung, A.Z.Q.; Lord, S. Health and lifestyle risk factors for falls in a large population-based sample of older people in Australia. J. Safety Res. 2013, 45, 7–13. [Google Scholar] [CrossRef]
- Trombini-Souza, F.; de Souza Azevedo Nogueira, R.T.; Serafim, A.C.B.; de Lima, T.M.M.; Xavier, M.K.A.; Perracini, M.R.; de Araújo, R.C.; Sacco, I.C.N.; de Maio Nascimento, M. Concern about falling, confidence in balance, quality of life, and depression symptoms in community-dwelling older adults after a 24-week dual-task training with variable and fixed priority: A randomized controlled trial. Res. Aging 2022, 44, 016402752210739. [Google Scholar] [CrossRef]
- Lee, A.; Bhatt, T.; Smith-Ray, R.L.; Wang, E.; Pai, Y.-C. (Clive) gait speed and dynamic stability decline accelerates only in late life: A cross-sectional study in community-dwelling older adults. J. Geriatr. Phys. Ther. 2019, 42, 73–80. [Google Scholar] [CrossRef]
- Brach, J.S.; Perera, S.; VanSwearingen, J.M.; Hile, E.S.; Wert, D.M.; Studenski, S.A. Challenging gait conditions predict 1-year decline in gait speed in older adults with apparently normal gait. Phys. Ther. 2011, 91, 1857–1864. [Google Scholar] [CrossRef] [Green Version]
- Verghese, J.; LeValley, A.; Hall, C.B.; Katz, M.J.; Ambrose, A.F.; Lipton, R.B. Epidemiology of gait disorders in community-residing older adults. J. Am. Geriatr. Soc. 2006, 54, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.; Lusardi, M. White paper: “Walking speed: The sixth vital sign”. J. Geriatr. Phys. Ther. 2009, 32, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Verghese, J.; Holtzer, R.; Lipton, R.B.; Wang, C. Quantitative gait markers and incident fall risk in older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2009, 64A, 896–901. [Google Scholar] [CrossRef] [Green Version]
- Herssens, N.; Verbecque, E.; Hallemans, A.; Vereeck, L.; Van Rompaey, V.; Saeys, W. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture 2018, 64, 181–190. [Google Scholar] [CrossRef]
- Montero-Odasso, M. Gait as a biomarker of cognitive impairment and dementia syndromes. Quo vadis? Eur. J. Neurol. 2016, 23, 437–438. [Google Scholar] [CrossRef]
- Nascimento, M.D.M.; Gouveia, É.R.; Marques, A.; Gouveia, B.R.; Marconcin, P.; Ihle, A. Gait speed as a biomarker of cognitive vulnerability: A population-based study with cognitively normal older adults. Sustainability 2022, 14, 7348. [Google Scholar] [CrossRef]
- Cuevas-Trisan, R. Balance problems and fall risks in the elderly. Phys. Med. Rehabil. Clin. N. Am. 2017, 28, 727–737. [Google Scholar] [CrossRef]
- Fasano, A.; Plotnik, M.; Bove, F.; Berardelli, A. The neurobiology of falls. Neurol. Sci. 2012, 33, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Melzer, I.; Benjuya, N.; Kaplanski, J. Postural stability in the elderly: A comparison between fallers and non-fallers. Age Ageing 2004, 33, 602–607. [Google Scholar] [CrossRef] [Green Version]
- MacKinnon, C.D. Sensorimotor anatomy of gait, balance, and falls. In Handbook of Clinical Neurology; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 159, pp. 3–26. ISBN 9780444639165. [Google Scholar]
- Woollacott, M. Attentional demands and postural control: The effect of sensory context. J. Gerontol. 2000, 55, 10–16. [Google Scholar]
- Horak, F.B.; Diener, H.C.; Nashner, L.M. Influence of central set on human postural responses. J. Neurophysiol. 1989, 62, 841–853. [Google Scholar] [CrossRef] [PubMed]
- Nair, K.S. Aging muscle. Am. J. Clin. Nutr. 2005, 81, 953–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnouin, Y.; McPhee, J.S.; Butler-Browne, G.; Bosutti, A.; De Vito, G.; Jones, D.A.; Narici, M.; Behin, A.; Hogrel, J.-Y.; Degens, H. Coupling between skeletal muscle fiber size and capillarization is maintained during healthy aging. J. Cachexia Sarcopenia Muscle 2017, 8, 647–659. [Google Scholar] [CrossRef] [Green Version]
- Woollacott, M.H.; Shumway-Cook, A.; Nashner, L.M. Aging and posture control: Changes in sensory organization and muscular coordination. Int. J. Ageing Hum. Dev. 1986, 23, 97–114. [Google Scholar] [CrossRef]
- Blenkinsop, G.M.; Pain, M.T.G.; Hiley, M.J. Balance control strategies during perturbed and unperturbed balance in standing and handstand. R. Soc. Open Sci. 2017, 4, 161018. [Google Scholar] [CrossRef] [Green Version]
- Phinyomark, A.; Petri, G.; Ibáñez-Marcelo, E.; Osis, S.T.; Ferber, R. Analysis of big data in gait biomechanics: Current trends and future directions. J. Med. Biol. Eng. 2018, 38, 244–260. [Google Scholar] [CrossRef] [Green Version]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Crenshaw, J.R.; Bernhardt, K.A.; Achenbach, S.J.; Atkinson, E.J.; Khosla, S.; Kaufman, K.R.; Amin, S. The circumstances, orientations, and impact locations of falls in community-dwelling older women. Arch. Gerontol. Geriatr. 2017, 73, 240–247. [Google Scholar] [CrossRef]
- Cromwell, R.L.; Newton, R.A. Relationship between balance and gait stability in healthy older adults. J. Aging Phys. Act. 2004, 12, 90–100. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Andrews, A.W.; Thomas, M.W. Walking speed: Reference values and correlates for older adults. J. Orthop. Sport. Phys. Ther. 1996, 24, 86–90. [Google Scholar] [CrossRef]
- Hamacher, D.; Singh, N.B.; Van Dieën, J.H.; Heller, M.O.; Taylor, W.R. Kinematic measures for assessing gait stability in elderly individuals: A systematic review. J. R. Soc. Interface 2011, 8, 1682–1698. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Rios, D.A.; Edelberg, H.K. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch. Phys. Med. Rehabil. 2001, 82, 1050–1056. [Google Scholar] [CrossRef]
- Dingwell, J.B.; Kang, H.G. Differences between local and orbital dynamic stability during human walking. J. Biomech. Eng. 2007, 129, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Hamacher, D.; Liebl, D.; Hödl, C.; Heßler, V.; Kniewasser, C.K.; Thönnessen, T.; Zech, A. Gait stability and its influencing factors in older adults. Front. Physiol. 2019, 9, 1955. [Google Scholar] [CrossRef]
- Roeles, S.; Rowe, P.J.; Bruijn, S.M.; Childs, C.R.; Tarfali, G.D.; Steenbrink, F.; Pijnappels, M. Gait stability in response to platform, belt, and sensory perturbations in young and older adults. Med. Biol. Eng. Comput. 2018, 56, 2325–2335. [Google Scholar] [CrossRef] [Green Version]
- Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M.; American College of Sports Medicine (Eds.) ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams Wilkins: Philadelphia, PA, USA, 2018. [Google Scholar]
- Marfell-Jones, M.; Olds, T.; Stew, A.; Carter, L. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Wellington, New Zealand, 2012. [Google Scholar]
- Rose, D.J. Comprehensive balance and mobility training program. In Champaign Human Kinectics; Human Kinetics: Champaign, IL, USA, 2010; ISBN 978-0-7360-6747-8. [Google Scholar]
- Ghanavati, T.; Salavati, M.; Karimi, N.; Negahban, H.; Takamjani, I.E.; Mehravar, M.; Hessam, M. Intra-limb coordination while walking is affected by cognitive load and walking speed. J. Biomech. 2014, 47, 2300–2305. [Google Scholar] [CrossRef]
- Krasovsky, T.; Lamontagne, A.; Feldman, A.G.; Levin, M.F. Effects of walking speed on gait stability and interlimb coordination in younger and older adults. Gait Posture 2014, 39, 378–385. [Google Scholar] [CrossRef]
- Mirmoezzi, M.; Namazizadeh, M.; Sadeghi, H.; Mohammadi, F. Effect of different cognitive loads on gait stability in younger and older adults. Phys. Treat. Specif. Phys. Ther. J. 2019, 9, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Rogers, H.L.; Cromwell, R.L.; Grady, J.L. Adaptive changes in gait of older and younger adults as responses to challenges to dynamic balance. J. Aging Phys. Act. 2008, 16, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.J.; Lucchese, N.; Wiersma, L.D. Development of a multidimensional balance scale for use with functionally independent older adults. Arch. Phys. Med. Rehabil. 2006, 87, 1478–1485. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, B.R.; Jardim, H.G.; Martins, M.M.; Gouveia, É.R.; de Freitas, D.L.; Maia, J.A.; Rose, D.J. An evaluation of a nurse-led rehabilitation programme (the ProBalance Programme) to improve balance and reduce fall risk of community-dwelling older people: A randomised controlled trial. Int. J. Nurs. Stud. 2016, 56, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Set correlation and contingency tables. Appl. Psychol. Meas. 1988, 12, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Deandrea, S.; Lucenteforte, E.; Bravi, F.; Foschi, R.; La Vecchia, C.; Negri, E. Risk factors for falls in community-dwelling older people. Epidemiology 2010, 21, 658–668. [Google Scholar] [CrossRef]
- Graafmans, W.C.; Ooms, M.E.; Hofstee, H.M.A.; Bezemer, P.D.; Bouter, L.M.; Lips, P. Falls in the elderly: A prospective study of risk factors and risk profiles. Am. J. Epidemiol. 1996, 143, 1129–1136. [Google Scholar] [CrossRef] [Green Version]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Poh, F.J.X.; Shorey, S. A literature review of factors influencing injurious falls. Clin. Nurs. Res. 2020, 29, 141–148. [Google Scholar] [CrossRef]
- Liebherr, M.; Schubert, P.; Schiebener, J.; Kersten, S.; Haas, C.T. Dual-tasking and aging-About multiple perspectives and possible implementations in interventions for the elderly. Cogent Psychol. 2016, 3, 1261440. [Google Scholar] [CrossRef]
- Sherrington, C.; Nj, F.; Gk, W.; Tiedemann, A.; Za, M.; Howard, K.; Clemson, L.; Hopewell, S.; Se, L.; Sherrington, C.; et al. Exercise for preventing falls in older people living in the community (review) exercise for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2019, 1, 10–13. [Google Scholar]
- Bruijn, S.M.; van Dieën, J.H.; Meijer, O.G.; Beek, P.J. Statistical precision and sensitivity of measures of dynamic gait stability. J. Neurosci. Methods 2009, 178, 327–333. [Google Scholar] [CrossRef]
- Van Kooten, D.; Hettinga, F.; Duffy, K.; Jackson, J.; Taylor, M.J.D. Are there associations with age and sex in walking stability in healthy older adults? Gait Posture 2018, 60, 65–70. [Google Scholar] [CrossRef]
- Espy, D.D.; Yang, F.; Bhatt, T.; Pai, Y.-C. Independent influence of gait speed and step length on stability and fall risk. Gait Posture 2010, 32, 378–382. [Google Scholar] [CrossRef] [Green Version]
- Cattagni, T.; Scaglioni, G.; Laroche, D.; Gremeaux, V.; Martin, A. The involvement of ankle muscles in maintaining balance in the upright posture is higher in elderly fallers. EXG 2016, 77, 38–45. [Google Scholar] [CrossRef]
- Power, V.; Van De Ven, P.; Nelson, J.; Clifford, A.M. Predicting falls in community-dwelling older adults: A systematic review of task performance-based assessment tools. Physiother. Pract. Res. 2014, 35, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Ciprandi, D.; Bertozzi, F.; Zago, M.; Ferreira, C.L.P.; Boari, G.; Sforza, C.; Galvani, C. Study of the association between gait variability and physical activity. Eur. Rev. Aging Phys. Act. 2017, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- Gamwell, H.E.; Wait, S.O.; Royster, J.T.; Ritch, B.L.; Powell, S.C.; Skinner, J.W. Aging and gait function: Examination of multiple factors that influence gait variability. Gerontol. Geriatr. Med. 2022, 8, 233372142210803. [Google Scholar] [CrossRef]
- Asai, T.; Oshima, K.; Fukumoto, Y.; Yonezawa, Y.; Matsuo, A.; Misu, S. The association between fear of falling and occurrence of falls: A one-year cohort study. BMC Geriatr. 2022, 22, 393. [Google Scholar] [CrossRef]
- Kiselev, J.; Nuritdinow, T.; Spira, D.; Buchmann, N.; Steinhagen-Thiessen, E.; Lederer, C.; Daumer, M.; Demuth, I. Long-term gait measurements in daily life: Results from the Berlin aging study II (BASE-II). PLoS ONE 2019, 14, e0225026. [Google Scholar] [CrossRef]
- Muir, S.W.; Gopaul, K.; Montero-Odasso, M.M. The role of cognitive impairment in fall risk among older adults: A systematic review and meta-analysis. Age Ageing 2012, 41, 299–308. [Google Scholar] [CrossRef] [PubMed]
Variable | Full Sample (n = 619) | Faller (n = 225) | Nonfaller (n = 394) | p-Value |
---|---|---|---|---|
Age (years) | 69.50 ± 5.62 | 70.05 ± 5.62 | 69.18 ± 5.43 | 0.066 |
Age group n (%) | ||||
60–69 years | 294 (47.50) | 104 (46.22) | 190 (48.22) | |
70–79 years | 303 (48.95) | 110 (48.88) | 193 (48.98) | |
80–89 years | 22 (3.55) | 11 (4.88) | 11 (2.79) | |
Sex n (%) | <0.001 | |||
Women | 305 (49.27) | 153 (68.00) | 161 (40.86) | |
Men | 314 (50.72) | 72 (32.00) | 233 (59.13) | |
Medication (n) | 4.65 ± 0.97 | 4.61 ± 0.94 | 4.68 ± 1.00 | 0.395 |
Education (years) | 6.75 ± 4.52 | 6.56 ± 4.20 | 6.94 ± 5.82 | 0.128 |
Comorbidities n (%) | ||||
Vision | 486 (78.51) | 204 (90.66) | 282 (71.57) | <0.001 |
Hearing | 196 (31.66) | 76 (33.77) | 120 (30.45) | 0.228 |
Hypertension | 405 (65.43) | 152 (67.55) | 253 (64.21) | 0.018 |
Diabetes | 221 (35.70) | 102 (45.33) | 119 (30.20) | 0.131 |
Musculoarticular | 43 (6.95) | 21 (9.33) | 22 (5.58) | 0.035 |
Fear of falling (n) | 2.27 ± 0.53 | 2.31 ± 0.62 | 2.24 ± 0.44 | 0.121 |
BMI (kg/m2) | 29.56 ± 4.38 | 29.98 ± 4.52 | 29.31 ± 4.29 | 0.065 |
Gait speed (n) | 1.25 ± 0.24 | 1.20 ± 0.25 | 1.28 ± 0.24 | <0.001 |
Cadence (n) | 1.92 ± 0.221 | 1.90 ± 0.22 | 1.92 ± 0.21 | 0.279 |
Gait stability ratio (n) | 1.56 ± 0.23 | 1.63 ± 0.26 | 1.52 ± 0.21 | <0.001 |
Body balance (n) | 29.55 ± 4.38 | 30.92 ± 7.15 | 31.79 ± 6.72 | <0.001 |
Variable | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1. Falls | 1.00 | |||
2. Gait speed | −0.174 * | 1.00 | ||
3. Cadence | −0.044 ns | 0.789 * | 1.00 | |
4. Gait stability ratio | 0.218 * | −0.844 * | −0.412 * | 1.00 |
5. Body balance | −0.161 * | 0.561 * | 0.363 * | −0.560 * |
Variable | β (SE) | Unadjusted OR (95% CI) | p-Value | β (SE) | Adjusted OR (95% CI) | p-Value |
---|---|---|---|---|---|---|
GS (m/s) | −0.34 (0.077) | −0.174 (−0.491–0.187) | <0.001 | −0.25 (0.080) | −0.128 (−0.408–0.092) | 0.002 |
CAD (m/s) | −0.10 (0.090) | −0.044 (−0273–0.079) | 0.279 | −0.13 (0.091) | −0.059 (−0.308–0.048) | 0.151 |
GSR (m/s) | 0.44 (0.080) | 0.218 (0.287–0.601) | <0.001 | 0.31 (0.084) | 0.150 (0.140–0.471) | <0.001 |
BB (n) | −0.10 (0.034) | −0.161 (−0.016–0.006) | <0.001 | −0.07 (0.018) | −0.102 (−0.018–0.001) | 0.016 |
Variable | β (SE) | Unadjusted OR (95% CI) | p-Value | β (SE) | Adjusted OR (95% CI) | p-Value |
---|---|---|---|---|---|---|
Gait speed (m/s) | ||||||
Tertile 3 (highest) | 1 | 1 | ||||
Tertile 2 (medium) | 0.25 (0.209) | 1.286 (0.854–1.937) | 0.228 | 0.04 (0.222) | 1.045 (0.676–1.616) | 0.842 |
Tertile 1 (lowest) | 0.91 (0.207) | 2.493 (1.662–3.739) | <0.001 | 0.70 (0.226) | 2.016 (1.294–3.142) | 0.002 |
Cadence (m/s) | ||||||
Tertile 3 (highest) | 1 | 1 | ||||
Tertile 2 (medium) | −0.03 (0.201) | 1.226 (0.650–1.429) | 0.335 | 0.07 (0.210) | 1.075 (0.712–1.624) | 0.730 |
Tertile 1 (lowest) | 0.20 (0.211) | 0.963 (0.811–1.853) | 0.853 | 0.30 (0.229) | 1.356 (0.866–2.123) | 0.183 |
Gait stability ratio (m/s) | ||||||
Tertile 3 (highest) | 1 | 1 | ||||
Tertile 2 (medium) | −0.83 (0.267) | 0.436 (0.252–0.718) | <0.001 | −0.50 (0.226) | 0.608 (0.884–2.062) | 0.027 |
Tertile 1 (lowest) | −0.85 (0.213) | 0.426 (0.287–0.661) | 0.001 | −0.44 (0.284) | 0.644 (1.300–3.330) | 0.121 |
Body balance (n) | ||||||
Tertile 3 (highest) | 1 | 1 | ||||
Tertile 2 (medium) | 0.72 (0.204) | 2.065 (0.996–2.223) | 0.058 | 0.24 (0.216) | 1.270 (0.832–1.939) | 0.268 |
Tertile 1 (lowest) | 0.40 (0.205) | 1.488 (1.383–3.082) | <0.001 | 0.48 (0.228) | 1.614 (1.033–2.523) | 0.036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, M.d.M.; Gouveia, É.R.; Gouveia, B.R.; Marques, A.; Martins, F.; Przednowek, K.; França, C.; Peralta, M.; Ihle, A. Associations of Gait Speed, Cadence, Gait Stability Ratio, and Body Balance with Falls in Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 13926. https://doi.org/10.3390/ijerph192113926
Nascimento MdM, Gouveia ÉR, Gouveia BR, Marques A, Martins F, Przednowek K, França C, Peralta M, Ihle A. Associations of Gait Speed, Cadence, Gait Stability Ratio, and Body Balance with Falls in Older Adults. International Journal of Environmental Research and Public Health. 2022; 19(21):13926. https://doi.org/10.3390/ijerph192113926
Chicago/Turabian StyleNascimento, Marcelo de Maio, Élvio Rúbio Gouveia, Bruna R. Gouveia, Adilson Marques, Francisco Martins, Krzysztof Przednowek, Cíntia França, Miguel Peralta, and Andreas Ihle. 2022. "Associations of Gait Speed, Cadence, Gait Stability Ratio, and Body Balance with Falls in Older Adults" International Journal of Environmental Research and Public Health 19, no. 21: 13926. https://doi.org/10.3390/ijerph192113926
APA StyleNascimento, M. d. M., Gouveia, É. R., Gouveia, B. R., Marques, A., Martins, F., Przednowek, K., França, C., Peralta, M., & Ihle, A. (2022). Associations of Gait Speed, Cadence, Gait Stability Ratio, and Body Balance with Falls in Older Adults. International Journal of Environmental Research and Public Health, 19(21), 13926. https://doi.org/10.3390/ijerph192113926