Measuring the Impact of Future Outbreaks? A Secondary Analysis of Routinely Available Data in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Time Periods Analysed
2.2. Setting
2.3. Data Sources
2.3.1. Structure of the Health System
2.3.2. Epidemiological Data
2.3.3. Socioeconomic Data
2.4. Construction of Indicators
2.5. Statistical Analysis
3. Results
3.1. Relationships between the Epidemiological Indicators
3.2. Relationships between the Socioeconomic Indicators
3.3. Relationship between Health System Structure and Epidemiological Indicators
3.4. Relationship between Epidemiological and Socioeconomic Indicators
3.5. Relationship between Groups of Epidemiological and Socioeconomic Indicators (Canonical Correlations)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mira, J.J.; Lorenzo, S. Collateral damage for failing to do in the times of COVID-19. J. Healthc. Qual. Res. 2021, 36, 125–127. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Coronavirus Disease (COVID-19) Dashboard|WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 14 October 2020).
- Ramon-Dangla, R.; Rico-Goméz, M.L.; Issa-Khozouz, R. Mortalidad por COVID-19 en España durante la primera oleada de la pandemia. Aproximación a través del gasto público sanitario por Comunidades Autónomas. Rev. Esp. Salud Publica 2021, 95, 1–10. [Google Scholar]
- Wang, D.; Mao, Z. A comparative study of public health and social measures of COVID-19 advocated in different countries. Health Policy 2021, 125, 957–971. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Morgenstern, C.; Kelly, J.; Lowe, R.; Jit, M. The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territories. BMC Med. 2021, 19, 40. [Google Scholar] [CrossRef] [PubMed]
- Coudeville, L.; Jollivet, O.; Mahé, C.; Chaves, S.; Gomez, G.B. Potential impact of introducing vaccines against COVID-19 under supply and uptake constraints in France: A modelling study. PLoS ONE 2021, 16, e0250797. [Google Scholar] [CrossRef]
- Tsou, H.-H.; Kuo, S.-C.; Lin, Y.-H.; Hsiung, C.A.; Chiou, H.-Y.; Chen, W.J.; Wu, S.-I.; Sytwu, H.-K.; Chen, P.-C.; Wu, M.-H.; et al. A comprehensive evaluation of COVID-19 policies and outcomes in 50 countries and territories. Sci. Rep. 2022, 12, 8802. [Google Scholar] [CrossRef]
- Gostin, L.O.; Friedman, E.A.; Wetter, S.A. Responding to COVID-19: How to Navigate a Public Health Emergency Legally and Ethically. Hastings Cent. Rep. 2020, 50, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.H.; Grady, C. Ethics in the time of COVID. Neurology 2020, 94, 1007–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elola-Somoza, F.J.; Bas-Villalobos, M.C.; Pérez-Villacastín, J.; Macaya-Miguel, C. Gasto sanitario público y mortalidad por COVID-19 en España y en Europa. Rev. Clín. Esp. 2021, 221, 400–403. [Google Scholar] [CrossRef]
- Braithwaite, J.; Tran, Y.; Ellis, L.A.; Westbrook, J. The 40 health systems, COVID-19 (40HS, C-19) study. Int. J. Qual. Health Care 2021, 33, mzaa113. [Google Scholar] [CrossRef]
- García, C.N. Socioeconomic, demographic and healthcare determinants of the COVID-19 pandemic: An ecological study of Spain. BMC Public Health 2021, 21, 606. [Google Scholar] [CrossRef] [PubMed]
- Peña-Ramos, J.A.; Recuero-López, F.; Sánchez-Bayón, A.; Sastre, F.J. Evaluation of Spanish Health System during the COVID-19 Pandemic: Accountability and Wellbeing Results. Int. J. Environ. Res. Public Health 2021, 18, 12907. [Google Scholar] [CrossRef] [PubMed]
- European Commission Jobs and Economy during the Coronavirus Pandemic. Available online: https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response/jobs-and-economy-during-coronavirus-pandemic_en (accessed on 28 October 2021).
- EUROSTAT Economy—COVID-19. Available online: https://ec.europa.eu/eurostat/web/covid-19/economy (accessed on 28 October 2021).
- The World Bank GDP Growth—United States. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?end=2020&locations=US&start=1960&view=chart (accessed on 28 October 2021).
- International Monetary Fund IMF Annual Report 2020—COVID-19. Available online: https://www.imf.org/external/pubs/ft/ar/2020/eng/spotlight/covid-19/ (accessed on 28 October 2021).
- Instituto de Salud Carlos III COVID-19. Available online: https://cnecovid.isciii.es/covid19/ (accessed on 21 September 2021).
- Instituto de Salud Carlos III Sistema de Monitorización de Mortalidad Diaria. Available online: https://momo.isciii.es/public/momo/dashboard/momo_dashboard.html (accessed on 1 June 2021).
- Instituto Nacional de Estadística INEbase/Demografía y Población. Available online: https://www.ine.es/dyngs/INEbase/es/categoria.htm?c=Estadistica_P&cid=1254734710984 (accessed on 21 September 2021).
- Ministerio de Trabajo y Economía Social Análisis del Mercado de Trabajo. Available online: https://www.mites.gob.es/es/sec_trabajo/analisis-mercado-trabajo/index.htm (accessed on 21 September 2021).
- Mula, A.; Martin-Delgado, J.; Mira, J.J. COVID-19 Mortality in Spain and Social, Economic and Healthcare Resources. 2021. Available online: https://osf.io/5pv28/ (accessed on 28 October 2021).
- Gonzalez, I.; Déjean, S.; Martin, P.; Baccini, A. CCA: An R Package to Extend Canonical Correlation Analysis. J. Stat. Softw. 2008, 23, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fallah-Aliabadi, S.; Fatemi, F.; Heydari, A.; Khajehaminian, M.R.; Lotfi, M.H.; Mirzaei, M.; Sarsangi, A. Social vulnerability indicators in pandemics focusing on COVID-19: A systematic literature review. Public Health Nurs. 2022, 39, 1142–1155. [Google Scholar] [CrossRef] [PubMed]
- Buja, A.; Paganini, M.; Fusinato, R.; Cozzolino, C.; Cocchio, S.; Scioni, M.; Rebba, V.; Baldo, V.; Boccuzzo, G. Health and healthcare variables associated with Italy’s excess mortality during the first wave of the COVID-19 pandemic: An ecological study. Health Policy 2022, 126, 294–301. [Google Scholar] [CrossRef]
- Instituto de Salud Carlos III; Red Nacional de Vigilancia Epidemiológica. Informe n° 33. Análisis de los Casos de COVID-19 Notificados a la RENAVE; Carlos III Health Institute: Madrid, Spain, 2020.
- Instituto de Salud Carlos III; Red Nacional de Vigilancia Epidemiológica. Informe n° 46. Análisis de los Casos de COVID-19 Notificados a la RENAVE; Carlos III Health Institute: Madrid, Spain, 2020.
- Instituto de Salud Carlos III; Red Nacional de Vigilancia Epidemiológica. Informe n° 59. Análisis de los Casos de COVID-19 Notificados a la RENAVE; Carlos III Health Institute: Madrid, Spain, 2020.
- López-Gay, A.; Spijker, J.; Cole, H.V.S.; Marques, A.G.; Triguero-Mas, M.; Anguelovski, I.; Marí-Dell’Olmo, M.; Módenes, J.A.; Álamo-Junquera, D.; López-Gallego, F.; et al. Sociodemographic determinants of intraurban variations in COVID-19 incidence: The case of Barcelona. J. Epidemiol. Community Health 2022, 76, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Reibling, N. The international performance of healthcare systems in population health: Capabilities of pooled cross-sectional time series methods. Health Policy 2013, 112, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Santeramo, F.G.; Tappi, M.; Lamonaca, E. On the management of COVID-19 pandemic in Italy. Health Policy 2021, 125, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Lajunen, T.; Gaygısız, E.; Gaygısız, Ü. Socio-cultural Correlates of the COVID-19 Outcomes. J. Epidemiol. Glob. Health 2022, 12, 328–339. [Google Scholar] [CrossRef]
- Mena, G.; Aburto, J.M. Unequal impact of the COVID-19 pandemic in 2020 on life expectancy across urban areas in Chile: A cross-sectional demographic study. BMJ Open 2022, 12, e059201. [Google Scholar] [CrossRef]
- Chávez-Almazán, L.A.; Díaz-González, L.; Rosales-Rivera, M. Socioeconomic determinants of health and COVID-19 in Mexico. Gac. Méd. Méx. 2022, 158, 4–11. [Google Scholar] [CrossRef]
- Alencar do Nascimento, C.M.; Freire De Souza, C.D.; De Oliveira Silva, L.E.; Oliveira Silva, W.; Amaro Barbosa, N.; Feliciano do Carmo, R.; De Lima Andrade, E.; Henrique de Oliveira Teixeira, S.; José Matos Rocha, T. COVID-19 risk areas associated with social vulnerability in northeastern Brazil: An ecological study in 2020. J. Infect. Dev. Ctries. 2022, 16, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Steinegger, B.; Granell, C.; Rapisardi, G.; Gómez, S.; Matamalas, J.T.; Soriano-Paños, D.; Gómez-Gardeñes, J.; Arenas, A. Retrospective study of the first wave of COVID-19 in Spain: Analysis of counterfactual scenarios. medRxiv 2021. [Google Scholar] [CrossRef]
- Vandenberg, O.; Martiny, D.; Rochas, O.; van Belkum, A.; Kozlakidis, Z. Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 2021, 19, 171–183. [Google Scholar] [CrossRef]
- La, V.-P.; Pham, T.-H.; Ho, M.-T.; Nguyen, M.-H.; P. Nguyen, K.-L.; Vuong, T.-T.; Nguyen, H.-K.T.; Tran, T.; Khuc, Q.; Ho, M.-T.; et al. Policy Response, Social Media and Science Journalism for the Sustainability of the Public Health System Amid the COVID-19 Outbreak: The Vietnam Lessons. Sustainability 2020, 12, 2931. [Google Scholar] [CrossRef] [Green Version]
- Kavanagh, M.M.; Singh, R. Democracy, Capacity, and Coercion in Pandemic Response: COVID-19 in Comparative Political Perspective. J. Health Polit. Policy Law 2020, 45, 997–1012. [Google Scholar] [CrossRef]
- Rossman, H.; Shilo, S.; Meir, T.; Gorfine, M.; Shalit, U.; Segal, E. COVID-19 dynamics after a national immunization program in Israel. Nat. Med. 2021, 27, 1055–1061. [Google Scholar] [CrossRef]
- Roghani, A. The Influence of COVID-19 Vaccination on Daily Cases, Hospitalization, and Death Rate in Tennessee, United States: Case Study. JMIRx Med. 2021, 2, e29324. [Google Scholar] [CrossRef]
Indicator | Formula | Definition | Source of Information |
---|---|---|---|
CAM †ij | × 1.000 | Bed rate | Ministry of Health, Consumer Affairs and Social Welfare |
IE †ij | × 100 | Ageing index ‡ | National Statistics Institute (INE) |
DEN †ij | Population density | National Statistics Institute (INE) | |
RAP †ij | × 100.000 | Ratio of primary care professionals | Ministry of Health, Consumer Affairs and Social Welfare |
RAH †ij | Ratio of hospital care professionals | Ministry of Health, Consumer Affairs and Social Welfare | |
IN ijt | × 100.000 | Incidence | National Epidemiology Centre and the Carlos III Health Institute. |
IG ijt | × 100 | Severity Index | National Epidemiology Centre and the Carlos III Health Institute. |
HP ijt | × 100.000 | Hospitalization rate among the population | National Epidemiology Centre and the Carlos III Health Institute. |
SAT ijt | × 100 | Bed saturation | National Epidemiology Centre and the Carlos III Health Institute. |
SATUCI ijt | × 100 | ICU bed saturation | National Epidemiology Centre and the Carlos III Health Institute. |
LET ijt | × 100 | Lethality | National Epidemiology Centre and the Carlos III Health Institute. |
MOR ijt | × 100.000 | Mortality | National Epidemiology Centre and the Carlos III Health Institute. |
UCI ijt | × 100 | Rate of ICU admissions among cases | National Epidemiology Centre and the Carlos III Health Institute. |
EXMOR ijt | × 100.000 | Excess mortality | Daily Mortality Monitoring System (MoMo) and the Instituto de Salud Carlos III. |
EXMOR_NOCOVID ijt | Daily Mortality Monitoring System (MoMo) and the Instituto de Salud Carlos III and National Epidemiology Centre and the Carlos III Health Institute. | ||
EXES ij | × 100.000 | Excess of patients on the waiting list | Ministry of Health, Consumer Affairs and Social Welfare |
CASOS ijt | - | COVID-19 cases | National Epidemiology Centre and the Carlos III Health Institute. |
PIB ij | - | Debt % GDP | Macro Expansion Data |
CAP ij | - | Debt per capita | Macro Expansion Data |
PARO ijt | Unemployment rate | National Statistics Institute (INE) | |
ERTE ijt | Persons in ERTE | General Treasury of the Social Security (TGSS) | |
EMSS ijt | × 100 | Percentage variation of companies registered in the Social Security system | Ministry of Labour and Social Economy |
NEM ijt | × 100 | Percentage variation of new companies created | National Statistics Institute (INE) |
IN | IG | HP | SAT | SATUCI | LET | MOR | UCI | CASOS | EXMOR | EXMOR_ NOCOVID | |
---|---|---|---|---|---|---|---|---|---|---|---|
IE | −0.15 | 0.55 * | 0.13 | −0.09 | −0.21 | 0.67 * | 0.30 | 0.19 | −0.19 | 0.00 | −0.24 |
PIB | −0.04 | −0.28 | −0.18 | −0.14 | −0.22 | −0.09 | −0.07 | −0.32 | 0.16 | 0.04 | 0.15 |
CAP | 0.19 | −0.09 | 0.10 | 0.06 | −0.04 | 0.08 | 0.19 | −0.30 | 0.41 | 0.01 | 0.27 |
PARO | −0.49 * | −0.34 | −0.51 * | −0.33 | −0.38 | −0.43 | −0.54 * | 0.20 | −0.07 | −0.18 | 0.09 |
ERTE | −0.16 | −0.02 | −0.06 | 0.12 | −0.19 | −0.14 | −0.16 | −0.06 | 0.80 * | −0.09 | 0.68 * |
EMSS | 0.59 * | 0.22 | 0.53 * | 0.35 | 0.31 | 0.39 | 0.56 * | −0.44 | 0.18 | 0.27 | 0.09 |
NEM | −0.41 | −0.17 | −0.40 | −0.34 | −0.39 | −0.19 | −0.46 | −0.05 | −0.05 | −0.47 * | −0.08 |
Epidemiologic Indicators | ||||||
Model Q1 2020 | Model Q2 2020 | Model Q3 2020 | Model Q4 2020 | Model anual 2020 | Model Q1 2021 | |
IN | −0.20 | −1.98 | −0.72 | −1.71 | −1.27 | 0.52 |
SAT | −1.21 | 0.22 | 0.21 | 0.13 | −0.01 | 0.44 |
LET | −0.21 | −0.10 | −1.07 | −1.77 | −0.93 | 0.47 |
UCI | 0.09 | −0.20 | −0.11 | −0.28 | −0.03 | −0.39 |
EXMOR | 1.58 | 1.04 | 1.16 | 2.17 | 1.17 | −1.43 |
Socioeconomic Indicators | ||||||
Model Q1 2020 | Model Q2 2020 | Model Q3 2020 | Model Q4 2020 | Model anual 2020 | Model Q1 2021 | |
PARO | 0.09 | 1.11 | 0.64 | 0.97 | 0.72 | −0.72 |
EMSS | −0.60 | 0.11 | 0.66 | −0.05 | −0.32 | 0.37 |
NEM | −0.60 | 0.23 | 0.73 | −0.16 | 0.25 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin-Delgado, J.; Mula, A.; Manzanera, R.; Mira, J.J. Measuring the Impact of Future Outbreaks? A Secondary Analysis of Routinely Available Data in Spain. Int. J. Environ. Res. Public Health 2022, 19, 13981. https://doi.org/10.3390/ijerph192113981
Martin-Delgado J, Mula A, Manzanera R, Mira JJ. Measuring the Impact of Future Outbreaks? A Secondary Analysis of Routinely Available Data in Spain. International Journal of Environmental Research and Public Health. 2022; 19(21):13981. https://doi.org/10.3390/ijerph192113981
Chicago/Turabian StyleMartin-Delgado, Jimmy, Aurora Mula, Rafael Manzanera, and Jose Joaquin Mira. 2022. "Measuring the Impact of Future Outbreaks? A Secondary Analysis of Routinely Available Data in Spain" International Journal of Environmental Research and Public Health 19, no. 21: 13981. https://doi.org/10.3390/ijerph192113981
APA StyleMartin-Delgado, J., Mula, A., Manzanera, R., & Mira, J. J. (2022). Measuring the Impact of Future Outbreaks? A Secondary Analysis of Routinely Available Data in Spain. International Journal of Environmental Research and Public Health, 19(21), 13981. https://doi.org/10.3390/ijerph192113981