Estimation of Functional Reserve in Patients with Hospital-Associated Deconditioning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Sit-to-Stand Test
2.3. STS Power and Capacity Ratio
2.4. Clinical Outcomes
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Almirall-Sánchez, A.; Mockler, D.; Adrion, E.; Domínguez-Vivero, C.; Romero-Ortuño, R. Hospital-associated deconditioning: Not only physical, but also cognitive. Int. J. Geriatr. Psychiatry 2022, 37, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Covinsky, K.E.; Pierluissi, E.; Johnston, C.B. Hospitalization-associated disability:“She was probably able to ambulate, but i’m not sure”. Jama 2011, 306, 1782–1793. [Google Scholar] [CrossRef]
- Gill, T.M.; Gahbauer, E.A.; Han, L.; Allore, H.G. Functional trajectories in older persons admitted to a nursing home with disability after an acute hospitalization. J. Am. Geriatr. Soc. 2009, 57, 195–201. [Google Scholar] [CrossRef]
- Loyd, C.; Markland, A.D.; Zhang, Y.; Fowler, M.; Harper, S.; Wright, N.C.; Carter, C.S.; Buford, T.W.; Smith, C.H.; Kennedy, R. Prevalence of hospital-associated disability in older adults: A meta-analysis. J. Am. Med. Dir. Assoc. 2020, 21, 455–461.e455. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.J.; Redden, D.T.; Flood, K.L.; Allman, R.M. The underrecognized epidemic of low mobility during hospitalization of older adults. J. Am. Geriatr. Soc. 2009, 57, 1660–1665. [Google Scholar] [CrossRef] [PubMed]
- Zisberg, A.; Shadmi, E.; Sinoff, G.; Gur-Yaish, N.; Srulovici, E.; Admi, H. Low mobility during hospitalization and functional decline in older adults. J. Am. Geriatr. Soc. 2011, 59, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Missildine, K.; Bergstrom, N.; Meininger, J.; Richards, K.; Foreman, M.D. Sleep in hospitalized elders: A pilot study. Geriatr. Nurs. 2010, 31, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Drevet, S.; Bioteau, C.; Mazière, S.; Couturier, P.; Merloz, P.; Tonetti, J.; Gavazzi, G. Prevalence of protein-energy malnutrition in hospital patients over 75 years of age admitted for hip fracture. Orthop. Traumatol. Surg. Res. 2014, 100, 669–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leach, E.; Cornwell, P.; Fleming, J.; Haines, T. Patient centered goal-setting in a subacute rehabilitation setting. Disabil. Rehabil. 2010, 32, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Stucki, G.; Cieza, A.; Melvin, J. The international classification of functioning, disability and health (icf): A unifying model for the conceptual description of the rehabilitation strategy. J. Rehabil. Med. 2007, 39, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Kortebein, P. Rehabilitation for hospital-associated deconditioning. Am. J. Phys. Med. Rehabil. 2009, 88, 66–77. [Google Scholar] [CrossRef]
- Yee, X.S.; Ng, Y.S.; Allen, J.C.; Latib, A.; Tay, E.L.; Abu Bakar, H.M.; Ho, C.Y.J.; Koh, W.C.C.; Kwek, H.H.T.; Tay, L. Performance on sit-to-stand tests in relation to measures of functional fitness and sarcopenia diagnosis in community-dwelling older adults. Eur. Rev. Aging Phys. Act. 2021, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Applebaum, E.V.; Breton, D.; Feng, Z.W.; Ta, A.T.; Walsh, K.; Chassé, K.; Robbins, S.M. Modified 30-second sit to stand test predicts falls in a cohort of institutionalized older veterans. PLoS ONE 2017, 12, e0176946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurses, H.N.; Zeren, M.; Kulli, H.D.; Durgut, E. The relationship of sit-to-stand tests with 6-minute walk test in healthy young adults. Medicine 2018, 97, e9489. [Google Scholar] [CrossRef]
- Foldvari, M.; Clark, M.; Laviolette, L.C.; Bernstein, M.A.; Kaliton, D.; Castaneda, C.; Pu, C.T.; Hausdorff, J.M.; Fielding, R.A.; Singh, M.A.F. Association of muscle power with functional status in community-dwelling elderly women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, M192–M199. [Google Scholar] [CrossRef]
- Metter, E.J.; Talbot, L.A.; Schrager, M.; Conwit, R.A. Arm-cranking muscle power and arm isometric muscle strength are independent predictors of all-cause mortality in men. J. Appl. Physiol. 2004, 96, 814–821. [Google Scholar] [CrossRef]
- Alcazar, J.; Kamper, R.S.; Aagaard, P.; Haddock, B.; Prescott, E.; Ara, I.; Suetta, C. Relation between leg extension power and 30-s sit-to-stand muscle power in older adults: Validation and translation to functional performance. Sci. Rep. 2020, 10, 16337. [Google Scholar] [CrossRef]
- Muir, S.W.; Berg, K.; Chesworth, B.; Speechley, M. Use of the berg balance scale for predicting multiple falls in community-dwelling elderly people: A prospective study. Phys. Ther. 2008, 88, 449–459. [Google Scholar] [CrossRef]
- Kang, H. Sample size determination and power analysis using the g* power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef]
- Suriyaamarit, D.; Boonyong, S. Mechanical work, kinematics, and kinetics during sit-to-stand in children with and without spastic diplegic cerebral palsy. Gait Posture 2019, 67, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Baltasar-Fernandez, I.; Alcazar, J.; Rodriguez-Lopez, C.; Losa-Reyna, J.; Alonso-Seco, M.; Ara, I.; Alegre, L.M. Sit-to-stand muscle power test: Comparison between estimated and force plate-derived mechanical power and their association with physical function in older adults. Exp. Gerontol. 2021, 145, 111213. [Google Scholar] [CrossRef] [PubMed]
- Mentiplay, B.F.; Perraton, L.G.; Bower, K.J.; Adair, B.; Pua, Y.H.; Williams, G.P.; McGaw, R.; Clark, R.A. Assessment of lower limb muscle strength and power using hand-held and fixed dynamometry: A reliability and validity study. PLoS ONE 2015, 10, e0140822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podsiadlo, D.; Richardson, S. The timed “up & go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [PubMed]
- Romero, S.; Bishop, M.D.; Velozo, C.A.; Light, K. Minimum detectable change of the berg balance scale and dynamic gait index in older persons at risk for falling. J. Geriatr. Phys. Ther. 2011, 34, 131–137. [Google Scholar] [CrossRef]
- Collin, C.; Wade, D.T.; Davies, S.; Horne, V. The barthel adl index: A reliability study. Int. Disabil. Stud. 1988, 10, 61–63. [Google Scholar] [CrossRef]
- Dancey, C.; Reidy, J. Statistics without Maths for Psycology, 5th ed.; Pearson: London, UK, 2011; p. 648. [Google Scholar]
- Bergman, H.; Ferrucci, L.; Guralnik, J.; Hogan, D.B.; Hummel, S.; Karunananthan, S.; Wolfson, C. Frailty: An emerging research and clinical paradigm--issues and controversies. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Woods, N.F.; LaCroix, A.Z.; Gray, S.L.; Aragaki, A.; Cochrane, B.B.; Brunner, R.L.; Masaki, K.; Murray, A.; Newman, A.B. Frailty: Emergence and consequences in women aged 65 and older in the women’s health initiative observational study. J. Am. Geriatr. Soc. 2005, 53, 1321–1330. [Google Scholar] [CrossRef] [Green Version]
- Rockwood, K.; Abeysundera, M.J.; Mitnitski, A. How should we grade frailty in nursing home patients? J. Am. Med. Dir. Assoc. 2007, 8, 595–603. [Google Scholar] [CrossRef]
- Kerr, K.M.; White, J.A.; Barr, D.A.; Mollan, R.A. Analysis of the sit-stand-sit movement cycle in normal subjects. Clin. Biomech. 1997, 12, 236–245. [Google Scholar] [CrossRef]
- Rodosky, M.W.; Andriacchi, T.P.; Andersson, G.B. The influence of chair height on lower limb mechanics during rising. J. Orthop. Res. 1989, 7, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Etnyre, B.; Thomas, D.Q. Event standardization of sit-to-stand movements. Phys. Ther. 2007, 87, 1651–1666. [Google Scholar] [CrossRef]
- Lord, S.R.; Murray, S.M.; Chapman, K.; Munro, B.; Tiedemann, A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M539–M543. [Google Scholar] [CrossRef]
- Plachy, J.K.; Kovách, M.V.; Bognár, J. Improving flexibility and endurance of elderly women through a six-month training programme. Hum. Mov. 2012, 13, 22–27. [Google Scholar] [CrossRef]
- Morales-Alamo, D.; Martin-Rincon, M.; Perez-Valera, M.; Marcora, S.; Calbet, J.A. No functional reserve at exhaustion in endurance-trained men? J. Appl. Physiol. 2016, 120, 476. [Google Scholar] [CrossRef] [PubMed]
- Middleton, A.; Fritz, S.L.; Lusardi, M. Walking speed: The functional vital sign. J. Aging Phys. Act. 2015, 23, 314–322. [Google Scholar] [CrossRef]
- Duan-Porter, W.; Vo, T.N.; Ullman, K.; Langsetmo, L.; Strotmeyer, E.S.; Taylor, B.C.; Santanasto, A.J.; Cawthon, P.M.; Newman, A.B.; Simonsick, E.M.; et al. Hospitalization-associated change in gait speed and risk of functional limitations for older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1657–1663. [Google Scholar] [CrossRef]
Variables | Before the Rehabilitation | After Four Weeks | p-Value |
---|---|---|---|
Age (years) | 65.28 ± 7.45 range: 55 to 80) | not investigated | - |
Sex (male:female) | 12:6 | not investigated | - |
Height (cm) | 164.59 ± 8.48 | not investigated | - |
Weight (kg) | 61.42 ± 12.24 | 61.6 ± 11.8 | 0.727 |
BMI | 22.59 ± 3.50 | ||
MMSE | 29.61 ± 0.78 | not investigated | - |
SMI (kg/m2) | 8.71 ± 1.25 | 8.7 ± 1.2 | 0.458 |
10 m gait speed (m/s) | 0.79 ± 0.32 | 0.84 ± 0.31 | 0.004 * |
Hand grip (dominant, kg) | 20.61 ± 10.02 | 22.2 ± 9.2 | 0.022 * |
Hip extensor (maximal, kg) | 5.41 ± 2.52 | 6.4 ± 2.7 | 0.002 * |
TUG (s) | 15.57 ± 6.82 | 14.9 ± 7.2 | 0.306 |
BBS | 30.67 ± 7.51 | 40.4 ± 10.4 | <0.001 |
MBI | 81.05 ± 8.71 | 87.33 ± 12.85 | 0.001 |
Time duration of 5r-STS (s) | 17.57 ± 8.47 | not investigated | - |
Repeats of 30s-STS (number) | 10.33 ± 4.13 | not investigated | - |
Patients | FPD 5r-STS | FPD 30s-STS | STS Capacity Ratio | ||||
---|---|---|---|---|---|---|---|
Concentric Time | GRF (N) | Power (N·m/s) | Concentric Time | GRF (N) | Power (N·m/s) | ||
1 | 3.83 | 533.72 | 42.13 | 4.65 | 520.16 | 33.82 | 0.80 |
2 | 1.80 | 493.89 | 87.27 | 1.65 | 449.71 | 86.45 | 0.99 |
3 | 1.28 | 494.69 | 119.41 | 1.20 | 495.06 | 127.60 | 1.07 |
4 | 1.07 | 647.70 | 171.63 | 0.96 | 672.11 | 198.34 | 1.16 |
5 | 1.86 | 627.17 | 142.60 | 1.49 | 668.43 | 189.06 | 1.33 |
6 | 1.72 | 649.59 | 119.34 | 1.60 | 626.45 | 123.57 | 1.04 |
7 | 2.06 | 636.56 | 98.88 | 2.27 | 669.48 | 94.50 | 0.96 |
8 | 1.33 | 624.93 | 145.69 | 1.62 | 563.85 | 108.51 | 0.74 |
9 | 0.96 | 601.96 | 158.61 | 0.78 | 615.40 | 200.40 | 1.26 |
10 | 1.16 | 587.96 | 165.30 | 0.98 | 588.94 | 194.91 | 1.18 |
11 | 1.28 | 937.25 | 317.29 | 0.82 | 1010.08 | 532.01 | 1.68 |
12 | 1.42 | 881.76 | 273.61 | 1.25 | 894.66 | 315.68 | 1.15 |
13 | 1.10 | 924.02 | 352.61 | 1.00 | 883.87 | 369.97 | 1.05 |
14 | 3.16 | 489.39 | 51.95 | 3.60 | 490.30 | 45.66 | 0.88 |
15 | 2.64 | 742.76 | 84.19 | 3.13 | 729.70 | 69.66 | 0.83 |
16 | 1.61 | 576.95 | 89.37 | 1.13 | 607.25 | 133.99 | 1.50 |
17 | 1.63 | 948.25 | 256.50 | 1.51 | 1029.11 | 300.64 | 1.17 |
18 | 1.52 | 492.27 | 88.62 | 1.37 | 514.32 | 103.09 | 1.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kim, N.; Jeon, Y.; Kim, S.-J. Estimation of Functional Reserve in Patients with Hospital-Associated Deconditioning. Int. J. Environ. Res. Public Health 2022, 19, 14140. https://doi.org/10.3390/ijerph192114140
Kim M, Kim N, Jeon Y, Kim S-J. Estimation of Functional Reserve in Patients with Hospital-Associated Deconditioning. International Journal of Environmental Research and Public Health. 2022; 19(21):14140. https://doi.org/10.3390/ijerph192114140
Chicago/Turabian StyleKim, Minhee, Nackhwan Kim, Yuho Jeon, and Seung-Jong Kim. 2022. "Estimation of Functional Reserve in Patients with Hospital-Associated Deconditioning" International Journal of Environmental Research and Public Health 19, no. 21: 14140. https://doi.org/10.3390/ijerph192114140
APA StyleKim, M., Kim, N., Jeon, Y., & Kim, S. -J. (2022). Estimation of Functional Reserve in Patients with Hospital-Associated Deconditioning. International Journal of Environmental Research and Public Health, 19(21), 14140. https://doi.org/10.3390/ijerph192114140