Landslide Susceptibility Evaluation Based on Potential Disaster Identification and Ensemble Learning
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.1.1. Historical Landslide Inventory
3.1.2. Multisource Data
3.2. Methods
3.2.1. Establishment of Geoenvironmental and Disaster-Inducing Factors
3.2.2. Surface Deformation Observed by SBAS-InSAR Technique
3.2.3. Identification Criteria of Potential Landslides
- (1)
- The LOS deformation velocity VLOS of the slope is larger than two times the standard deviation σ of the Setinel-1 LOS deformation velocity [18,76], and the value of σ is 5 mm/year [18]. The standard deviation indicates the uncertainty of a velocity value [76]; thus, a slope is confidently moving if >10 mm/year.
- (2)
- The surface deformation of the slope features spatial continuity. The deformation is spatially continuous when a minimum of 2 × 2 adjacent pixels have velocities more than 2σ [77].
- (3)
- The lithology is characterized by soft rocks or highly weathered and fractured hard rocks. In the study area, the four classes of rock groups make for landslide development: the rock group of weak mudstone and shale, the rock assemblage of relatively hard quartz sandstone, siltstone, and volcanics, the rock group of relatively hard sandstone and limestone, and the rock assemblage of weak sandstone, slate, and conglomerate. In other types of engineering rock groups, no landslide occurred in the past.
- (4)
- The slopes within 3 km of faults feature a high occurrence rate of landslides. The rock mass appears more broken when it is closer to the fault, which avails landslide occurrence [62].
- (5)
- The slope angle is larger than 10°.
- (6)
- (7)
- The slope possesses obvious landslide micro-geomorphologic characteristics, e.g., free surfaces, gullies, cracks, slide terraces, and collapses. Moreover, the slope features surface cover changes, e.g., vegetation destruction or bare land expansion.
- (8)
- The surface deformation of the slope is triggered by definite factors. There is a significant correlation between the deformation displacement or velocity and the variation of the inducing factors. e.g., PGA, cumulative rainfall, or distance to road or building. The correlation is quantitatively measured by the Pearson correlation coefficient passing a significance test under the significance level of 0.05 [77].
3.2.4. XGBoost Algorithm for Landslide Susceptibility Evaluation
4. Results
4.1. Identification of Potential Landslides
4.2. Landslide Susceptibility Evaluation
4.3. Comparison with the SVM and CNN Algorithms
4.4. Comparison with the LSE Map Generated from Known Landslides
5. Discussions
5.1. Cause Characteristics of Active Landslides
5.2. Cause of Landslide High-Susceptibility
6. Conclusions
- (1)
- The proposed synthetic criteria integrate the characteristics of deformation, geology, topography, geomorphology, environment, earthquake, rainfall, and human engineering activity. According to the criteria, 25 active landslides are identified, among which 16 ones are newly discovered as potential landslides. In the study area, tectonic movement, weak strata, and fractured rock mass generated abundant cleavages and cracks and created numerous loose deposits that tended to move down the steep slopes under the action of external forces. Under the coupled function of strong river erosion, earthquake ground motion, rainwater infiltration, hydrodynamic pressure, and road and building construction, the shear strength decreased, the slope became moving, and an active landslide occurred.
- (2)
- A LSE map is generated by slope unit segmentation and the XGBoost algorithm. 92% of the potential and known landslides are situated in the HVHS regions that occupy 21.85% of the whole study area. The values of the precision indices of AUC, Accuracy, TPR, F1-score, and Kappa coefficient reach 0.996, 97.98%, 98.77%, 0.98, and 0.96, respectively. Moreover, XGBoost outperforms the representative machine learning algorithm of SVM and the deep learning algorithm of CNN in the study area.
- (3)
- The HVHS region is situated in the river valley, suffering from strong river erosion, and features high and steep topography. The region was cut by various faults, and a large amount of cataclasites and loose deposits were generated and are distributed along two sides of the river valleys. Rainwater washed the slope feet and penetrated through the loose soils and broken rocks into the slope bodies. Moreover, the slope feet in the HVHS region were relaxed and excavated by the construction of the national or provincial highways. Therefore, the HVHS was caused by the coupled action of a developed fault zone, ruptured rock mass, high and steep relief, intensive river erosion, concentrated rainfall, and frequent human engineering activity.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brabb, E.E. Innovative approaches to landslide hazard and risk mapping. In Proceedings of the IVth International Conference and Field Workshop in Landslides, Japan Landslide Society, Tokyo, Japan, 23–31 August 1985; Volume 1, pp. 17–22. [Google Scholar]
- Farahani, S.; Behnam, B.; Tahershamsi, A. Macrozonation of seismic transient and permanent ground deformation of Iran. Nat. Hazards Earth Syst. Sci. 2020, 20, 2889–2903. [Google Scholar] [CrossRef]
- Ado, M.; Amitab, K.; Maji, A.K.; Jasińska, E.; Gono, R.; Leonowicz, Z.; Jasiński, M. Landslide susceptibility mapping using machine learning: A literature survey. Remote Sens. 2022, 14, 3029. [Google Scholar] [CrossRef]
- Ageenko, A.; Hansen, L.C.; Lyng, K.L.; Bodum, L.; Arsanjani, J.J. Landslide susceptibility mapping using machine learning: A Danish case study. ISPRS Int. J. Geo-Inf. 2022, 11, 324. [Google Scholar] [CrossRef]
- Desalegn, H.; Mulu, A.; Damtew, B. Landslide susceptibility evaluation in the Chemoga watershed, upper Blue Nile, Ethiopia COMMENT. Nat. Hazards. 2022, 113, 1391–1417. [Google Scholar] [CrossRef]
- Ganga, A.; Elia, M.; D’Ambrosio, E.; Tripaldi, S.; Capra, G.F.; Gentile, F.; Sanesi, G. Assessing landslide susceptibility by coupling spatial data analysis and logistic model. Sustainability 2022, 14, 8426. [Google Scholar] [CrossRef]
- Lima, P.; Steger, S.; Glade, T.; Murillo-García, F.G. Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility. J. Mt. Sci. 2022, 19, 1670–1698. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, X.; Li, W. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 957–966. [Google Scholar]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne syntheticaperture radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Zhao, C.; Zhong, L.; Zhang, Q.; de La Fuente, J. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Liu, P.; Li, Z.; Hoey, T.; Kincal, C.; Zhang, J.; Zeng, Q.; Muller, J.P. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 253–264. [Google Scholar] [CrossRef]
- Zhao, C.; Kang, Y.; Zhang, Q.; Lu, Z.; Li, B. Landslide identification and monitoring along the Jinsha River Catchment (Wudongde Reservoir area), China, using the InSAR method. Remote Sens. 2018, 10, 993. [Google Scholar] [CrossRef]
- Shirani, K.; Pasandi, M. Landslide monitoring and the inventory map validation by ensemble DInSAR processing of ASAR and PALSAR Images (Case Study: Doab-Samsami Basin in Chaharmahal and Bakhtiari Province, Iran). Geotech. Geol. Eng. 2021, 39, 1201–1222. [Google Scholar] [CrossRef]
- Sarychikhina, O.; Palacios, D.G.; Argote, L.A.D.; Ortega, A.G. Application of satellite SAR interferometry for the detection and monitoring of landslides along the Tijuana-Ensenada Scenic Highway, Baja California, Mexico. J. S. Am. Earth Sci. 2021, 107, 103030. [Google Scholar] [CrossRef]
- Xie, M.; Huang, J.; Wang, L.; Huang, J.; Wang, Z. Early landslide detection based on D-InSAR technique at the Wudongde hydropower reservoir. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Zang, X.; Zhu, J.; Wu, W. Locating and monitoring of landslides based on small baseline subset interferometric synthetic aperture radar. J. Appl. Remote Sens. 2019, 13, 044528. [Google Scholar] [CrossRef]
- Rehman, M.U.; Zhang, Y.; Meng, X.; Su, X.; Catani, F.; Rehman, G.; Yue, D.; Khalid, Z.; Ahmad, S.; Ahmad, I. Analysis of landslide movements using interferometric synthetic aperture radar: A case study in Hunza-Nagar valley, Pakistan. Remote Sens. 2020, 12, 2054. [Google Scholar]
- Solari, L.; Bianchini, S.; Franceschini, R.; Barra, A.; Monserrat, O.; Thuegaz, P.; Bertolo, D.; Crosetto, M.; Catani, F. Satellite interferometric data for landslide intensity evaluation in mountainous regions. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102028. [Google Scholar] [CrossRef]
- Dong, J.; Liao, M.; Xu, Q.; Zhang, L.; Tang, M.; Gong, J. Detection and displacement characterization of landslides using multi-temporal satellite SAR interferometry: A case study of Danba County in the Dadu River Basin. Eng. Geol. 2018, 240, 95–109. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.M.; Dijkstra, T.A.; Jordan, C.J.; Chen, G.; Zeng, R.Q.; Novellino, A. Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sens. Environ. 2020, 241, 111738. [Google Scholar] [CrossRef]
- Dun, J.; Feng, W.; Yi, X.; Zhang, G.; Wu, M. Detection and mapping of active landslides before impoundment in the Baihetan Reservoir area (China) based on the time-series InSAR method. Remote Sens. 2021, 13, 3213. [Google Scholar] [CrossRef]
- Guo, R.; Li, S.; Chen, Y.N.; Li, X.; Yuan, L. Identification and monitoring landslides in Longitudinal Range-Gorge Region with InSAR fusion integrated visibility analysis. Landslides 2021, 18, 551–568. [Google Scholar] [CrossRef]
- Xie, H.B.; Yang, X.; Tan, D.J.; Luo, Z.F. Application of Fuzzy Weight of Evidence Method in Seismic Landslide Zonation. China Saf. Sci. J. 2011, 21, 164–170. [Google Scholar]
- Samodra, G.; Chen, G.; Sartohadi, J.; Kasama, K. Comparing data-driven landslide susceptibility models based on participatory landslide inventory mapping in Purwosari area, Yogyakarta, Java. Environ. Earth Sci. 2017, 76, 184. [Google Scholar] [CrossRef]
- Roccati, A.; Paliaga, G.; Luino, F.; Faccini, F.; Turconi, L. GIS-based landslide susceptibility mapping for land use planning and risk assessment. Land 2021, 10, 162. [Google Scholar] [CrossRef]
- Panchal, S.; Shrivastava, A.K. Landslide hazard assessment using analytic hierachy process (AHP): A case study of National Highway 5 in India. Ain Shams Eng. J. 2022, 13, 101626. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, R.K.; AlAwadh, M.A.; Islam, S.; Khan, R.A.; Qureshi, M.N. GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia. Environ. Earth Sci. 2018, 77, 276. [Google Scholar] [CrossRef]
- Cengiz, L.D.; Ercanoglu, M. A novel data-driven approach to pairwise comparion in AHP using fuzzy relations and matrices for landslide susceptibility. Environ. Earth Sci. 2022, 81, 222. [Google Scholar] [CrossRef]
- Aghda, S.M.F.; Bagheri, V.; Razifard, M. Landslide susceptibility mapping using fuzzy logic system and its influences on Mainlines in Lashgarak Region, Tehran, Iran. Geotech. Geol. Eng. 2018, 36, 915–937. [Google Scholar]
- Baharvand, S.; Rahnamarad, J.; Soori, S.; Saadatkhah, N. Landslide susceptibility zoning in a catchment of Zagros Moutains using fuzzy logic and GIS. Environ. Earth Sci. 2020, 79, 204. [Google Scholar] [CrossRef]
- Zhao, H.; Yao, L.; Mei, G.; Liu, T.; Ning, Y. A fuzzy comprehensive evaluation method based on AHP and entropy for a landslide susceptibility map. Entropy 2017, 19, 396. [Google Scholar] [CrossRef]
- Zhang, T.; Fu, Q.; Li, C.; Liu, F.; Wang, H.; Han, L.; Quevedo, R.P.; Chen, T.; Lei, N. Modeling landslide susceptibility using data mining techniques of kernel logistic regression, fuzzy unordered rule induction algorithm, SysFor and random forest. Nat. Hazards 2022. online. [Google Scholar] [CrossRef]
- Sahana, M.; Sajjad, H. Evaluating effectiveness of frequency ratio, fuzzy logic and logistic regression models in assessing landslide susceptibility: A case from Rudraprayag district, India. J. Mt. Sci. 2017, 14, 2150–2167. [Google Scholar] [CrossRef]
- Karaman, M.O.; Cabule, S.N.; Pekkan, E. Utilization of frequency ratio method for the production of landslide susceptibility maps: Karaburun Peninsula case, Turkey. Environ. Sci. Pollut. Res. 2022. online. [Google Scholar] [CrossRef]
- Alsabhan, A.H.; Singh, K.; Sharma, A.; Alam, S.; Pandey, D.D.; Rahman, S.A.S.; Khursheed, A.; Munshi, F.M. Landslide susceptibility assessment in the Himalyan range based along Kasauli-Parwanoo road corridor using weight of evidence, information value, and frequency ratio. J. King Saud Univ. Sci. 2022, 34, 101759. [Google Scholar] [CrossRef]
- Wubalem, A.; Meten, M. Landslide susceptibility mapping using information value and logistic regression models in Goncha Siso Eneses area, northwestern Ethiopia. SN Appl. Sci. 2020, 2, 807. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Tekin, S.; Can, T. Slide type landslide susceptibility assessment of the Buyuk Menderes watershed using artificial neural network method. Environ. Sci. Pollut. Res. 2022, 29, 47174–47188. [Google Scholar] [CrossRef]
- Deng, H.; Wu, X.; Zhang, W.; Liu, Y.; Li, W.; Li, X.; Zhou, P.; Zhuo, W. Slope-unit scale landslide susceptibility mapping based on the radom forest model in deep valley areas. Remote Sens. 2022, 14, 4245. [Google Scholar] [CrossRef]
- Sheng, M.; Zhou, J.; Chen, X.; Teng, Y.; Hong, A.; Liu, G. Landslide susceptibility prediction based on frequency ratio method and C5.0 decision tree model. Front. Earth Sci. 2022, 10, 918386. [Google Scholar] [CrossRef]
- Hakim, W.L.; Rezaie, F.; Nur, A.S.; Panahi, M.; Khosravi, K.; Lee, C.W.; Lee, S. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. J. Environ. Manag. 2022, 305, 114367. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, X.; Li, Y.; Xu, P.; Xia, W. Dynamic development of landslide susceptibility based on slope unit and deep neural networks. Landslides 2020, 18, 281–302. [Google Scholar] [CrossRef]
- Rong, G.; Li, K.; Su, Y.; Tong, Z.; Liu, X.; Zhang, J.; Zhang, Y.; Li, T. Comparison of tree-structured parzen estimatior optimization in three typical neural network models for landslide susceptibility assessment. Remote Sens. 2021, 13, 4694. [Google Scholar] [CrossRef]
- Wang, W.; He, Z.; Han, Z.; Li, Y.; Dou, J.; Huang, J. Mapping the susceptibility to landslides based on the deep belief network: A case study in Sichuan Province, China. Nat. Hazards 2020, 103, 3239–3261. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhou, Y.; Wang, F.; Wang, S.; Wang, J.; Ji, J.; Wang, Z. Landslide susceptibility mapping using ant colony optimization strategy and deep belief network in Jiuzhaigou Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11042–11057. [Google Scholar] [CrossRef]
- Pham, B.T.; Nguyen-Thoi, T.; Qi, C.; Van Phong, T.; Dou, J.; Ho, L.S.; Le, H.V.; Prakash, I. Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. Catena 2020, 195, 104805. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Singh, S.K.; Shirzadi, A.; Shahabi, H.; Bui, D.T. Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: Hybrid machine learning approaches. Catena 2019, 175, 203–218. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, G.; Men, X.; Zhang, Y. A comparative study of landslide susceptibility mapping using weight of evidence, logistic regression and support vector machine and evaluated by SBAS-InSAR monitoring: Zhouqu to Wudu segment in Bailong River Basin, China. Environ. Earth Sci. 2017, 76, 313. [Google Scholar] [CrossRef]
- Hussain, S.; Sun, H.; Ali, M.; Ali, M. PS-InSAR based validated landslide susceptibility modelling: A case study of Ghizer valley, Northern Pakistan. Geocarto Int. 2020. online. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Chen, Y.-K.; Yang, K.-H.; Chen, C.-S.; Han, J.-Y. Integrating InSAR observables and multiple geological factors for landslide susceptibility assessement. Appl. Sci. 2021, 11, 7289. [Google Scholar] [CrossRef]
- Meghanadh, D.; Ashutosh, T.; Ramji, D. Landslide susceptibility mapping using MT-InSAR and AHP enabled GIS-based multi-criteria decision analysis. Geomat. Nat. Hazards Risk 2021, 12, 675–693. [Google Scholar]
- Meghanadh, D.; Maurya, V.K.; Tiwari, A.; Dwivedi, R. A multi-criteria landslide susceptibility mapping using deep multi-layer perceptron network: A case study of Srinagar-Rudraprayag region (India). Adv. Space Res. 2022, 69, 1883–1893. [Google Scholar] [CrossRef]
- Zhao, F.; Meng, X.; Zhang, Y.; Chen, G.; Sun, X.; Yue, D. Landslide susceptibility mapping of Karakorum highway combined with the application of SBAS-InSAR technology. Sensors 2019, 19, 2685. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.A.; Chen, Z.; Wang, R.; Shoaib, M. PS-InSAR-based validated landslide susceptibility mapping along Karakorum Highway, Pakistan. Remote Sens. 2021, 13, 4129. [Google Scholar] [CrossRef]
- Hussain, S.; Sun, H.; Ali, M.; Sajjad, M.M.; Ali, M.; Afzal, Z.; Ali, S. Optimized landslide susceptibility mapping and modelling using PS-InSAR technique: A case study of Chitral valley, Northern Pakistan. Geocarto Int. 2021. online. [Google Scholar] [CrossRef]
- Armas, I.; Gheorghe, M.; Silvas, G.C. Shallow landslide physically based susceptibility assessment improvement using InSAR case study: Carpathian and Subcarpathian Prahova Valley, Romania. Remote Sens. 2021, 13, 2385. [Google Scholar] [CrossRef]
- Nhu, V.-H.; Mohammadi, A.; Shahabi, H.; Ahmad, B.B.; Al-Ansari, N.; Shirzadi, A.; Geertsema, M.; Kress, V.R.; Karimzadeh, S.; Valizadeh Kamran, K.; et al. Landslide detection and susceptibility modeling on Cameron Highlands (Malaysia): A comparison between random forest, logistic regression and logistic model tree algorithms. Forests 2020, 11, 830. [Google Scholar] [CrossRef]
- Kouhartsiouk, D.; Perdikou, S. The application of DInSAR and Bayesian statistics for the assessment of landslide susceptibility. Nat. Hazards 2021, 105, 2957–2985. [Google Scholar] [CrossRef]
- Kontoes, C.; Loupasakis, C.; Papoutsis, I.; Alatza, S.; Poyiadji, E.; Ganas, A.; Psychogyiou, C.; Kaskara, M.; Antoniadi, S.; Spanou, N. Landslide susceptibility mapping of central and western Greece, combining NGI and WoE methods, with remote sensing and ground truth data. Land 2021, 10, 402. [Google Scholar] [CrossRef]
- Mao, Y. Study on Development and Distribution Characteristics of Collapse and Rockfll Movement Process in Changdu Section of Proposed Line Project. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2020. [Google Scholar]
- Wu, S. Study on Large Deformation Classification of Changdu Tunnel of Sichuan-Tibet Railway. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2020. [Google Scholar]
- FGB. 1:50000 Report on Detailed Investigation of Geological Disasters in Chaya County, Tibet Autonomous Region; The Fifth Geological Brigade, Bureau of Geology and Mineral Exploration and Development: Tibet Autonomous Region, China, 2020. [Google Scholar]
- Tang, M.; Xu, Q.; Ma, H.; Cheng, M.; Du, X. Characteristic and countermeasures for geological hazards in Changdu Town, Tibet. Chin. J. Geol. Hazard Control. 2006, 4, 11–16. [Google Scholar]
- Dai, K.Z. Try to discuss the development strategy of Chaya County area economy. Theor. Platf. Tibet. Dev. 2011, 5, 53–55. [Google Scholar]
- Tian, Y.; Chen, L.; Huang, H.; Gao, B.; Zhang, J. Origin and stability of landslides in Chaya County, Lancang River Basin, Tibet. Geol. Bull. China 2021, 40, 2034–2042. [Google Scholar]
- Tatard, L.; Grasso, J.R.; Helmstetter, A.; Garambois, S. Characterization and comparison of landslide triggering in different tectonic and climatic settings. J. Geophys. Res. -Earth Surf. 2010, 115, F04040. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.L.; Cao, Y.; Li, Y. Evaluation of landslide susceptibility in Three Gorges Reservoir area based on integrated learning and radial basis function neural network coupling model. Geoscience 2020, 45, 1865–1876, (In Chinese with English Abstract). [Google Scholar]
- Gupta, S. Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin. Geology 1997, 25, 11. [Google Scholar] [CrossRef]
- Yu, X.; Guo, Z.; Chen, Y.; Du, W.; Wang, Z.; Bian, Q. River system reformed by the Eastern Kunlun Fault: Implications from geomorphological features in the eastern Kunlun Mountains, northern Tibetan Plateau. Geomorphology 2020, 350, 106876. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Usai, S.; Sansosti, E.; Tampellini, L.; Borgstrom, S.; Ricciardi, G.; Spaans, J.; Pepe, A.; Guarin, S.; Maddalena, V.; Berardino, P.; et al. MINERVA: An INSAR Monitoring System for Volcanic Hazard. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 4, pp. 2433–2435. [Google Scholar]
- Liao, M.; Wang, T. Time-Series InSAR Technique and Application; Science Press: Beijing, China, 2014. [Google Scholar]
- Luo, X.; Wang, C.; Long, Y.; Yi, Z. Analysis of the decadal kinematic characteristics of the Daguangbao landslide using multiplatform time series InSAR observations after the Wenchuan earthquake. J. Geophys. Res.-Solid Earth 2021, 125, e2019JB019325. [Google Scholar] [CrossRef]
- Notti, D.; Davalillo, J.C.; Herrera, G.; Mora, O. Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat. Hazards Earth Syst. Sci. 2010, 10, 1865–1875. [Google Scholar] [CrossRef]
- Cigna, F.; Bateson, L.B.; Jordan, C.J.; Dashwood, C. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sens. Environ. 2014, 152, 441–466. [Google Scholar] [CrossRef]
- Bekaert, D.P.S.; Handwerger, A.L.; Agram, P.; Kirschbaum, D.B. InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal. Remote Sens. Environ. 2020, 249, 111983. [Google Scholar] [CrossRef]
- Wang, X.; Guo, H.; Ding, Z.; Wang, L. Blind identification of active landslides in urban areas: A new set of comprehensive criteria. Environ. Sci. Pollut. Res. 2022. online. [Google Scholar] [CrossRef]
- Yalcinkaya, M.; Bayrak, T. Dynamic model for monitoring landslides with emphasis on underground water in Trabzon Province, Northeastern Turkey. J. Surv. Eng. 2003, 129, 115–124. [Google Scholar] [CrossRef]
- Kohv, M.; Talviste, P.; Hang, T.; Kalm, V.; Rosentau, A. Slope stability and landslides in proglacial varved clays of western Estonia. Geomorphology 2009, 106, 315–323. [Google Scholar] [CrossRef]
- Chen, T.Q.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Romstad, B.; Etzelmüller, B. Mean-curvature watersheds: A simple method for segmentation of a digital elevation model into terrain units. Geomorphology 2012, 139, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Miles, J. Tolerance and Variance Inflation Factor. In Encyclopedia of Statistics in Behavioral Science; Everitt, B.S., Howell, D.C., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2005; pp. 2055–2056. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Lang. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- De Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A tutorial on the cross-entropy method. Ann. Oper. Res. 2005, 134, 19–67. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Finlay, P.J.; Fell, R.; Maguire, P.K. The relationship between the probability of landslide occurrence and rainfall. Can. Geotech. J. 1997, 34, 811–824. [Google Scholar] [CrossRef]
- Wang, F. Mechanism of rapid landslides: Excess pore pressure generation caused by grain crushing. J. Changchun Univ. Sci. Technol. 2001, 31, 64–69, (In Chinese with English Abstract). [Google Scholar]
- Hafizi, M.K.; Abbassi, B.; Ashtari, T.A. Safety assessment of landslides by electricaltomography: A case study from Ardabil, northwestern Iran. J. Earth Space Phys. 2010, 36, 935. [Google Scholar]
- Yao, H.L.; Zheng, S.H.; Li, W.B.; Chen, S.Y. Parametric study on the effect of rain infiltration on stability of unsaturated expansive soil slope. Chin. J. Rock Mech. Eng. 2002, 21, 1034–1039, (In Chinese with English Abstract). [Google Scholar]
- Waseem, M.; Rehman, Z.U.; Sabetta, F.; Ahmad, I.; Ahmad, M.; Sabri, M.M.S. Evaluation of the Predictive Performance of Regional and Global Ground Motion Predictive Equations for Shallow Active Regions in Pakistan. Sustainability 2022, 14, 8152. [Google Scholar] [CrossRef]
Data Type | Data | Date | Resolution | Data Source |
---|---|---|---|---|
Image | Sentinel-1A SAR image | 23 April 2018–26 December 2019 | 5 m × 20 m | European Space Agency |
Google Earth image | 7 February 2015, 16 March 2015, 15 June 2021 | 0.38 m, 0.31 m | Google Earth | |
Setinel-2 image | 18 October 2019 | 10 m | European Space Agency | |
Mapbox image | 28 December 2019 | 0.51 m | SAS.Planet | |
Topography | SRTM DEM | 2000 | 30 m | USGS |
Geology | Geological map | — | 1:200,000 | National Geological Archives |
Geography | Road network | 2017 | — | National Catalogue Service for Geographic Information, Google Earth images |
Water system | 2017 | — | ||
Seismology | Earthquake inventory | April 2018–December 2019 | — | China Earthquake Administration China Earthquake Networks Center |
Meteorology | CHIRPS Satellite | 23 April 2018–26 December 2019 | 5 km | UCSB |
Factor Type | No. | Factor | Grade | |
---|---|---|---|---|
Geoenvironmental factor | Topographic | 1 | Slope aspect * | (1) Flat; (2) N; (3) NE; (4) E; (5) SE; (6) S; (7) SW; (8) W; (9) NW |
2 | Slope angle (°) * | Continuous | ||
3 | Curvature * | Continuous | ||
4 | Elevation (m) * | Continuous | ||
5 | Surface roughness | Continuous | ||
6 | Surface cutting depth (m) | Continuous | ||
7 | Relief amplitude (m) | Continuous | ||
8 | EVC | Continuous | ||
9 | TWI * | Continuous | ||
Geological | 10 | Stratum * | (1) Q; (2) Eg; (3) K1j; (4) J3x; (5) J2d; (6) J1w; (7) T3d; (8) T3a; (9) T3b; (10) T3j; (11) T2–3Z; (12) P3t; (13) C1k; (14) Pt3Y; (15) ηγJ; (16) βμP; (17) γδT3 | |
11 | Engineering rock group | (1) I; (2) II; (3) III-1; (4) III-2; (5) III-3; (6) III-4; (7) III-5; (8) III-6; (9) IV-1; (10) IV-2 | ||
Tectonic | 12 | Distance to fault (km) * | (1) ≤0.5; (2) 0.5–1; (3) 1–1.5; (4) 1.5–2; (5) 2–2.5; (6) 2.5–3; (7) 3–3.5; (8) >3.5 | |
Environmental | 13 | Distance to river (m) * | (1) ≤100; (2) 100–200; (3) 200–500; (4) 500–1000; (5) 1000–2000; (6) 2000–3500; (7) >3500 | |
14 | NDVI * | Continuous | ||
Triggering factor | Meteorological | 15 | Cumulative rainfall (mm) * | Continuous |
Seismic | 16 | PGA (g) | Continuous | |
17 | Kernel density * | Continuous | ||
Human engineering activity | 18 | Distance to road (m) * | (1) ≤100; (2) 100–200; (3) 200–500; (4) 500–1000; (5) 1000–2000; (6) 2000–3500; (7) >3500 | |
19 | Land use * | (1) Construction land; (2) Woodland and grassland; (3) Water area; (4) Unused land |
Indice | Very Low Susceptibility | Low Susceptibility | Medium Susceptibility | High Susceptibility | Very High Susceptibility |
---|---|---|---|---|---|
Area (km2) | 987.63 | 1003.59 | 595.07 | 442.49 | 280.73 |
Area proportion (%) | 29.84 | 30.33 | 17.98 | 13.37 | 8.48 |
Landslide number | 0 | 1 | 5 | 15 | 54 |
Landslide number proportion (%) | 0 | 1.33 | 6.67 | 20 | 72 |
Accuracy (%) | TPR (%) | F1-Score | Kappa Coefficient | RMSE | MAE | AUC |
---|---|---|---|---|---|---|
97.98 | 98.77 | 0.98 | 0.96 | 0.155 | 0.09 | 0.996 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, X.; Bi, J.; Zhang, X.; Deng, S.; Liu, Z.; Wang, L.; Guo, H. Landslide Susceptibility Evaluation Based on Potential Disaster Identification and Ensemble Learning. Int. J. Environ. Res. Public Health 2022, 19, 14241. https://doi.org/10.3390/ijerph192114241
Wang X, Zhang X, Bi J, Zhang X, Deng S, Liu Z, Wang L, Guo H. Landslide Susceptibility Evaluation Based on Potential Disaster Identification and Ensemble Learning. International Journal of Environmental Research and Public Health. 2022; 19(21):14241. https://doi.org/10.3390/ijerph192114241
Chicago/Turabian StyleWang, Xianmin, Xinlong Zhang, Jia Bi, Xudong Zhang, Shiqiang Deng, Zhiwei Liu, Lizhe Wang, and Haixiang Guo. 2022. "Landslide Susceptibility Evaluation Based on Potential Disaster Identification and Ensemble Learning" International Journal of Environmental Research and Public Health 19, no. 21: 14241. https://doi.org/10.3390/ijerph192114241
APA StyleWang, X., Zhang, X., Bi, J., Zhang, X., Deng, S., Liu, Z., Wang, L., & Guo, H. (2022). Landslide Susceptibility Evaluation Based on Potential Disaster Identification and Ensemble Learning. International Journal of Environmental Research and Public Health, 19(21), 14241. https://doi.org/10.3390/ijerph192114241