Can Digital Finance Promote Peak Carbon Dioxide Emissions? Evidence from China
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Theoretical Analysis of Reducing Carbon Emissions by Digital Finance
2.2. Theoretical Analysis of Digital Finance for Energy Structural Transformation
2.3. Theoretical Analysis of Digital Finance Promoting Green Technological Progress
3. Model Setting, Variable Selection, and Data Source
3.1. Accounting of Carbon Dioxide Emissions
3.1.1. Accounting Method
3.1.2. Emission Factors
3.1.3. Carbon Content
3.2. Variables Selection
3.2.1. Explained Variable
3.2.2. Core Explanatory Variable
3.2.3. Mediating Variable
= c0 + cllnLit + cklnKit + celnEit + ctt + clklnLitlnKit + clelnLitlnEit + ckelnKitlnEit + clkelnLitlnKitlnEit + ctltlnLit + ctktlnKi +
ctetlnEit + ct2t2 + cl2ln2Lit + ck2ln2Kit + ce2ln2Eit + ζt
3.2.4. Covariables
3.3. Econometric Model Setting
3.4. Data Sources
4. Empirical Analysis Results
4.1. Baseline Regression
4.2. Endogenous Tests
4.3. Robustness Tests
4.4. Mediating Mechanisms Tests
5. Further Discussion
5.1. Sub-Hierarchical Indicators Test
5.2. Sub-Threshold Heterogeneity Test
6. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cong, J.; Pang, T.; Peng, H. Optimal Strategies for Capital Constrained Low-Carbon Supply Chains under Yield Uncertainty. J. Clean. Prod. 2020, 25, 120339. [Google Scholar] [CrossRef]
- Le Quéré, C.; Korsbakken, J.I.; Wilson, C.; Tosun, J.; Andrew, R.; Andres, R.J. Drivers of declining CO2 emissions in 18 developed economies. Nat. Clim. Chang. 2019, 9, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Cox, P.M.; Flato, G.M.; Gleckler, P.J.; Abramowitz, G.; Caldwell, P. Taking climate model evaluation to the next level. Nat. Clim. Chang. 2019, 9, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change. Special Report on Global Warming of 1.5 °C. Available online: https://www.ipcc.ch/sr15/ (accessed on 28 August 2021).
- Kemp, L. Better out than in. Nat. Clim. Chang. 2017, 7, 458–460. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change (UNFCCC). Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions. 2015. Available online: https://unfccc.int (accessed on 29 August 2021).
- Yu, M.L.; Tsai, F.S.; Jin, H.; Zhang, H.J. Digital finance and renewable energy consumption: Evidence from China. Financ. Innov. 2022, 8, 58. [Google Scholar] [CrossRef]
- Aziz, A.; Naima, U. Rethinking digital financial inclusion: Evidence from Bangladesh. Technol. Soc. 2021, 64, 101509. [Google Scholar] [CrossRef]
- Shahbaz, M.; Li, K.; Dong, X.; Dong, K. How financial inclusion affects the collaborative reduction of pollutant and carbon emissions: The case of China. Energy Econ. 2022, 107, 105847. [Google Scholar] [CrossRef]
- Wen, H.; Yue, J.; Li, J.; Xiu, X.; Zhong, S. Can digital finance reduce industrial pollution? New evidence from 260 cities in China. PLoS ONE 2022, 17, e0266564. [Google Scholar] [CrossRef]
- Wang, H.; Guo, J. Impacts of digital inclusive finance on CO2 emissions from a spatial perspective: Evidence from 272 cities in China. J. Clean. Prod. 2022, 355, 131618. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Y.; Qu, G. The Impact of Digital Economy on the Efficiency of Green Financial Investment in China’s Provinces. Int. J. Environ. Res. Public Health 2022, 19, 8884. [Google Scholar] [CrossRef]
- Gao, Q.; Chen, C.; Sun, G.; Li, J. The Impact of Digital Inclusive Finance on Agricultural Green Total Factor Productivity: Evidence from China. Front. Ecol. Evol. 2022, 10, 905644. [Google Scholar] [CrossRef]
- Xie, C.; Liu, C. The Nexus between Digital Finance and High-Quality Development of SMEs: Evidence from China. Sustainability 2022, 14, 7410. [Google Scholar] [CrossRef]
- Elheddad, M.; Benjasak, C.; Deljavan, R.; Alharthi, M.; Almabrok, J.M. The effect of the Fourth Industrial Revolution on the environment: The relationship between electronic finance and pollution in OECD countries. Technol. Forecast. Soc. Chang. 2021, 163, 120485. [Google Scholar] [CrossRef]
- Guo, F.; Wang, J.Y.; Wang, F.; Kong, T.; Zhang, X.; Cheng, Z.Y. Measuring the Development of Digital financial inclusion in China: Index Compilation and Spatial Characteristics. China Econ. Q. 2020, 19, 1401–1418. [Google Scholar] [CrossRef]
- Asongu, A.S.; Biekpe, N.; Cassimon, D. On the diffusion of mobile phone innovations for financial inclusion. Technol. Soc. 2021, 65, 101542. [Google Scholar] [CrossRef]
- Liu, G.; Huang, Y.Y.; Huang, Z.H. Determinants and Mechanisms of Digital Financial Inclusion Development: Based on Urban-Rural Differences. Agronomy 2021, 11, 1833. [Google Scholar] [CrossRef]
- Tay, L.; Tai, H.; Tan, G. Digital financial inclusion: A gateway to sustainable development. Heliyon 2022, 8, e09766. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Ren, X.H.; Wen, F.H. Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach. Energy Econ. 2022, 109, 105966. [Google Scholar] [CrossRef]
- Dai, D.; Fan, Y.; Wang, G.; Xie, J. Digital Economy, R & D Investment, and Regional Green Innovation—Analysis Based on Provincial Panel Data in China. Sustainability 2022, 14, 6508. [Google Scholar] [CrossRef]
- Kong, T.; Sun, L.; Sun, G.; Song, Y. Effects of Digital Finance on Green Innovation considering Information Asymmetry: An Empirical Study Based on Chinese Listed Firms. Emerg. Mark. Financ. Trade 2022, 6, 1–13. [Google Scholar] [CrossRef]
- Duarte, J.; Siegel, S.; Young, L. Trust and Credit: The Role of Appearance in Peer-to-Peer Lending. Rev. Financ. Stud. 2012, 25, 2455–2483. [Google Scholar] [CrossRef]
- Luo, S. Digital Finance Development and the Digital Transformation of Enterprises: Based on the Perspective of Financial constraint and Innovation Drive. J. Math. 2022, 4, 1607020. [Google Scholar] [CrossRef]
- Moenninghoff, S.C.; Wieandt, A. The Future of Peer-to-Peer Finance; Social Science Electronic Publishing: New York, NY, USA, 2013; Volume 5, pp. 466–487. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2439088&rec=1&srcabs=1352352&alg=1&pos=2 (accessed on 25 November 2020).
- Feng, S.L.; Zhang, R.; Li, G.X. Environmental decentralization, digital finance and green technology innovation. Struct. Chang. Econ. Dyn. 2022, 61, 70–83. [Google Scholar] [CrossRef]
- Tobelmann, D.; Wendler, T. The impact of environmental innovation on carbon dioxide emissions. J. Clean. Prod. 2020, 244, 118787. [Google Scholar] [CrossRef]
- Svirydzenka, K. Introducing a New Broad-Based Index of Financial Development; IMF Working Papers: Washington, DC, USA, 2016; Volume 16, pp. 1–43. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.M.; Zhang, X. Spatial Effects of Haze Pollution and the Impact of Economic and Energy Structure in China. China Ind. Econ. 2014, 4, 19–31. [Google Scholar] [CrossRef]
- Battese, G.E.; O’Donnell, C.J. A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating under Different Technologies. J. Product. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, G.Y.; Zhang, J.P. Estimation of China’s Provincial Capital Stock: 1952~2000. Econ. Res. J. 2004, 10, 35–44. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2004&filename=JJYJ200410004&uniplatform=NZKPT&v=f8c3dhGN04_REI3VIjzuOEIer8fMdjTNPq340fZQSg-SaAOyGfG1wqF1VGLQGM3J (accessed on 1 September 2021).
- Cao, S.; Nie, L.; Sun, H.; Sun, W.; Taghizadeh-Hesary, F. Digital finance, green technological innovation and energy-environmental performance: Evidence from China’s regional economies. J. Clean. Prod. 2021, 327, 129458. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Wang, D.; Zhou, J. Digital economy and carbon emission performance: Evidence at China’s city level. Energy Policy 2022, 165, 112927. [Google Scholar] [CrossRef]
- Bullock, J.G.; Green, D.P.; Ha, S.E. Yes, But What’s the Mechanism? (Don’t Expect an Easy Answer). J. Personal. Soc. Psychol. 2010, 98, 550–558. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, T.; Wang, C.; Wan, G.H. Digital Financial Development and Household Consumption Growth: Theory and China’s Practice. Manag. World 2020, 36, 48–62. [Google Scholar] [CrossRef]
- Liu, T.; Xu, Z.Y.; Zhang, K.L. The Impact of Digital Finance on the Synergy of Economic Development and Ecological Environment. Mod. Financ. Econ. 2022, 2, 21–36. [Google Scholar] [CrossRef]
- Song, M.; Zhou, P.; Si, H.T. Financial Technology and Enterprise Total Factor Productivity—Perspective of “Enabling” and Credit Rationing. China Ind. Econ. 2021, 4, 138–155. [Google Scholar] [CrossRef]
- Qi, S.Z.; Zhou, C.B.; Li, K.; Tang, S.Y. The impact of a carbon trading pilot policy on the low-carbon international competitiveness of industry in China: An empirical analysis based on a DDD model. J. Clean. Prod. 2021, 281, 125361. [Google Scholar] [CrossRef]
Matrix | Provincial Adjacency | Provincial Capital Distance | Spatial Geographic Reverse | |||
---|---|---|---|---|---|---|
Variable | CO | DFI | CO | DFI | CO | DFI |
2011 | 0.152 ** (1.720) | 0.473 *** (4.130) | 0.1444 ** (1.917) | 0.437 *** (4.008) | 0.069 *** (3.288) | 0.089 *** (3.818) |
2012 | 0.135 * (1.560) | 0.465 *** (4.111) | 0.138 ** (1.853) | 0.401 *** (4.619) | 0.066 *** (3.180) | 0.104 *** (4.328) |
2013 | 0.133 * (1.536) | 0.439 *** (3.926) | 0.146 ** (1.935) | 0.378 *** (4.404) | 0.065 *** (3.128) | 0.098 *** (4.162) |
2014 | 0.125 * (1.465) | 0.429 *** (3.824) | 0.145 ** (1.926) | 0.380 *** (4.432) | 0.065 *** (3.140) | 0.095 *** (4.060) |
2015 | 0.103 * (1.254) | 0.399 *** (3.596) | 0.133 ** (1.785) | 0.326 *** (3.856) | 0.063 *** (3.041) | 0.071 *** (3.320) |
2016 | 0.133 * (1.528) | 0.419 *** (3.773) | 0.149 ** (1.925) | 0.365 *** (4.283) | 0.065 *** (3.120) | 0.096 *** (4.117) |
2017 | 0.112 * (1.341) | 0.484 *** (4.320) | 0.146 ** (1.928) | 0.374 *** (1.386) | 0.060 *** (2.960) | 0.090 *** (3.927) |
2018 | 0.1388 * (1.573) | 0.538 *** (4.727) | 0.149 ** (1.946) | 0.396 *** (4.580) | 0.057 ** (2.867) | 0.096 *** (4.090) |
2019 | 0.120 * (0.079) | 0.536 *** (4.702) | 0.134 ** (1.798) | 0.407 *** (4.684) | 0.055 ** (2.805) | 0.099 ** (4.163) |
Variable | Observations | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|---|
CO | 270 | 5.535 | 0.722 | 3.488 | 6.798 |
DFI | 270 | 203.358 | 91.568 | 18.33 | 410.281 |
PGDP | 270 | 9.802 | 0.851 | 7.421 | 11.587 |
POP | 270 | 8.204 | 0.735 | 6.342 | 9.352 |
FEP | 270 | 4.782 | 0.620 | 3.055 | 6.617 |
IX | 270 | 8.023 | 1.549 | 3.627 | 11.181 |
IS | 270 | 2.366 | 0.129 | 2.166 | 2.832 |
UG | 270 | 39.367 | 3.574 | 27.9 | 49.1 |
ES | 270 | 0.538 | 0.210 | 0.196 | 1.161 |
GP | 270 | 0.374 | 0.499 | 0.002 | 3.08 |
TP | 270 | 74.922 | 0.113 | 74.689 | 75.127 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Model | SAR | SDM Main | SDM Spatial | SAR | SDM Main | SDM Spatial |
DFI | −0.0024 *** | −0.0031 ** | 0.0077 | −0.0029 *** | −0.0026 ** | 0.0059 |
(0.0008) | (0.0013) | (0.0077) | (0.0010) | (0.0013) | (0.0109) | |
PGDP | −0.0397 | −0.0329 | 0.3667 | |||
(0.0935) | (0.0909) | (0.4662) | ||||
POP | 2.3623 * | 2.4223 * | −5.8118 | |||
(1.3162) | (1.4674) | (5.1534) | ||||
FEP | 0.0043 | 0.0080 | −0.0179 | |||
(0.0089) | (0.0081) | (0.0615) | ||||
IX | −0.0487 | −0.0478 | 0.0092 | |||
(0.0372) | (0.0470) | (0.2779) | ||||
IS | −0.2483 | −0.2173 | 2.9673 | |||
(0.3227) | (0.3173) | (2.0864) | ||||
UG | −0.0091 | −0.0065 | 0.0675 | |||
(0.0070) | (0.0068) | (0.0447) | ||||
WCO | −0.5589 * | −0.5346 *** | −0.4258 * | −0.2676 * | ||
(0.3262) | (0.1898) | (0.2493) | (0.1513) | |||
Province Effect | Fixed | Fixed | Fixed | Fixed | ||
Time Effect | Fixed | Fixed | Fixed | Fixed | ||
R-squared | 0.0603 | 0.0768 | 0.5770 | 0.5295 |
Panel A | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Model | SAR | SDM Main | SDM Spatial | SAR | SDM Main | SDM Spatial |
DIS | 0.0580 *** | 0.0433 * | 0.1818 * | |||
(0.0216) | (0.0233) | (0.1091) | ||||
TS | 0.1239 *** | 0.0730 *** | 0.5673 *** | |||
(0.0437) | (0.0279) | (0.1721) | ||||
WCO | 0.4063 ** | 0.3746 *** (0.1280) | 0.4426 *** | 0.3483 *** (0.1197) | ||
(0.1833) | (0.1640) | |||||
R-squared | 0.2909 | 0.7755 | 0.9071 | 0.8326 | ||
Panel B | (1) | (2) | (3) | (4) | (5) | (6) |
Instrumental variable | DIS | TS | ||||
model | SAR | SDM Main | SDM Spatial | SAR | SDM Main | SDM Spatial |
DFI | −0.0019 *** | −0.0018 ** | −0.0038 | −0.0099 ** | −0.0099 ** | 0.0309 |
(0.0005) | (0.0007) | (0.0041) | (0.0040) | (0.0046) | (0.0391) | |
WCO | −0.5053 (0.3161) | −0.3075 (0.3007) | −0.4422 * (0.2594) | −0.2495 (0.1820) | ||
R-squared | 0.5784 | 0.4990 | 0.5809 | 0.5108 | ||
Panel C | (1) | (2) | (3) | (4) | (5) | (6) |
Model | SAR | SDM Main | SDM Spatial | SAR | SDM Main | SDM Spatial |
CO | 0.6125 *** | 0.6491 *** | −1.9753 *** | |||
(0.0819) | (0.0820) | (0.7578) | ||||
DFI | −0.0050 ** | −0.0048 ** | 0.0033 | −0.0032 *** | −0.0030 ** | −0.0051 |
(0.0023) | (0.0024) | (0.0117) | (0.0012) | (0.0014) | (0.0082) | |
WCO | 0.6891 *** | 0.4313 *** (0.1592) | 0.7341 *** | 0.5573 *** (0.1343) | ||
(0.1008) | (0.0834) | |||||
R-squared | 0.5089 | 0.3431 | 0.6901 | 0.3844 | ||
Covariables | Yes | Yes | Yes | Yes | Yes | Yes |
Province effect | Fixed | Fixed | Fixed | Fixed | ||
Time effect | Fixed | Fixed | Fixed | Fixed |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Model | SAR-DID | SDM Main | SDM Spatial | SAR-DDD | SDM Main | SDM Spatial |
DDD | −0.0707 * | −0.0902 ** | 0.0616 | |||
(0.0403) | (0.0422) | (0.1085) | ||||
DID | −0.0889 ** | −0.0781 ** | −0.1898 | −0.0304 | −0.0177 | −0.1092 |
(0.0372) | (0.0360) | (0.3404) | (0.0293) | (0.0297) | (0.0833) | |
POST × SECT | 0.0388 | 0.0571 * | −0.0143 | |||
(0.0296) | (0.0304) | (0.0772) | ||||
TREAT × SECT | −0.3116 | −0.0425 | −1.1986 ** | |||
(0.2941) | (0.2271) | (0.5845) | ||||
TREAT | 0.2163 | 0.1073 | 0.2824 | |||
(0.2073) | (0.1613) | (0.4629) | ||||
POST | 0.0197 | 0.0124 | 0.0182 | |||
(0.0273) | (0.0546) | (0.0000) | ||||
SECT | 0.6393 *** | 0.5842 *** | 1.7031 *** | |||
(0.2030) | (0.1454) | (0.3819) | ||||
Covariables | Yes | Yes | Yes | Yes | Yes | Yes |
WCO | −0.4077 * | −0.2938 * (0.1750) | 0.1954 | 0.2050 * (0.1113) | ||
(0.2298) | (0.1842) | |||||
Constant | −1.3923 | 3.4251 * (2.0717) | ||||
(1.4010) | ||||||
Province Effect | Fixed | Fixed | Random | Random | ||
Time Effect | Fixed | Fixed | Random | Random | ||
R-squared | 0.5826 | 0.5302 | 0.7232 | 0.8673 |
Panel A | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Model | Pooled OLS | FE | DIF-GMM | SYS-GMM | SEM | SAC |
CO | 0.1959 | 0.1959 | ||||
(0.3806) | (0.2575) | |||||
DFI | −0.0022 ** | −0.0029 *** | −0.0047 ** | −0.0047 ** | −0.0029 *** | −0.0029 *** |
(0.0008) | (0.0010) | (0.0021) | (0.0020) | (0.0010) | (0.0009) | |
WCO | −0.4108 * | −0.4108 | ||||
(0.2425) | (0.3568) | |||||
lambda | −0.0468 | −0.0468 | ||||
(0.3379) | (0.2753) | |||||
Constant | −1.6786 | −12.1009 | −25.6552 ** | −26.1889 *** | ||
(3.0739) | (10.4182) | (12.9499) | (8.6343) | |||
R-squared | 0.7041 | 0.5823 | None | None | 0.5767 | 0.5767 |
Panel B | (1) | (2) | (3) | (4) | (5) | (6) |
Weighted Matrix | Provincial Adjacency Matrix | Provincial Capital Distance Matrix | ||||
Model | SAR | SDM Main | SDM Spatial | SAR | SDM Main | SDM Spatial |
DFI | −0.0030 *** | −0.0034 *** | 0.0032 | −0.0030 *** | −0.0023 ** | 0.0024 |
(0.0009) | (0.0013) | (0.0021) | (0.0009) | (0.0011) | (0.0022) | |
WCO | 0.3373 *** | 0.3539 *** | 0.1263 | 0.1579 | ||
(0.1132) | (0.0963) | (0.0992) | (0.1135) | |||
R-squared | 0.4647 | 0.5424 | 0.5485 | 0.5830 | ||
Panel C | (1) | (2) | (3) | (4) | (5) | (6) |
Explained Variable | Raw value of CO2 emissions | Data from CEADs | ||||
Model | SAR | SDM Main | SDM Spatial | SAR | SDM Main | SDM Spatial |
DFI | −0.0009 ** | −0.0013 ** | 0.0037 | −0.0036 *** | −0.0034 *** | 0.0020 |
(0.0004) | (0.0006) | (0.0034) | (0.0011) | (0.0010) | (0.0106) | |
WCO | −0.7085 ** | −0.6534 ** | −0.1867 | −0.1962 | ||
(0.3030) | (0.2993) | (0.2184) | (0.1601) | |||
R-squared | 0.4078 | 0.4135 | 0.5865 | 0.6330 | ||
Covariables | Yes | Yes | Yes | Yes | Yes | Yes |
Province Effect | Fixed | Fixed | Fixed | Fixed | ||
Time Effect | Fixed | Fixed | Fixed | Fixed |
Panel A | (1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|---|
Explained Variable | ES | CO | |||||
Model | SAR | SDM Main | SDM Spatial | SAR | SDM Main | SDM Spatial | |
DFI | −0.0025 *** | −0.0015 * | −0.0132 *** | ||||
(0.0009) | (0.0009) | (0.0049) | |||||
ES | 0.3603 *** | 0.3437 *** | 0.3233 | ||||
(0.0745) | (0.0738) | (0.5534) | |||||
WES | −0.7045 *** | −0.7860 ** | |||||
(0.2383) | (0.3141) | ||||||
WCO | −0.5166 | −0.3882 | |||||
(0.3150) | (0.3122) | ||||||
R-squared | 0.4864 | 0.4507 | 0.6085 | 0.5010 | |||
Panel B | (1) | (2) | (3) | (4) | (5) | (6) | |
Explained Variable | GP | CO | |||||
Model | SAR | SDM Main | SDM Spatial | SAR | SDM Main | SDM Spatial | |
DFI | 0.0138 *** | 0.0102 ** | 0.0225 | ||||
(0.0040) | (0.0041) | (0.0280) | |||||
GP | −0.0817 *** | −0.0746 *** | 0.0861 | ||||
(0.0222) | (0.0252) | (0.1564) | |||||
WGP | 0.2640 | 0.0626 (0.2498) | |||||
(0.2035) | |||||||
WCO | −0.4386 | −0.2903 (0.3026) | |||||
(0.3097) | |||||||
R-squared | 0.3027 | 0.2460 | 0.5828 | 0.5302 | |||
Panel C | (1) | (2) | (3) | (4) | (5) | (6) | |
Explained Variable | TP | CO | |||||
Model | SAR | SDM Main | SDM Spatial | SAR | SDM Main | SDM Spatial | |
DFI | 0.0005 ** | 0.0004 ** | −0.0038 *** | ||||
(0.0002) | (0.0002) | (0.0011) | |||||
TP | −4.7557 *** | −4.7411 *** | −0.6513 | ||||
(0.7215) | (0.7345) | (5.5429) | |||||
WTP | −0.6107 | −0.7381 * | |||||
(0.4335) | (0.4106) | ||||||
WCO | −0.3464 | −0.2387 | |||||
(0.2969) | (0.2905) | ||||||
R-squared | 0.7825 | 0.9063 | 0.5742 | 0.4343 | |||
Covariables | Yes | Yes | Yes | Yes | Yes | Yes | |
Province Effect | Fixed | Fixed | Fixed | Fixed | |||
Time Effect | Fixed | Fixed | Fixed | Fixed |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
USE | −0.0019 *** | |||||
(0.0006) | ||||||
COV | 0.0033 | |||||
(0.0028) | ||||||
DIG | −0.0009 *** | |||||
(0.0003) | ||||||
PAY | −0.0013 *** | |||||
(0.0005) | ||||||
INS | −0.0006 *** | |||||
(0.0002) | ||||||
CRE | −0.0147 *** | |||||
(0.0033) | ||||||
Covariables | Yes | Yes | Yes | Yes | Yes | Covariables |
WCO | −0.4365 * | −0.5233 ** | −0.4888 ** | −0.4494 | −0.4626 * | 0.2148 |
(0.2506) | (0.2391) | (0.2357) | (0.3116) | (0.2633) | (0.2577) | |
Province Effect | Fixed | Fixed | Fixed | Fixed | Fixed | Fixed |
Time Effect | Fixed | Fixed | Fixed | Fixed | Fixed | Fixed |
R-squared | 0.5842 | 0.5779 | 0.5833 | 0.5862 | 0.5830 | 0.3281 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Threshold Variable | DFI | FR | GDI | North | GFI |
Threshold Value | 237.53 | 0.007 | 0.491 | 0.5 | 0.103; 0.149 |
DFI low | −0.0030 *** | −0.0026 *** | −0.0025 ** | −0.0049 *** | −0.0011 |
(0.0009) | (0.0010) | (0.0010) | (0.0016) | (0.0014) | |
DFI middle | −0.0032 ** | ||||
(0.0014) | |||||
DFI high | −0.0033 *** | −0.0030 *** | −0.0027 *** | −0.0005 | −0.0037 *** |
(0.0010) | (0.0009) | (0.0010) | (0.0015) | (0.0013) | |
Covariables | Yes | Yes | Yes | Yes | Yes |
WCO | 11.9629 ** | 12.9309 ** | 12.1240 ** | 12.8181 ** | −6.5432 *** |
(5.5214) | (5.4806) | (5.5584) | (5.5991) | (0.6023) | |
Province Effect | Fixed | Fixed | Fixed | Fixed | Fixed |
Time Effect | Fixed | Fixed | Fixed | Fixed | Fixed |
R-squared | 0.6144 | 0.6028 | 0.6060 | 0.6063 | 0.4018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Guo, J.; Tian, H.; Hong, Y. Can Digital Finance Promote Peak Carbon Dioxide Emissions? Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 14276. https://doi.org/10.3390/ijerph192114276
Wu M, Guo J, Tian H, Hong Y. Can Digital Finance Promote Peak Carbon Dioxide Emissions? Evidence from China. International Journal of Environmental Research and Public Health. 2022; 19(21):14276. https://doi.org/10.3390/ijerph192114276
Chicago/Turabian StyleWu, Mao, Jiayi Guo, Hongzhi Tian, and Yuanyuan Hong. 2022. "Can Digital Finance Promote Peak Carbon Dioxide Emissions? Evidence from China" International Journal of Environmental Research and Public Health 19, no. 21: 14276. https://doi.org/10.3390/ijerph192114276
APA StyleWu, M., Guo, J., Tian, H., & Hong, Y. (2022). Can Digital Finance Promote Peak Carbon Dioxide Emissions? Evidence from China. International Journal of Environmental Research and Public Health, 19(21), 14276. https://doi.org/10.3390/ijerph192114276