Impacts of Cross-Sectoral Climate Policy on Forest Carbon Sinks and Their Spatial Spillover: Evidence from Chinese Provincial Panel Data
Abstract
:1. Introduction
2. Literature Review and Research Hypothesis
2.1. Impact of Cross-Sectoral Climate Policies on Forest Carbon Sinks
2.2. Spatial Spillover Effects of Cross-Sectoral Climate Policies on Forest Carbon Sinks
2.3. Moderating Effect of Forest Resource Conservation and Utilization
3. Materials and Methods
3.1. Variable Selection and Data Sources
3.1.1. Measurement of Forest Carbon Sinks
3.1.2. Quantification of Cross-Sectoral Climate Policies
3.1.3. Selection of Control and Moderating Variables
3.1.4. Data Sources and Description
3.2. Model Specification
3.2.1. Benchmark Regression Model
3.2.2. Spatial Panel Model
3.2.3. Moderating Effects of Forest Resource Protection and Utilization
4. Empirical Results
4.1. Spatial Correlation Test
4.1.1. Global Autocorrelation Test
4.1.2. Local Autocorrelation Test
4.2. Impacts of Cross-Sectoral Climate Policies on Forest Carbon Sinks
4.2.1. Benchmark Regression Results
4.2.2. Regression Results for the Spatial Panel Model
4.2.3. Impact of Forest Resource Conservation and Utilization
4.3. Robustness Test
4.3.1. Replacement of Dependent Variable
4.3.2. Replacing the Weight Matrix
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walpole, S.C.; Rasanathan, K.; Campbell-Lendrum, D. Natural and unnatural synergies: Climate change policy and health equity. Bull. World Health Organ. 2009, 87, 799–801. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.V.; Kørnøv, L.; Wejs, A. Mind the gap in SEA: An institutional perspective on why assessment of synergies amongst climate change mitigation, adaptation and other policy areas are missing. Environ. Impact Assess. Rev. 2012, 33, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Wang, B.; Chen, J. Forest carbon sink in China: Linked drivers and long short-term memory network-based prediction. J. Clean. Prod. 2022, 359, 132085. [Google Scholar] [CrossRef]
- Lövbrand, E.; Stripple, J. The climate as political space: On the territorialisation of the global carbon cycle. Rev. Int. Stud. 2006, 32, 217–235. [Google Scholar] [CrossRef]
- Lin, B.; Ge, J. Does institutional freedom matter for global forest carbon sinks in the face of economic development disparity? Chin. Econ. Rev. 2021, 65, 101563. [Google Scholar] [CrossRef]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; Jackson, R.B.; et al. Global carbon budget 2017. Earth Syst. Sci. 2018, 10, 405–448. [Google Scholar] [CrossRef] [Green Version]
- Pittel, K.; Rübbelke, D.T.G. Climate policy and ancillary benefits: A survey and integration into the modelling of international negotiations on climate change. Ecol. Econ. 2008, 68, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Storch, S.; Winkel, G. Coupling climate change and forest policy: A multiple streams analysis of two German case studies. For. Policy Econ. 2013, 36, 14–26. [Google Scholar] [CrossRef]
- Azadi, H.; Barati, A.A.; Nazari Nooghabi, S.; Scheffran, J. Climate-related disasters and agricultural land conversion: Towards prevention policies. Clim. Dev. 2022, 1–15. [Google Scholar] [CrossRef]
- Zhang, C.; Ju, W.; Chen, J.; Wang, X.; Yang, L.; Zheng, G. Disturbance-induced reduction of biomass carbon sinks of China’s forests in recent years. Environ. Res. Lett. 2015, 10, 114021. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, S.; Yang, F.; Fu, H. A Research Review on Poverty Alleviation Based on Forest Carbon Sink Projects. Issues Agric. Econ. 2017, 38, 102–109. (In Chinese) [Google Scholar]
- Du, Z.; Su, T.; Ge, J.; Wang, X. Towards the Carbon Neutrality: The Role of Carbon Sink and Its Spatial Spillover Effects. Econ. Res. J. 2015, 56, 187–202. (In Chinese) [Google Scholar]
- Pilli, R.; Alkama, R.; Cescatti, A.; Kurz, W.A.; Grassi, G. The European forest Carbon budget under future climate conditions and current management practices. Biogeosciences 2022, 19, 3263–3284. [Google Scholar] [CrossRef]
- Michetti, M.; Rosa, R. Afforestation and timber management compliance strategies in climate policy. A computable general equilibrium analysis. Ecol. Econ. 2012, 77, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Duque, A.; Peña, M.A.; Cuesta, F.; González-Caro, S.; Kennedy, P.; Phillips, O.L.; Calderón-Loor, M.; Blundo, C.; Carilla, J.; Cayola, L.; et al. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nat. Commun. 2021, 12, 2138. [Google Scholar] [CrossRef]
- Johnston, C.; Buongiorno, J.; Nepal, P.; Prestemon, J.P. From source to sink: Past changes and model projections of carbon sequestration in the global forest sector. J. For. Econ. 2019, 34, 47–72. [Google Scholar] [CrossRef]
- Daigneault, A.; Favero, A. Global forest management, carbon sequestration and bioenergy supply under alternative shared socioeconomic pathways. Land Use Policy 2021, 103, 105302. [Google Scholar] [CrossRef]
- Li, D. The synergistic evolution and effects of the science and technology innovation policies in China from 2006 to 2018. Sci. Res. Manag. 2022, 43, 1–8. (In Chinese) [Google Scholar]
- van den Bergh, J.; Castro, J.; Drews, S.; Exadaktylos, F.; Foramitti, J.; Klein, F.; Konc, T.; Savin, I. Designing an effective climate-policy mix: Accounting for instrument synergy. Clim. Policy 2021, 21, 745–764. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, Q.R.; Wang, R.; Qiang, W.L.; Zhang, J.X. Spatiotemporal patterns and factors influencing county carbon sinks in China. Acta Ecol. Sin. 2020, 40, 8988–8998. (In Chinese) [Google Scholar]
- van Vuuren, D.; Fengqi, Z.; De Vries, B.; Kejun, J.; Graveland, C.; Yun, L. Energy and emission scenarios for China in the 21st century—Exploration of baseline development and mitigation options. Energy Policy 2003, 31, 369–387. [Google Scholar] [CrossRef] [Green Version]
- Popp, D. Innovation and climate policy. Annu. Rev. Resour. Econ. 2010, 2, 275–298. [Google Scholar] [CrossRef]
- Sagar, A.D. Alleviating energy poverty for the world’s poor. Energy Policy 2005, 33, 1367–1372. [Google Scholar] [CrossRef]
- Berry, H.L.; Bowen, K.; Kjellstrom, T. Climate change and mental health: A causal pathways framework. Int. J. Public Health 2010, 55, 123–132. [Google Scholar] [CrossRef]
- Chao, Q.C. Evolution of Key Factors in Climate Policies and Synergies of Multi-Objectives. Adv. Clim. Chang. Res. 2009, 5, 151–155. (In Chinese) [Google Scholar]
- Yang, S.H.; Wei, S.D. An Analysis of Economic and Environmental Effects of Climate Policies: Comparisons among Carbon Tax, Emission Quota and Emission Trading Policies. J. Syst. Manag. 2015, 24, 864–873. (In Chinese) [Google Scholar]
- Zheng, S.M.; He, Y.J.; Zou, K. Climate policy synergy: Mechanism and effect. Chin. Popul. Resour. Environ. 2021, 31, 1–12. (In Chinese) [Google Scholar]
- Leong, C.; Howlett, M.; Lai, T. Governing complex environmental policy mixes through institutional bricolage: Lessons from the water-forestry-energy-climate nexus. J. Environ. Policy Plann. 2022, 24, 540–552. [Google Scholar] [CrossRef]
- Pardoe, J.; Conway, D.; Namaganda, E.; Vincent, K.; Dougill, A.J.; Kashaigili, J.J. Climate change and the water–energy–food nexus: Insights from policy and practice in Tanzania. Clim. Policy 2018, 18, 863–877. [Google Scholar] [CrossRef] [Green Version]
- Meijers, E.; Stead, D. Policy Integration: What Does It Mean and How Can It Be Achieved? A Multi-Disciplinary Review. In Proceedings of the Berlin Conference on the Human Dimensions of Global Environmental Change: Greening of Policies-Interlinkages and Policy Integration, Berlin, Germany, 31 December 2004. [Google Scholar]
- Keenan, R.J. Climate change impacts and adaptation in forest management: A review. Ann. For. Sci. 2015, 72, 145–167. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.F.; Luo, X.F.; Li, Z.L.; Wu, X.R. Spatial Spillover Effects and Influencing Factors of Forest Carbon Sink in China—Spatial Econometric Analysis Based on Forest Resources Inventory in 31 Provinces of the Mainland of China. J. Nat. Resour. 2017, 32, 1744–1754. (In Chinese) [Google Scholar]
- Bouma, J.A.; Verbraak, M.; Dietz, F.; Brouwer, R. Policy mix: Mess or merit? J. Environ. Econ. Policy 2018, 8, 1–16. [Google Scholar] [CrossRef]
- Zhang, N.; Liang, Z. The experience of the coordination of environment and climate policy in Western developed countries. Chin. Public Adm. 2019, 3, 155–156. (In Chinese) [Google Scholar]
- Zhou, Z.R.; Jiang, M.J. Policy Synergy under holistic government: Theory and contemporary practice in developed countries. J. Chin. Acad. Governance 2010, 6, 28–33. (In Chinese) [Google Scholar]
- Evans, L.E.; Dolšak, N.; Plog, M.T.; Prakash, A. Native American tribal governments, cross-sectoral climate policy, and the role of intertribal networks. Clim. Chang. 2020, 160, 35–43. [Google Scholar] [CrossRef]
- Mubareka, S.; Barredo, J.I.; Giuntoli, J.; Grassi, G.; Migliavacca, M.; Robert, N.; Vizzarri, M. The role of scientists in EU forest-related policy in the Green Deal era. One Earth 2022, 5, 10–13. [Google Scholar] [CrossRef]
- Ge, J.; Lin, B. Does the Kyoto Protocol as an International Environmental Policy Promote Forest Carbon Sinks? J. Glob. Inf. Manag. 2021, 30, 1–22. [Google Scholar] [CrossRef]
- Song, L. The Evolution of Climate Policy Innovation: The Compatible Development of Climate Mitigation, Adaptation and Sustainable Development. J. Soc. Sci. 2018, 3, 29–40. (In Chinese) [Google Scholar]
- Hunt, A.; Watkiss, P. Climate change impacts and adaptation in cities: A review of the literature. Clim. Chang. 2011, 104, 13–49. [Google Scholar] [CrossRef]
- Berry, P.M.; Brown, S.; Chen, M.; Kontogianni, A.; Rowlands, O.; Simpson, G.; Skourtos, M. Cross-sectoral interactions of adaptation and mitigation measures. Clim. Chang. 2015, 128, 381–393. [Google Scholar] [CrossRef] [Green Version]
- Brown, I. Assessing climate change risks to the natural environment to facilitate cross-sectoral adaptation policy. Phil. Trans. R. Soc. A 2018, 376, 20170297. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Smyth, C.E.; Lemprière, T.C.; Rampley, G.J.; Kurz, W.A. Climate change mitigation strategies in the forest sector: Biophysical impacts and economic implications in British Columbia, Canada. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 257–290. [Google Scholar] [CrossRef] [Green Version]
- Yousefpour, R.; Nakamura, N.; Matsumura, N. Forest management approaches for climate change mitigation and adaptation: A comparison between Germany and Japan. J. Sustain. For. 2020, 39, 635–653. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, T.; Wei, L.; Shu, Y. The spatial distribution of forest carbon sinks and sources in China. Chin. Sci. Bull. 2012, 57, 1699–1707. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, B.; Evans, V.; Wardell, A.; Andrade, A.; Vignola, R. Forests and climate change in Latin America: Linking adaptation and mitigation. Forests 2011, 2, 431–450. [Google Scholar] [CrossRef]
- Kalaba, F.K.; Quinn, C.H.; Dougill, A.J. Policy coherence and interplay between Zambia’s forest, energy, agricultural and climate change policies and multilateral environmental agreements. Int. Environ. Agreem. Polit. Law Econ. 2014, 14, 181–198. [Google Scholar] [CrossRef]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320. [Google Scholar] [CrossRef]
- Yang, J.; Ji, X.; Deane, D.C.; Wu, L.; Chen, S. Spatiotemporal distribution and driving factors of forest biomass carbon storage in China: 1977–2013. Forests 2017, 8, 263. [Google Scholar] [CrossRef]
- Yao, Y.; Piao, S.; Wang, T. Future biomass carbon sequestration capacity of Chinese forests. Sci. Bull. 2018, 63, 1108–1117. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Lu, F.; Rao, E.; Ouyang, Z. Carbon Sink under Different Carbon Density Levels of Forest and Shrub, a Case in Dongting Lake Basin, China. Remote Sens. 2022, 14, 2672. [Google Scholar] [CrossRef]
- Erb, K.H.; Kastner, T.; Luyssaert, S.; Houghton, R.A.; Kuemmerle, T.; Olofsson, P.; Haberl, H. Bias in the attribution of forest carbon sinks. Nat. Clim. Chang. 2013, 3, 854–856. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Lindner, M.; Verkerk, P.J.; Gunia, K.; Deda, P.; Michalak, R.; Grassi, G. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Chang. 2013, 3, 792–796. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, L.; Jing, P. Analysis of broad leaved forest carbon sinks changes and forest economics and management in China. Env. Sci. Poll. Res. 2020, 27, 12922–12931. [Google Scholar] [CrossRef]
- Vauhkonen, J.; Packalen, T. Uncertainties related to climate change and forest management with implications on climate regulation in Finland. Ecosyst. Serv. 2018, 33, 213–224. [Google Scholar] [CrossRef]
- Qiu, Z.; Feng, Z.; Song, Y.; Li, M.; Zhang, P. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: Predicting forest vegetation growth based on climate and the environment. J. Clean. Prod. 2020, 252, 119715. [Google Scholar] [CrossRef]
- Yin, S.; Gong, Z.; Gu, L.; Deng, Y.; Niu, Y. Driving forces of the efficiency of forest carbon sequestration production: Spatial panel data from the national forest inventory in China. J. Clean. Prod. 2022, 330, 129776. [Google Scholar] [CrossRef]
- Li, P.; Zhang, J.B. Research on the Long-term and Short-term Dynamic Relationship Between Carbon Forestry Development and Economic Growth—Based on the Provincial Panel Data of China in1998–2010. J. Nat. Resour. 2013, 28, 1835–1845. (In Chinese) [Google Scholar]
- Cao, J.X.; Tian, Y.; Wang, X.P.; Sun, X.Y. Estimation methods of forest sequestration and their prospects. Ecol. Env. Sci. 2009, 18, 2001–2005. (In Chinese) [Google Scholar]
- Zhang, Y.; Wu, L.L.; Su, F.; Yang, Z.G. An accounting model for forest carbon sinks in China. J. Beijing For. Univ. 2010, 32, 194–200. (In Chinese) [Google Scholar]
- Zhang, Y.; Shan, Y.J. Analysis of Market Supply and Demand of Forest Carbon Sinks and Its Trade Situation in China. Env. Prot. 2016, 44, 37–41. (In Chinese) [Google Scholar]
- Shi, X.; Wang, T.; Lu, S.; Chen, K.; He, D.; Xu, Z. Evaluation of China’s forest carbon sink service value. Env. Sci. Poll. Res. 2022, 29, 1–10. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, X.; Yao, H.; Liu, G.; Ji, C.; Fang, J. A significant carbon sink in temperate forests in Beijing: Based on 20-year field measurements in three stands. Sci. Chin. Life Sci. 2015, 58, 1135–1141. [Google Scholar] [CrossRef]
- Xi, T.T.; Li, S.L. Analysis of forestry carbon mitigation potential in Heilongjiang Province. Issues For. Econ. 2006, 6, 519–522. (In Chinese) [Google Scholar]
- Peng, J.S.; Zhong, W.G.; Sun, W.X. Policy Measurement, policy co-evolution and economic performance: An empirical study based on innovation policy. J. Manag. World 2008, 9, 25–36. (In Chinese) [Google Scholar]
- Liu, W.; Guo, Z.; Lu, F.; Wang, X.; Zhang, M.; Liu, B.; Yuan, Y. The influence of disturbance and conservation management on the greenhouse gas budgets of China’s forests. J. Clean. Prod. 2020, 261, 121000. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Rudbeck Jepsen, M.; Penuelas, J.; Wigneron, J.P.; Xiao, X.; Song, X.; Horion, S.; et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Woodall, C.W.; Walters, B.F.; Coulston, J.W.; D’amato, A.W.; Domke, G.M.; Russell, M.B.; Sowers, P.A. Monitoring network confirms land use change is a substantial component of the forest carbon sink in the eastern United States. Sci. Rep. 2015, 5, 17028. [Google Scholar] [CrossRef] [Green Version]
- Hurteau, M.D.; North, M.P.; Koch, G.W.; Hungate, B.A. Managing for disturbance stabilizes forest carbon. Proc. Natl. Acad. Sci. USA 2019, 116, 10193–10195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Xu, D.; Liu, J. The forest resources input–output model: An application in China. Ecol. Indic. 2015, 51, 87–97. [Google Scholar] [CrossRef]
- Grassi, G.; House, J.; Dentener, F.; Federici, S.; den Elzen, M.; Penman, J. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 2017, 7, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhang, X.; Zhou, Y.; Yao, S. Spatiotemporal evolution and influencing factors of carbon sink dynamics at county scale: A case study of Shaanxi Province, China. Int. J. Environ. Res. Public Health 2011, 18, 13081. [Google Scholar] [CrossRef]
- Sarasini, S. Constituting leadership via policy: Sweden as a pioneer of climate change mitigation. Mitig. Adapt. Strateg. Glob. Chang. 2009, 14, 635–653. [Google Scholar] [CrossRef]
- Viña, A.; McConnell, W.J.; Yang, H.; Xu, Z.; Liu, J. Effects of conservation policy on China’s forest recovery. Sci. Adv. 2016, 2, e1500965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, L.F.; Luo, X.F.; Li, R.R.; Yu, Z.W. Regional differences and dynamic evolution of forest carbon sink in China. J. Chin. Agric. Univ. 2018, 23, 197–206. (In Chinese) [Google Scholar]
- Xu, Q.; Yang, R.; Dong, Y.X.; Liu, Y.X.; Qiu, L.R. The influence of rapid urbanization and land use changes on terrestrial carbon sources/sinks in Guangzhou, China. Ecol. Indic. 2016, 70, 304–316. [Google Scholar] [CrossRef]
- Kallio, A.M.I.; Solberg, B.; Käär, L.; Päivinen, R. Economic impacts of setting reference levels for the forest carbon sinks in the EU on the European forest sector. For. Policy Econ. 2018, 92, 193–201. [Google Scholar] [CrossRef]
- Mawarni, M.; Machdi, I. Dynamic nearest neighbours for generating spatial weight matrix. In Proceedings of the 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Malang, Indonesia, 15–16 October 2016; pp. 257–262. [Google Scholar]
- Lesage, J.P.; Polasek, W. Incorporating transportation network structure in spatial econometric models of commodity flows. Spat. Econ. Anal. 2008, 3, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Li, X.; Cao, J.H.; Yang, L.L. China’s Economic Policy Choices for Governing Smog Pollution Based on Spatial Spiliover Effects. Econ. Res. J. 2016, 51, 73–88. (In Chinese) [Google Scholar]
- Zhou, A.; Li, J. Analysis of the spatial effect of otward foreign direct investment on air pollution: Evidence from China. Environ. Sci. Poll. Res. 2021, 28, 50983–51002. [Google Scholar] [CrossRef] [PubMed]
- Parent, O.; LeSage, J.P. Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers. J. Appl. Economet. 2008, 23, 235–256. [Google Scholar] [CrossRef]
- Bithas, K.; Latinopoulos, D. Managing tree-crops for climate mitigation. An economic evaluation trading-off carbon sequestration with market goods. Sustain. Prod. Consum. 2021, 27, 667–678. [Google Scholar] [CrossRef]
Variables | Observations | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
FCS | 420 | 52,515.17 | 62,363.76 | 116.95 | 245,145.35 |
CSCP | 420 | 6.05 | 6.45 | 0.00 | 35.00 |
FA | 420 | 691.28 | 605.92 | 1.89 | 2614.85 |
PFP | 420 | 515.48 | 462.91 | 2.14 | 2403.27 |
gdp | 420 | 109.46 | 3.68 | 95.00 | 119.20 |
urban | 420 | 56.39 | 13.44 | 28.24 | 89.60 |
ser | 420 | 44.68 | 8.79 | 15.80 | 61.50 |
ener | 420 | 41.27 | 15.34 | 1.22 | 72.42 |
land | 420 | 31.57 | 17.67 | 2.91 | 65.45 |
fm | 420 | 174,736.11 | 174,415.43 | 1117.00 | 907,398.00 |
harv | 420 | 76.46 | 448.73 | 0.00 | 3600.00 |
prec | 420 | 990.20 | 728.12 | 108.60 | 11,127.00 |
temp | 420 | 14.04 | 5.42 | 2.30 | 25.70 |
single | 420 | 4.36 | 3.01 | 0.00 | 17.00 |
Variables | LMERR | R-LMERR | LMLAG | R-LMLAG |
---|---|---|---|---|
Statistical values | 0.864 | 0.006 | 30.552 | 29.694 |
P | 0.353 | 0.940 | 0.000 | 0.000 |
2007 | 2012 | 2017 | 2020 | |
---|---|---|---|---|
coefficient | 0.294 *** | 0.296 *** | 0.301 *** | 0.302 *** |
Z | 2.779 | 2.782 | 2.819 | 2.826 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
POLS | FE | SAR | LR_Direct | LR_Indirect | LR_Total | |
CSCP | 0.023 *** (0.008) | 0.015 *** (0.002) | 0.004 ** (0.002) | 0.004 ** (0.002) | 0.002 ** (0.001) | 0.006 ** (0.003) |
gdp | −0.054 *** (0.013) | −0.005 * (0.003) | 0.010 *** (0.003) | 0.010 *** (0.003) | 0.007 ** (0.003) | 0.017 *** (0.005) |
urban | −0.045 *** (0.004) | −0.001 (0.002) | −0.022 *** (0.003) | −0.022 *** (0.003) | −0.014 *** (0.004) | −0.037 *** (0.006) |
ser | 0.002 (0.006) | −0.009 *** (0.002) | −0.003 ** (0.002) | −0.004 ** (0.002) | −0.002 * (0.001) | −0.006 ** (0.003) |
ener | −0.007 * (0.004) | 0.001 (0.002) | 0.001 (0.001) | 0.001 (0.001) | 0.001 (0.001) | 0.002 (0.002) |
land | 0.050 *** (0.003) | 0.029 *** (0.003) | 0.016 *** (0.002) | 0.017 *** (0.003) | 0.011 *** (0.003) | 0.027 *** (0.005) |
af | 0.317 *** (0.041) | −0.029 ** (0.010) | −0.007 (0.009) | −0.008 (0.010) | −0.005 (0.006) | −0.013 (0.016) |
harv | 0.145 *** (0.014) | −0.012 ** (0.005) | −0.011 *** (0.004) | −0.011 *** (0.003) | −0.007 ** (0.003) | −0.019 *** (0.006) |
prec | −0.068 (0.104) | −0.007 (0.033) | −0.019 (0.024) | −0.018 (0.025) | −0.011 (0.017) | −0.029 (0.041) |
temp | −0.942 *** (0.094) | −0.106 (0.073) | −0.061 (0.055) | −0.061 (0.057) | −0.039 (0.038) | −0.100 (0.094) |
single | 0.011 (0.012) | 0.003 (0.002) | 0.002 (0.002) | 0.002 (0.002) | 0.001 (0.001) | 0.003 (0.003) |
Constant | 15.570 *** (1.720) | 10.710 *** (0.561) | ||||
Spatial fixed effects | NO | YES | YES | |||
Time fixed effects | NO | YES | YES | |||
ρ | 0.405 *** (0.060) | |||||
sigma2 | 0.007 *** (0.001) | |||||
Log-L | 429.890 | |||||
R-squared | 0.814 | 0.711 | 0.467 | |||
Observations | 420 | 420 | 420 |
Variable | (1) | (2) |
---|---|---|
CSCP | 0.046 *** (0.005) | 0.105 *** (0.011) |
FA | 0.128 ** (0.051) | |
EC | 0.036 *** (0.013) | |
CSCP*FA | −0.008 *** (0.001) | |
CSCP*EC | −0.006 *** (0.001) | |
Control variables | YES | YES |
Spatial fixed effects | YES | YES |
Time fixed effects | YES | YES |
ρ | 0.334 *** (0.057) | 0.421 *** (0.057) |
sigma2 | 0.005 *** (0.000) | 0.006 *** (0.000) |
R-squared | 0.384 | 0.380 |
Log-L | 509.002 | 472.791 |
Observations | 420 | 420 |
Replace the Dependent Variable | Replace the Weight Matrix | ||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
Variables | LnFCSI | LnFCSG | Wd | We | Wde |
CSCP | 0.019 *** (0.006) | 10.810 *** (1.264) | 0.006 *** (0.002) | 0.008 *** (0.002) | 0.007 *** (0.002) |
Control variables | YES | YES | YES | YES | YES |
Spatial fixed effects | YES | YES | YES | YES | YES |
Time fixed effects | YES | YES | YES | YES | YES |
ρ | 0.252 *** (0.142) | −0.231 *** (0.062) | −0.306 ** (0.118) | ||
sigma2 | 0.008 *** (0.001) | 0.008 *** (0.001) | 0.008 *** (0.001) | ||
Log-L | 412.502 | 417.406 | 414.019 | ||
R-squared | 0.670 | 0.459 | 0.496 | 0.546 | 0.543 |
Observations | 420 | 420 | 420 | 420 | 420 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Cai, Y.; Lin, H.; Tian, Y. Impacts of Cross-Sectoral Climate Policy on Forest Carbon Sinks and Their Spatial Spillover: Evidence from Chinese Provincial Panel Data. Int. J. Environ. Res. Public Health 2022, 19, 14334. https://doi.org/10.3390/ijerph192114334
Zhu H, Cai Y, Lin H, Tian Y. Impacts of Cross-Sectoral Climate Policy on Forest Carbon Sinks and Their Spatial Spillover: Evidence from Chinese Provincial Panel Data. International Journal of Environmental Research and Public Health. 2022; 19(21):14334. https://doi.org/10.3390/ijerph192114334
Chicago/Turabian StyleZhu, Hongge, Yingli Cai, Hong Lin, and Yuchen Tian. 2022. "Impacts of Cross-Sectoral Climate Policy on Forest Carbon Sinks and Their Spatial Spillover: Evidence from Chinese Provincial Panel Data" International Journal of Environmental Research and Public Health 19, no. 21: 14334. https://doi.org/10.3390/ijerph192114334
APA StyleZhu, H., Cai, Y., Lin, H., & Tian, Y. (2022). Impacts of Cross-Sectoral Climate Policy on Forest Carbon Sinks and Their Spatial Spillover: Evidence from Chinese Provincial Panel Data. International Journal of Environmental Research and Public Health, 19(21), 14334. https://doi.org/10.3390/ijerph192114334