Do Deep Regional Trade Agreements Improve Residents’ Health? A Cross-Country Study
Abstract
:1. Introduction
2. Theoretical Analysis and Hypothesis
3. Materials and Methods
3.1. Variables
3.1.1. Dependent Variable
3.1.2. Independent Variable
3.1.3. Control Variables
3.2. Data Sources and Statistical Characteristics
3.3. Model Specification
3.3.1. Benchmark Regression Model
3.3.2. Mechanism Analysis Models
4. Results and Discussions
4.1. Benchmark Empirical
4.2. Robustness Test
4.2.1. Replacing the Depth of RTAs
4.2.2. Pseudo-Panel Regression
4.2.3. Regression Using the Ordered Logit Method
4.2.4. Expand the Sample Interval
4.3. Endogeneity Test
4.4. Mechanism Analysis
4.5. Heterogeneity Analysis
4.5.1. Based on Different Terms of RTAs
4.5.2. Based on Different Income Levels of Different Countries
4.5.3. Based on Different Types of Residents
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bloom, D.E.; Canning, D. The Health and Wealth of Nations. Science 2000, 287, 1207–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahcar, J.; Siroen, J. Deep Integration: Considering the Heterogeneity of Free Trade Agreements. J. Econ. Integr. 2017, 32, 615–659. [Google Scholar] [CrossRef] [Green Version]
- Mattoo, A.; Mulabdic, A.; Ruta, M. Trade Creation and Trade Diversion in Deep Agreements; The World Bank Working Paper No.8206; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Orefice, G.; Rocha, N. Deep Integration and Production Networks: An Empirical Analysis. World Econ. 2014, 37, 106–136. [Google Scholar] [CrossRef] [Green Version]
- Tabakis, C.; Zanardi, M. Preferential trade agreements and antidumping protection. J. Int. Econ. 2019, 121, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Boffa, M.; Jansen, M.; Solleder, O. Do we need deeper trade agreements for GVCs or just a BIT? World Econ. 2019, 42, 1713–1739. [Google Scholar] [CrossRef]
- Laget, E.; Osnago, A.; Rocha, N.; Ruta, M. Deep Trade Agreements and Global Value Chains. Rev. Ind. Organ. 2020, 57, 379–410. [Google Scholar] [CrossRef]
- Rubinova, S. The Impact of New Regionalism on Global Value Chains Participation; CTEI Working Paper No.295733; CTEI: Geneva, Switzerland, 2017. [Google Scholar]
- Sanguinet, E.R.; Alvim, A.M.; Atienza, M. Trade agreements and participation in global value chains: Empirical evidence from Latin America. World Econ. 2022, 45, 702–738. [Google Scholar] [CrossRef]
- Saucier, P.; Rana, A.T. Do preferential trade agreements contribute to the development of trade? Taking into account the institutional heterogeneity. Int. Econ. 2017, 149, 41–56. [Google Scholar] [CrossRef]
- Brandi, C.; Schwab, J.; Berger, A.; Morin, J.F. Do environmental provisions in trade agreements make exports from developing countries greener? World. Dev. 2020, 129, 104899. [Google Scholar] [CrossRef]
- Duval, Y.; Utoktham, C.; Kravchenko, A. Impact of Implementation of Digital Trade Facilitation on Trade Costs; ARTNeT Working Paper No.174; ARTNeT: Berlin, Germany, 2018. [Google Scholar]
- Maskus, K.E.; Ridley, W. Trade Impacts of Intellectual-Property-Related PTAs: Evidence from Using the World Bank Deep Trade Agreements Database; The World Bank Working Paper No.9659; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Fernandes, A.M.; Lefebvre, K.; Rocha, N. Heterogeneous Impacts of SPS and TBT Regulations: Firm-Level Evidence from Deep Trade Agreements; The World Bank Working Paper No. 9700; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Cropper, M.L. Measuring the Benefits from Reduced Morbidity. Am. Econ. Rev. 1981, 71, 235–240. [Google Scholar]
- Tanaka, S. Environmental regulations on air pollution in China and their impact on infant mortality. J. Health Econ. 2015, 42, 90–103. [Google Scholar] [CrossRef]
- Treme, J.; Craig, L. Urbanization, Health and Human Stature. Bull. Econ. Res. 2013, 65, 130–141. [Google Scholar] [CrossRef]
- Mano, R.S. Social media and online health services: A health empowerment perspective to online health information. Comput. Hum. Behav. 2014, 39, 404–412. [Google Scholar] [CrossRef]
- Banerjee, R.; Sachdeva, A. Pathways to Preventive Health, Evidence from India’s Rural Road Program; USC-INET Research Paper No.15-19; USC-INET: Los Angeles, CA, USA, 2015. [Google Scholar]
- Alam, S.; Raza, S.A.; Shahbaz, M.; Abbas, Q. Accounting for Contribution of Trade Openness and Foreign Direct Investment in Life Expectancy: The Long-run and Short-run Analysis in Pakistan. Soc. Indic. Res. 2016, 129, 1155–1170. [Google Scholar] [CrossRef]
- Burns, D.; Jones, A.; Goryakin, Y.; Suhrcke, M. Is foreign direct investment good for health in low-and middle-income countries? An instrumental variable approach. Soc. Sci. Med. 2017, 181, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, S. Income Inequality and Individual Health Status: Evidence from India. J. Quant Econ. 2021, 19, 269–289. [Google Scholar] [CrossRef]
- Ross, C.E.; Mirowsky, J. Does employment affect health? J. Health Soc. Behav. 1995, 36, 230–243. [Google Scholar] [CrossRef]
- Chokshi, D.A. Income, Poverty and Health Inequality. J. Policy Anal. Manag. 2001, 20, 151–155. [Google Scholar] [CrossRef]
- Currie, J.; Stabile, M. Socioeconomic Status and Child Health: Why is the Relationship Stronger for Older Children? Am. Econ. Rev. 2003, 93, 1813–1823. [Google Scholar] [CrossRef]
- Grossman, M. On the Concept of Health Capital and the Demand for Healthy. J. Polit. Econ. 1972, 80, 223–255. [Google Scholar] [CrossRef] [Green Version]
- Owen, A.L.; Wu, S. Is Trade Good for Your Health? Rev. Int. Econ. 2007, 15, 660–682. [Google Scholar] [CrossRef]
- Stevens, P.; Urbach, J.; Wills, G. Healthy Trade: The Relationship between Open Trade and Health. Foreign. Trade. Rev. 2013, 48, 125–135. [Google Scholar] [CrossRef]
- Labonte, R. Trade, investment and public health: Compiling the evidence, assembling the arguments. Global Health 2019, 15, 1–14. [Google Scholar] [CrossRef]
- Feng, J.; Xie, Q.; Zhang, X. Trade liberalization and the health of working-age adults: Evidence from China. World. Dev. 2021, 139, 105344. [Google Scholar] [CrossRef]
- Fan, H.; Lin, F.; Lin, S. The hidden cost of trade liberalization: Input tariff shocks and worker health in China. J. Int. Econ. 2020, 126, 103349. [Google Scholar] [CrossRef]
- Bombardini, M.; Li, B. Trade, pollution and mortality in China. J. Int. Econ. 2020, 125, 103321. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, E.R.; Brenner, J.E. International trade agreements: Hazards to health? Int. J. Health Serv. 2004, 34, 467–481. [Google Scholar] [CrossRef]
- Stiglitz, J.E. Trade agreements and health in developing countries. Lancet 2009, 373, 363–365. [Google Scholar] [CrossRef] [Green Version]
- Venkatamaran, S.; Stevens, P. Are Free Trade Agreements Bad for Health? Quantifying the Impact of FTAs on Health Outcomes; Geneva Network Working Paper; Geneva Network: Geneva, Switzerland, 2015. [Google Scholar]
- Barlow, P.; McKee, M.; Basu, S.; Stuckler, D. The health impact of trade and investment agreements: A quantitative systematic review and network co-citation analysis. Global Health 2017, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mattoo, A.; Rocha, N.; Ruta, M. Handbook of Deep Trade Agreements; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Melitz, M.J. The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivuty. Econometrica 2003, 71, 1695–1725. [Google Scholar] [CrossRef] [Green Version]
- Angelini, P.; Generale, A. On the Evolution of Firm Size Distributions. Am. Econ. Rev. 2008, 98, 426–438. [Google Scholar] [CrossRef]
- Goldberg, P.K.; Khandelwal, A.K.; Pavcnik, N.; Topalova, P. Imported Intermediate Inputs and Domestic Product Growth: Evidence from India. Q. J. Econ. 2010, 125, 1727–1767. [Google Scholar] [CrossRef]
- Cutler, D.M.; Lleras-Muney, A. Understanding differences in health behaviors by education. J. Health Econ. 2010, 29, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conger, R.D.; Elder, G.H. Families in Troubled Times: Adapting to Change in Rural America and Social Work in Rural Communities, Second Edition. Soc. Work. 1996, 41, 112–113. [Google Scholar]
- Frijters, P.J.; Haisken-Denew, J.P.; Shields, M.A. The causal effect of income on health: Evidence from German reunification. J. Health Econ. 2005, 24, 997–1017. [Google Scholar] [CrossRef]
- Elrod, A.A.; Malik, A.S. The effect of environmental regulation on plant-level product mix: A study of EPA’s Cluster Rule. J. Environ. Econ. Manag. 2017, 3, 164–184. [Google Scholar] [CrossRef]
- Alberini, A.; Cropper, M.; Fu, T.; Krupnick, A.; Liu, J.; Shaw, D.; Harrington, W. Valuing Health Effects of Air Pollution in Developing Countries: The Case of Taiwan. J. Environ. Econ. Manag. 1997, 34, 1–126. [Google Scholar] [CrossRef] [Green Version]
- Brainerd, E.; Menon, N. Seasonal effects of water quality: The hidden costs of the Green Revolution to infant and child health in India. J. Dev. Econ. 2014, 107, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Narayan, P.K.; Narayan, S. Does environmental quality influence health expenditures? Empirical evidence from a panel of selected OECD countries. Ecol. Econ. 2008, 65, 367–374. [Google Scholar] [CrossRef]
- Hofmann, C.; Osnago, A.; Ruta, M. Horizontal Depth: A New Database on the Content of Preferential Trade Agreements; The World Bank Policy Research Working Paper No. 7981; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Novignon, J. On the Efficiency of Public Health Expenditure in Sub-Saharan Africa: Does Corruption and Quality of Public Institutions Matter? MPRA Paper No. 39195; University Library of Munich: Munich, Germany, 2015. [Google Scholar]
Term | Value | Term | Value | Term | Value |
---|---|---|---|---|---|
Rules of origin | 0–38 | Environment | 0–55 | SPS | 0–59 |
Trade facilitation | 0–52 | Export taxes | 0–55 | TBT | 0–34 |
Competition policies | 0–35 | Labor market | 0–23 | STE | 0–61 |
Intellectual property | 0–136 | Anti-dumping | 0–14 | Services | 0–64 |
Public procurement | 0–100 | State subsidies | 0–44 | Migration | 0–36 |
Countervailing duties | 0–8 | Movement of capitals | 0–136 | Investment | 0–58 |
Variables | Symbols | Definitions | Sources |
---|---|---|---|
Residents’ health | PHI | Personal Health Index | Gallup World Poll Database |
Depth of trade agreements | Depth | Standardized values of the scores of 1028 sub-terms | World Bank Trade Agreement Content Database |
Residents’ income | Lnincom | Logarithmic values of total annual household net income (current USD) | Gallup World Poll Database |
Residents’ education level | Education | Basic education (1), vocational education (2), higher education (3) | Gallup World Poll Database |
Residents’ age | Age | The actual age of residents | Gallup World Poll Database |
Resident’ gender | Male | Male (1), female (0) | Gallup World Poll Database |
Residents’ marital status | Marriage | Married (1), unmarried (0) | Gallup World Poll Database |
Residents’ residential area | Urban | City or suburb (1), rural area or small town (0) | Gallup World Poll Database |
GDP per capita | LnGDPpc | Logarithmic values of GDP per capita (constant 2015 USD) | World Bank Development Indicators Database |
Health expenditure per capita | Lnhepc | Logarithmic values of the health care expenditure per capita (PPP, current USD) | World Bank Development Indicators Database |
Foreign trade dependence | FTD | the proportion of import and export trade in the gross national product | World Bank Development Indicators Database. |
Average annual PM2.5 exposure. | Pollution | PM2.5 air pollution, mean annual exposure (micrograms per cubic meter) | World Bank Development Indicators Database. |
Labor force participation rate | Laborpar | Labor force participation rate, total (% of population ages 15–64) | World Bank Development Indicators Database. |
Variables | Obs | Mean | Std. Dev | Min | Max |
---|---|---|---|---|---|
786,040 | 70.2256 | 28.2378 | 0.0000 | 100.0000 | |
786,040 | −0.5487 | 1.0090 | −1.5423 | 1.6276 | |
786,040 | 9.3068 | 1.3215 | −2.5257 | 20.6157 | |
786,040 | 1.8869 | 0.6996 | 1.0000 | 3.0000 | |
786,040 | 42.0853 | 11.3180 | 25.0000 | 64.0000 | |
786,040 | 0.4595 | 0.4984 | 0.0000 | 1.0000 | |
786,040 | 0.7114 | 0.4531 | 0.0000 | 1.0000 | |
786,040 | 0.4230 | 0.4940 | 0.0000 | 1.0000 | |
786,040 | 8.7833 | 1.4080 | 5.3572 | 11.7254 | |
786,040 | 6.5804 | 1.2867 | 3.9504 | 8.7995 | |
786,040 | 84.5028 | 53.1202 | 19.4600 | 416.3900 | |
719,491 | 32.0431 | 22.4343 | 5.8613 | 100.7844 | |
786,040 | 68.0740 | 10.3809 | 41.5300 | 89.9800 |
Variables | (1) | (2) | (3) |
---|---|---|---|
2.169 *** (0.764) | 2.306 *** (0.705) | 1.987 *** (0.645) | |
4.457 *** (0.179) | 4.458 *** (0.181) | ||
2.981 *** (0.202) | 2.978 *** (0.203) | ||
−0.294 *** (0.0148) | −0.294 *** (0.0149) | ||
3.256 *** (0.244) | 3.247 *** (0.244) | ||
2.172 *** (0.153) | 2.166 *** (0.153) | ||
−0.654 *** (0.219) | −0.659 *** (0.220) | ||
−1.537 (1.439) | |||
0.0399 ** (0.0178) | |||
2.751 * (1.574) | |||
Constant | 71.58 *** (3.922) | 37.31 *** (3.561) | 28.87 ** (11.18) |
Country fixed effect | YES | YES | YES |
Year fixed effect | YES | YES | YES |
Country linear time trend | YES | YES | YES |
Observations | 786,040 | 786,040 | 786,040 |
R-squared | 0.048 | 0.099 | 0.099 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
0.852 *** (0.288) | ||||
1.609 ** (0.692) | 0.125 *** (0.0432) | 2.093 *** (0.629) | ||
Constant | 27.88 ** (11.41) | 34.86 (271.8) | 33.55 *** (11.91) | |
Control variables | YES | YES | YES | YES |
Country fixed effect | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES |
Country linear time trend | YES | YES | YES | YES |
Observations | 786,040 | 541 | 786,040 | 947,650 |
R-squared | 0.099 | 0.334 | 0.029 | 0.097 |
Variables | (1) | (2) | (3) |
---|---|---|---|
3.398 *** (1.164) | 3.805 *** (1.110) | 3.411 *** (1.057) | |
4.459 *** (0.178) | 4.460 *** (0.180) | ||
2.979 *** (0.201) | 2.977 *** (0.202) | ||
−0.294 *** (0.0148) | −0.294 *** (0.0148) | ||
3.254 *** (0.243) | 3.245 *** (0.244) | ||
2.176 *** (0.152) | 2.171 *** (0.153) | ||
−0.661 *** (0.219) | −0.665 *** (0.219) | ||
−1.406 (1.448) | |||
2.635 * (1.556) | |||
0.0356 ** (0.0177) | |||
Control variables | 73.61 *** (4.251) | 39.76 *** (3.872) | 31.33 *** (11.05) |
Country fixed effect | YES | YES | YES |
Year fixed effect | YES | YES | YES |
Country linear time trend | YES | YES | YES |
Observations | 786,040 | 786,040 | 786,040 |
Kleibergen–Paap rk LM | 12.859 [0.000] | 12.856 [0.000] | 12.691 [0.000] |
Kleibergen–Paap rk Wald F | 43.656 {16.38} | 43.651 {16.38} | 41.590 {16.38} |
R-squared | 0.048 | 0.099 | 0.099 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
PHI | Laborpar | Pollution | PHI | |
1.987 *** (0.645) | 0.644 * (0.355) | −1.116 *** (0.396) | 1.849 *** (0.600) | |
0.474 *** (0.134) | ||||
−0.137 * (0.0721) | ||||
Constant | 28.87 ** (11.18) | 49.58 *** (5.255) | 123.2 *** (17.26) | 17.60 (14.16) |
Control variables | YES | YES | YES | YES |
Country fixed effect | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES |
Country linear time trend | YES | YES | YES | YES |
Observations | 786,040 | 786,040 | 719,491 | 719,491 |
R-squared | 0.099 | 0.988 | 0.988 | 0.101 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
“WTO+” Terms | “WTO-X” Terms | Low-Income and Middle-Income Countries | High-Income Countries | |
2.057 *** (0.680) | ||||
1.950 *** (0.590) | ||||
4.843 *** (1.484) | 0.426 (0.436) | |||
Constant | 27.53 ** (11.23) | 28.66 ** (11.13) | 13.26 (16.52) | 29.83 * (15.35) |
Control variables | YES | YES | YES | YES |
Country fixed effect | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES |
Country linear time trend | YES | YES | YES | YES |
Observations | 786,040 | 786,040 | 293,767 | 492,273 |
R-squared | 0.099 | 0.099 | 0.097 | 0.100 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Urban Residents | Rural Residents | Basic Education and Vocational Education Residents | Higher Education Residents | |
0.972 * (0.569) | 2.690 *** (0.767) | 2.126 *** (0.728) | 0.414 (0.578) | |
Constant | 36.79 *** (10.35) | 16.68 (14.80) | 28.03 ** (11.92) | 39.13 *** (12.10) |
Control variables | YES | YES | YES | YES |
Country fixed effect | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES |
Country linear time trend | YES | YES | YES | YES |
Observations | 332,472 | 453,568 | 633,099 | 152,941 |
R-squared | 0.097 | 0.103 | 0.098 | 0.055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Chen, Q.; Liu, G.; Han, X. Do Deep Regional Trade Agreements Improve Residents’ Health? A Cross-Country Study. Int. J. Environ. Res. Public Health 2022, 19, 14409. https://doi.org/10.3390/ijerph192114409
Liu Z, Chen Q, Liu G, Han X. Do Deep Regional Trade Agreements Improve Residents’ Health? A Cross-Country Study. International Journal of Environmental Research and Public Health. 2022; 19(21):14409. https://doi.org/10.3390/ijerph192114409
Chicago/Turabian StyleLiu, Zhizhong, Qianying Chen, Guangyue Liu, and Xu Han. 2022. "Do Deep Regional Trade Agreements Improve Residents’ Health? A Cross-Country Study" International Journal of Environmental Research and Public Health 19, no. 21: 14409. https://doi.org/10.3390/ijerph192114409
APA StyleLiu, Z., Chen, Q., Liu, G., & Han, X. (2022). Do Deep Regional Trade Agreements Improve Residents’ Health? A Cross-Country Study. International Journal of Environmental Research and Public Health, 19(21), 14409. https://doi.org/10.3390/ijerph192114409