The Role of Sleep Patterns from Childhood to Adolescence in Vigilant Attention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials
2.3. Sleep Measures
2.4. Procedure
2.5. Statistical Methods
3. Results
Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mason, G.M.; Lokhandwala, S.; Riggins, T.; Spencer, R.M.C. Sleep and human cognitive development. Sleep Med. Rev. 2021, 57, 101472. [Google Scholar] [CrossRef] [PubMed]
- Riggins, T. Longitudinal investigation of source memory reveals different developmental trajectories for item memory and binding. Dev. Psychol. 2014, 50, 449–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkley, R.A. Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol. Bull. 1997, 121, 65–94. [Google Scholar] [CrossRef] [Green Version]
- Silver, H.; Feldman, P. Evidence for sustained attention and working memory in schizophrenia sharing a common mechanism. J. Neuropsychiatry Clin. Neurosci. 2005, 17, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, N.; Robison, M.K. Working memory capacity and sustained attention: A cognitive-energetic perspective. J. Exp. Psychol. Learn. 2020, 46, 77–103. [Google Scholar] [CrossRef]
- Clark, L.; Iversen, S.D.; Goodwin, G.M. Sustained attention deficit in bipolar disorder. Br. J. Psychiatry 2002, 180, 313–319. [Google Scholar] [CrossRef] [PubMed]
- McAvinue, L.P.; Habekost, T.; Johnson, K.A.; Kyllingsbæk, S.; Vangkilde, S.; Bundesen, C.; Robertson, I.H. Sustained attention, attentional selectivity, and attentional capacity across the lifespan. Atten. Percept. Psychophys. 2012, 74, 1570–1582. [Google Scholar] [CrossRef] [Green Version]
- Staub, B.; Doignon-Camus, N.; Després, O.; Bonnefond, A. Sustained attention in the elderly: What do we know and what does it tell us about cognitive aging? Ageing Res. Rev. 2013, 12, 459–468. [Google Scholar] [CrossRef]
- Staub, B.; Doignon-Camus, N.; Bacon, E.; Bonnefond, A. Investigating sustained attention ability in the elderly by using two different approaches: Inhibiting ongoing behavior versus responding on rare occasions. Acta Psychol. 2014, 146, 51–57. [Google Scholar] [CrossRef]
- Fortenbaugh, F.C.; DeGutis, J.; Germine, L.; Wilmer, J.B.; Grosso, M.; Russo, K.; Esterman, M. Sustained attention across the life span in a sample of 10,000: Dissociating ability and strategy. Psychol. Sci. 2015, 26, 1497–1510. [Google Scholar] [CrossRef]
- Lewis, F.C.; Reeve, R.A.; Kelly, S.P.; Johnson, K.A. Sustained attention to a predictable, unengaging go/no-go task shows ongoing development between 6 and 11 years. Atten. Percept. Psychophys. 2017, 79, 1726–1741. [Google Scholar] [CrossRef] [PubMed]
- Morandini, H.A.; Silk, T.J.; Griffiths, K.; Rao, P.; Hood, S.; Zepf, F.D. Meta-analysis of the neural correlates of vigilant attention in children and adolescents. Cortex 2020, 132, 374–385. [Google Scholar] [CrossRef] [PubMed]
- MacLean, K.A.; Aichele, S.R.; Bridwell, D.A. Mangun, G.R.; Wojciulik, E.; Saron, C.D. Interactions between endogenous and exogenous attention during vigilance. Atten. Percept. Psychophys. 2009, 71, 1042–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijk, D.J.; Czeisler, C.A. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci. Lett. 1994, 166, 63–68. [Google Scholar] [CrossRef]
- Goel, N.; Basner, M.; Rao, H.; Dinges, D.F. Circadian rhythms, sleep deprivation, and human performance. Prog. Mol. Biol. Transl. 2013, 119, 155–190. [Google Scholar] [CrossRef] [Green Version]
- Durmer, J.S.; Dinges, D.F. Neurocognitive consequences of sleep deprivation. Semin. Neurol. 2005, 25, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Mao, T.; Dinges, D.; Deng, Y.; Zhao, K.; Yang, Z.; Lei, H.; Fang, Z.; Yang, F.N.; Galli, O.; Goel, G.; et al. Impaired vigilant attention partly accounts for inhibition control deficits after total sleep deprivation and partial sleep restriction. Nat. Sci. Sleep 2021, 13, 1545–1560. [Google Scholar] [CrossRef]
- Gradisar, M.; Gardner, G.; Dohnt, H. Recent worldwide sleep patterns and problems during adolescence: A review and meta-analysis of age, region, and sleep. Sleep Med. 2011, 12, 110–118. [Google Scholar] [CrossRef]
- Matricciani, L.; Olds, T.; Petkov, J. In search of lost sleep: Secular trends in the sleep time of school-aged children and adolescents. Sleep Med. Rev. 2012, 16, 203–211. [Google Scholar] [CrossRef]
- Williams, J.A.; Zimmerman, F.J.; Bell, J.F. Norms and trends of sleep time among US children and adolescents. JAMA Pediatr. 2013, 167, 55–60. [Google Scholar] [CrossRef]
- Dewald-Kaufmann, J.F.; Oort, F.J.; Bögels, S.M.; Meijer, A.M. Why sleep matters: Differences in daytime functioning between adolescents with low and high chronic sleep reduction and short and long sleep durations. J. Evid. Based Psychother. 2013, 13, 171–182. [Google Scholar]
- Perkinson-Gloor, N.; Lemola, S.; Grob, A. Sleep duration, positive attitude toward life, and academic achievement: The role of daytime tiredness, behavioral persistence, and school start times. J. Adolesc. 2013, 36, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, A.R.; Carskadon, M.A. Sleep schedules and daytime functioning in adolescents. Child Dev. 1998, 69, 875–887. [Google Scholar] [CrossRef]
- Wolfson, A.R.; Carskadon, M.A. Understanding adolescents’ sleep patterns and school performance. Sleep Med. Rev. 2003, 7, 491–506. [Google Scholar] [CrossRef]
- Lo, J.C.; Ong, J.L.; Leong, R.L.; Gooley, J.; Chee, M.W. Cognitive performance, sleepiness, and mood in partially sleep deprived adolescents: The need for sleep study. Sleep 2016, 39, 687–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Short, M.A.; Weber, N.; Reynolds, C.; Coussens, S.; Carskadon, M.A. Estimating adolescent sleep need using dose-response modeling. Sleep 2018, 41, zsy011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vriend, J.L.; Davidson, F.D.; Corkum, P.V.; Rusak, B.; McLaughlin, E.N.; Chambers, C.T. Sleep quantity and quality in relation to daytime functioning in children. Child. Health Care 2012, 41, 204–222. [Google Scholar] [CrossRef]
- Spruyt, K.; Herbillon, V.; Putois, B.; Franco, P.; Lachaux, J.P. Mind-wandering, or the allocation of attentional resources, is sleep-driven across childhood. Sci. Rep. 2019, 9, 1269. [Google Scholar] [CrossRef] [Green Version]
- Campbell, I.G.; Van Dongen, H.P.; Gainer, M.; Karmouta, E.; Feinberg, I. Differential and interacting effects of age and sleep restriction on daytime sleepiness and vigilance in adolescence: A longitudinal study. Sleep 2018, 41, zsy177. [Google Scholar] [CrossRef] [Green Version]
- Feinberg, I. Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence? J. Psychiatr. Res. 1982, 17, 319–334. [Google Scholar] [CrossRef]
- Borbély, A.A. A two process model of sleep regulation. Hum. Neurobiol. 1982, 1, 195–204. [Google Scholar] [PubMed]
- Passer, M.W.; Smith, R.E. Psychology: The Science of Mind and Behavior, 2nd ed.; McGraw-Hill Education: North Ryde, NSW, Australia, 2015. [Google Scholar]
- Jenni, O.G.; Achermann, P.; Carskadon, M.A. Homeostatic sleep regulation in adolescents. Sleep 2005, 28, 1446–1454. [Google Scholar] [CrossRef] [PubMed]
- Tzischinsky, O.; Barel, E. Sleep loss, daytime sleepiness, and neurobehavioral performance among adolescents: A field study. Clocks Sleep 2022, 4, 160–171. [Google Scholar] [CrossRef]
- Lucien, J.N.; Ortega, M.T.; Shaw, N.D. Sleep and puberty. Curr. Opin. Endocr. Metab. Res. 2021, 17, 1–7. [Google Scholar] [CrossRef]
- Kail, R.V.; Cavanaugh, J.C. Human Development: A Lifespan View, 5th ed.; Cengage Learning: Boston, MA, USA, 2010; p. 296. ISBN 978-0-495-60037-4. [Google Scholar]
- Basner, M.; Dinges, D.F. Maximizing sensitivity of psychomotor vigilance test (PVT) to sleep loss. Sleep 2011, 34, 581–591. [Google Scholar] [CrossRef]
- Wright, K.P.; Hull, J.T.; Czeisler, C.A. Relationship between alertness, performance, and body temperature in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R1370–R1377. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.P.; Duffy, J.F.; Dijk, D.J.; Ronda, J.M.; Dyal, C.M.; Czeisler, C.C. Short-term memory, alertness and performance: A reappraisal of their relationship to body temperature. J. Sleep Res. 1992, 1, 24–29. [Google Scholar] [CrossRef]
- Sadeh, A.; Sharkey, K.M.; Carskadon, M.A. Activity-based sleep-wake identification: An empirical test of methodological issues. Sleep 1994, 17, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Sadeh, A. The role and validity of actigraphy in sleep medicine: An update. Sleep Med. Rev. 2011, 15, 259–267. [Google Scholar] [CrossRef]
- Lim, J.; Tan, J.C.; Parimal, S.; Dinges, D.F.; Chee, M.W.L. Sleep deprivation impairs object-selective attention: A view from the ventral visual cortex. PLoS ONE 2010, 5, e9087. [Google Scholar] [CrossRef] [Green Version]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef]
- Åkerstedt, T.; Gillberg, M. Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Bajerski, A.E.; Jesus, I.C.D.; Menezes-Junior, F.J.D.; Leite, N. Instruments for assessment of excessive daytime sleepiness in Brazilian children and adolescents: Systematic review. Rev. Paul. Pediatr. 2022, 40, e2020230. [Google Scholar] [CrossRef] [PubMed]
- Campbell, I.G.; Burright, C.S.; Kraus, A.M.; Grimm, K.J.; Feinberg, I. Daytime sleepiness increases with age in early adolescence: A sleep restriction dose–response study. Sleep 2017, 40, zsx046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurth, S.; Riedner, B.A.; Dean, D.C.; O’Muircheartaigh, J.; Huber, R.; Jenn, O.G.; Deoni, S.C.; LeBourgeois, M.K. Traveling slow oscillations during sleep: A marker of brain connectivity in childhood. Sleep 2017, 40, zsx121. [Google Scholar] [CrossRef] [Green Version]
- Collin, G.; Van Den Heuvel, M.P. The ontogeny of the human connectome: Development and dynamic changes of brain connectivity across the life span. Neuroscientist 2013, 19, 616–628. [Google Scholar] [CrossRef]
- Chee, M.W.; Asplund, C.L. Neuroimaging of attention and alteration of processing capacity in sleep-deprived persons. In Neuroimaging of Sleep and Sleep Disorders; Nofzinger, E., Maquet, P., Theory, M.J., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 137–144. [Google Scholar]
- Lim, J.; Dinges, D.F. Sleep deprivation and vigilant attention. Ann. N. Y. Acad. Sci. 2008, 1129, 305–322. [Google Scholar] [CrossRef]
- Posner, M.I. Measuring alertness. Ann. N. Y. Acad. Sci. 2008, 1129, 193–199. [Google Scholar] [CrossRef]
- Trujillo, L.T.; Kornguth, S.; Schnyer, D.M. An ERP examination of the different effects of sleep deprivation on exogenously cued and endogenously cued attention. Sleep 2009, 32, 1285–1297. [Google Scholar] [CrossRef] [Green Version]
- Doran, S.M.; Van Dongen, H.P.A.; Dinges, D.F. Sustained attention performance during sleep deprivation: Evidence of state instability. Arch. Ital. Biol. 2001, 139, 253–267. [Google Scholar] [CrossRef]
- Spruyt, K.A. Review of developmental consequences of poor sleep in childhood. Sleep Med. 2019, 60, 3–12. [Google Scholar] [CrossRef] [PubMed]
Children (N = 46) | Adolescent (N = 58) | Group | Day Type | Group by Day | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weekday | Weekend | Weekday | Weekend | F | DF | p | Cohen’s d | F | DF | p | Cohen’s f2 | F | DF | p | Cohen’s f2 | |
Onset time (h) | 21.45 ± 0.60 [20.27–22.80] | 22.85 ± 1.34 [20.37–27.13] | 23.80 ± 1.08 [22.10–26.80] | 25.11 ± 1.78 [21.87–29.77] | 100.87 | 1.94 | 0.001 | 1.361 | 79.62 | 1.88 | 0.001 | 0.159 | 0.24 | 1.88 | 0.63 | 0.002 |
Wake time (h) | 6.84 ± 0.46 [5.87–8.10] | 8.11 ± 1.16 [6.12–11.27] | 7.13 ± 0.82 [5.82–10.17] | 9.23 ± 1.76 [5.73–12.97] | 12.214 | 1.94 | 0.001 | 0.706 | 116.22 | 1.88 | 0.001 | 0.085 | 6.71 | 1.88 | 0.01 | 0.008 |
Duration (min) | 564.1 ± 43.7 [445.0–631.0] | 556.3 ± 74.7 [356.0–747.0] | 441.0 ± 54.8 [246.0–529.5] | 486.5 ± 92.7 [229.0–684.0] | 77.77 | 1.92 | 0.001 | 0.810 | 3.47 | 1.90 | 0.07 | 0.002 | 7.17 | 1.90 | 0.009 | 0.006 |
Sleep efficiency (%) | 95.3 ± 3.2 [87.7–100.0] | 94.3 ± 4.0 [82.5–99.6] | 83.7 ± 5.0 [64.3–92.7] | 80.7 ± 13,8 [21.0–98.0] | 84.17 | 1.81 | 0.001 | 2.671 | 4.93 | 1.84 | 0.03 | 0.029 | 2.04 | 1.84 | 0.16 | 0.019 |
Sleep latency (min) | 18.16 ± 12.39 [0.00–71.80] | 14.71 ± 11.18 [0.00–56.00] | 20.13 ± 15.47 [1.50–65.40] | 34.19 ± 39.19 [0.00–159.0] | 1.24 | 1.94 | 0.27 | 0.102 | 0.69 | 1.90 | 0.41 | 0.001 | 2.24 | 1.90 | 0.14 | 0.011 |
WASO (min) | 26.76 ± 17.94 [1.6–65.6] | 31.14 ± 22.49 [3.0–97.0] | 46.89 ± 20.58 [14.2–140.6] | 46.33 ± 28.55 [2.0–92.3] | 20.01 | 1.96 | 0.001 | 1.035 | 0.24 | 1.88 | 0.62 | 0.000 | 0.83 | 1.88 | 0.36 | 0.004 |
Children (N = 46) | Adolescent (N = 58) | Group | Day Type | Group by Day Type | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weekday | Weekend | Weekday | Weekend | F | DF | p | d | F | DF | p | f2 | F | DF | p | f2 | |
Mean RT (s) | 460.99 ± 211.06 [250.57–1457.00] | 440.14 ± 202.84 [276.03–1368.30] | 278.03 ± 48.27 [250.57–1457.00] | 266.16 ± 49.86 [199.03–419.20] | 68.30 | 1.88 | <0.001 | 1.5 | 5.99 | 1.62 | 0.02 | 0.004 | 1.40 | 1.56 | 0.24 | 0.002 |
Lapses (no.) | 13.01 ± 6.15 [1.33–28.67] | 13.35 ± 6.85 [3.50–30.05] | 5.71 ± 4.53 [0.50–20.63] | 4.11 ± 3.83 [0.00–15.50] | 62.54 | 1.92 | <0.001 | 1.6 | 3.73 | 1.81 | 0.06 | 0.025 | 8.25 | 1.82 | 0.005 | 0.051 |
Mean RT | Lapses | |||
---|---|---|---|---|
r (95% CI) | p | r (95% CI) | p | |
Onset | −0.02 (−0.12, 0.08) | 0.674 | −0.07 (−0.17, 0.03) | 0.185 |
Children | 0.02 (−0.13, 0.17) | 0.805 | 0.08 (0.07, 0.23) | 0.302 |
Adolescents | −0.22 (−0.35, −0.08) | 0.002 | −0.26 (−0.39, −0.13) | 0.004 |
Wake time | −0.02 (0.12, 0.08) | 0.698 | −0.14 (−0.24, −0.04) | 0.006 |
No outlier | −0.02 (−0.12,0.08) | 0.702 | 0.13 (−0.03, 0.27) | 0.149 |
Children | 0.05 (−0.10, 0.20) | 0.914 | −0.22 (−0.43, 0.01 | 0.062 |
Adolescents | −0.26 (−0.38, −0.12) | 0.004 | −0.40 (−0.51, −0.28) | 0.004 |
Sleep duration | −0.0011 (0.10, 0.10) | 0.983 | −0.11 (−0.21, −0.01) | 0.027 |
Children | 0.04 (−0.12,0.18) | 0.648 | 0.06 (−0.09, 0.21) | 0.447 |
Adolescents | −0.13 (−0.26, 0.02) | 0.082 | −0.30(−0.42, −0.17) | 0.001 |
Sleep efficiency | 0.02 (−0.08, 0.12) | 0.707 | 0.02 (−0.08, 0.12) | 0.693 |
Children | −0.00 (−0.15, 0.15) | 0.987 | −0.06 (−0.22 0.08) | 0.362 |
Adolescents | 0.12 (−0.03, 0.26) | 0.120 | 0.10 (−0.05, 0.24) | 0.190 |
Sleep latency (Log) | −0.06 (−0.16, 0.04) | 0.295 | −0.04 (−0.14, 0.06) | 0.425 |
Children | −0.10 (−0.24, 0.05) | 0.199 | −0.07 (−0.25, 0.08) | 0.370 |
Adolescents | 0.01 (−0.13, 0.15) | 0.891 | −0.0 (−0.16, 0.12) | 0.792 |
WASO | 0.03 (−0.07, 0.13) | 0.801 | 0.01 (−0.09, 0.12) | 0.587 |
No outlier | 0.01 (−0.02, 0.12) | 0.808 | 0.02 (−0.02, 0.13) | 0.677 |
Children | 0.03 (−0.12, 0.18) | 0.669 | 0.09 (−0.06, 0.24) | 0.241 |
Adolescents | −0.02 (−0.16, 0.12) | 0.786 | −0.02 (−0.16, 0.12) | 0.768 |
KSS | 0.03 (−0.07, 0.12) | 0.603 | 0.07 (−0.02, 0.17) | 0.138 |
Children | −0.03 (−0.17, 0.11) | 0.683 | −0.05 (−0.19, 0.10) | 0.513 |
Adolescents | 0.31 (0.24, 0.48) | 0.000 | 0.280 (0.15, 0.40) | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barel, E.; Tzischinsky, O. The Role of Sleep Patterns from Childhood to Adolescence in Vigilant Attention. Int. J. Environ. Res. Public Health 2022, 19, 14432. https://doi.org/10.3390/ijerph192114432
Barel E, Tzischinsky O. The Role of Sleep Patterns from Childhood to Adolescence in Vigilant Attention. International Journal of Environmental Research and Public Health. 2022; 19(21):14432. https://doi.org/10.3390/ijerph192114432
Chicago/Turabian StyleBarel, Efrat, and Orna Tzischinsky. 2022. "The Role of Sleep Patterns from Childhood to Adolescence in Vigilant Attention" International Journal of Environmental Research and Public Health 19, no. 21: 14432. https://doi.org/10.3390/ijerph192114432
APA StyleBarel, E., & Tzischinsky, O. (2022). The Role of Sleep Patterns from Childhood to Adolescence in Vigilant Attention. International Journal of Environmental Research and Public Health, 19(21), 14432. https://doi.org/10.3390/ijerph192114432