Immune Status of Workers with Professional Risk of Being Affected by Chrysotile Asbestos in Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Examined Population and Ethics Disclaimer
- Results of the medical examination (chronic diseases, needs an in-depth investigation, needs a dispensary)—145 workers;
- Health conditions with loss of earning capacity in the last year—69 workers;
- Change of profession in the last 2 years—41 workers;
- Interruptions in work (labor leave, qualification, or other) in the last 6 months—42 workers;
- Constant tobacco smoking in the last year—103 workers;
- Ethical refusal—9 workers.
2.2. Distribution of Trial Arms
- Group 1: 51 employees directly involved in the extraction and beneficiation of chrysotile asbestos ores, with work experience of less than 15 years (average work experience 8.55 years; SD = 4.5; Me = 8.0), at the age of 22 to 58 years old (average age 36.41; SD = 9.0; Me = 35.0);
- Group 2: 39 employees directly involved in the extraction and beneficiation of chrysotile asbestos ores, with work experience of more than 15 years (average work experience 24.54 years; SD = 6.7; Me = 23.0), aged between 39 and 63 years old (average age 52.49; SD = 7.0; Me = 52.0);
- Group 3: control group, 35 employees not involved in the extraction and beneficiation of chrysotile asbestos ores, without possible professional contact with chrysotile (average work experience 12.37; years SD = 7.1; Me = 12.0), aged between 23 and 60 years old (average age 35.94; SD = 8.8; Me = 35.0).
2.3. Hematologic Studies
2.4. Statistic Analysis
3. Results
3.1. Results of Cell Immunity Study
3.2. Results of Study of NK Cells and Humoral Immunity
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Austin, E.K.; James, C.; Tessier, J. Early Detection Methods for Silicosis in Australia and Internationally: A Review of the Literature. Int. J. Environ. Res. Public Health 2021, 18, 8123. [Google Scholar] [CrossRef] [PubMed]
- Pushenko, S.; Staseva, E.; Trushkova, E.; Kvitkina, M.; Litvinov, A. The purpose and objectives of the labor protection service at the enterprise. IOP Conf. Ser. Mater. Sci. Eng. 2020, 1001, 012110. [Google Scholar] [CrossRef]
- Vlahovich, K.P.; Sood, A. A 2019 Update on Occupational Lung Diseases: A Narrative Review. Pulm. Ther. 2021, 7, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.A. Resurgent coal mine dust lung disease: Wave of the future or a relic of the past? Occup. Environ. Med. 2016, 73, 715–716. [Google Scholar] [CrossRef] [PubMed]
- McBean, R.; Tatkovic, A.; Edwards, R.; Newbigin, K. What does coal mine dust lung disease look like? A radiological review following re-identification in Queensland. J. Med. Imaging Radiat. Oncol. 2020, 64, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Amanbekov, U.A.; Sakiev, K.Z.; Amanbekova, A.U.; Ibraeva, L.K.; Otarbaeva, M.B.; Dzhakupbekova, G.M. Contemporary aspects of examination concerning relationship of disease with occupation in Kazakhstan. Meditsina Tr. I Promyshlennaya Ekol. 2017, 5, 15–18. [Google Scholar]
- Syurin, S.A.; Kovshov, A.A. Working conditions and work-related pathologies at enterprises located in chukotka autonomous area. Health Risk Anal. 2020, 4, 99–106. [Google Scholar] [CrossRef]
- Qi, X.-M.; Luo, Y.; Song, M.-Y.; Liu, Y.; Shu, T.; Liu, Y.; Pang, J.-L.; Wang, J.; Wang, C. Pneumoconiosis: Current Status and Future Prospects. Chin. Med. J. 2021, 134, 898–907. [Google Scholar] [CrossRef]
- Naha, N.; Muhamed, J.; Pagdhune, A.; Sarkar, B.; Sarkar, K. Club cell protein 16 as a biomarker for early detection of silicosis. Indian J. Med. Res. 2020, 151, 319–325. [Google Scholar]
- Wilk, A.; Garland, S.; Falk, N. Less Common Respiratory Conditions: Occupational Lung Diseases. FP Essent. 2021, 502, 11–17. [Google Scholar]
- Velichkovskiĭ, B.; Fishman, B. The evaluation of the dust cytotoxicity in the manufacture of high-alumina mullite refractory clays. Gig. Sanit. 1999, 5, 53–57. [Google Scholar]
- Babanov, S.A.; Budash, D.S. Changes of the Respiratory System in Dust Lung Diseases. Crime. J. Intern. Dis. 2016, 1, 40–48. Available online: https://www.cyberleninka.ru/article/n/izmeneniya-respiratornoy-sistemy-pri-pylevyh-zabolevaniyah-legkih (accessed on 20 September 2022).
- Babanov, S.A.; Budash, D.S. Substantiality, occupational risks and biological markers in occupational pulmonary diseases. Occup. Med. Hum. Ecol. 2018, 1, 34–43. Available online: https://www.cyberleninka.ru/article/n/sostoyanie-gumoralnogo-immuniteta-pri-hronicheskom-pylevom-bronhite-i-pnevmokoniozah-ot-vozdeystviya-razlichnyh-vidov-fibrogennoy-pyli (accessed on 20 September 2022).
- Carter, J.M.; Corson, N.; Driscoll, K.E.; Elder, A.; Finkelstein, J.N.; Harkema, J.N.; Gelein, R.; Wade-Mercer, P.; Nguyen, K.; Oberdorster, G. A comparative dose-related response of several key pro- and antiinflammatory mediators in the lungs of rats, mice, and hamsters after subchronic inhalation of carbon black. J. Occup. Environ. Med. 2006, 48, 1265–1278. [Google Scholar] [CrossRef]
- Zhou, L.R.; Zhou, J.H.; Yang, J.C. Effects of Cytokines Induced by Mineral Dust on Lung Fibroblasts In Vitro. J. Occup. Health 1999, 41, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, Y.; Maeda, M.; Kumagai-Takei, N.; Lee, S.; Matsuzaki, H.; Wada, Y.; Nishiike-Wada, T.; Iguchi, H.; Otsuki, T. Altered functions of alveolar macrophages and NK cells involved in asbestos-related diseases. Environ. Health Prev. Med. 2013, 18, 198–204. [Google Scholar] [CrossRef]
- Jablonski, R.P.; Kim, S.J.; Cheresh, P.; Kamp, D.W. Insights into mineral fibre-induced lung epithelial cell toxicity and pulmonary fibrosis. In European Mineralogical Union Notes in Mineralogy Mineral Fibres: Crystal Chemistry, Chemical-Physical Properties, Biological Interaction and Toxicity; European Mineralogical Union: McLean, VA, USA, 2017; Volume 18, pp. 447–500. [Google Scholar]
- Bernstein, D.M.; Chevalier, J.; Smith, P. Comparison of calidria chrysotile asbestos to pure tremolite: Final results of the inhalation biopersistence and histopathology examination following short-term exposure. Inhal. Toxicol. 2005, 17, 427–449. [Google Scholar] [CrossRef]
- Khaitov, R.M.; Pinegin, B.V.; Yarilin, A.A. Manual of Clinical Immunology. Diagnosis of Diseases of the Immune System: A Guide for Physicians [Rukovodstvo po Klinicheskoy Immunologii. Diagnostika Zabolevaniy Immunnoy Sistemy: Rukovodstvo Dlya Vrachey]; GEOTAR Media: Moscow, Russia, 2009; p. 345. [Google Scholar]
- Babanov, S.A.; Budash, D.S. The state of humoral immunity in chronic dust bronchitis and pneumoconiosis from exposure to various types of fibrogenic dust. Izv. Vyss. Uchebnykh Zavedenii. Povolzhskii Reg. Meditsinskie Nauk. 2016, 3, 23–34. Available online: https://cyberleninka.ru/article/n/sostoyanie-gumoralnogo-immuniteta-pri-hronicheskom-pylevom-bronhite-i-pnevmokoniozah-ot-vozdeystviya-razlichnyh-vidov-fibrogennoy-pyli (accessed on 20 September 2022).
- Koygeldinova, S.S.; Ibrayev, S.A.; Bazeluk, L.T.; Kasymova, A.K.; Talaspayeva, A.Y. Phagocytosis of alveolar macrophages in experimental animals exposed to chrosotil- asbestos dust. Gig. Sanit. 2021, 100, 73–76. [Google Scholar] [CrossRef]
- Pappas, R.S. Toxic elements in tobacco and in cigarette smoke: Inflammation and sensitization. Metallomics 2011, 3, 1181–1198. [Google Scholar] [CrossRef] [Green Version]
- Khaitov, M.R.; Ilina, N.I.; Luss, L.V.; Babakhin, A.A. Mucosal Immunity of the Respiratory Tract and Its Role in Occupational Pathologies. Extrem. Med. 2017, 3, 8–24. Available online: https://cyberleninka.ru/article/n/mukozalnyy-immunitet-respiratornogo-trakta-i-ego-rol-pri-professionalnyh-patologiyah (accessed on 20 September 2022).
- Shchubelko, R.V.; Zuikova, I.N.; Shuljenko, A.E. Mucosal immunity of the upper respiratory tract. Immunologiya 2018, 39, 81–88. [Google Scholar]
- De Vuyst, P.; Camus, P. The past and present of pneumoconioses. Curr. Opin. Pulm. Med. 2000, 6, 151–156. [Google Scholar] [CrossRef] [PubMed]
Indicators, %; (Ref) | Group 1 (n = 51) | Group 2 (n = 39) | Group 3 (n = 35) | Post Hoc Comparisons | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | Me (95% CI) | M | SD | Me (95% CI) | M | SD | Me (95% CI) | |||
CD3+, % (55.0–84.0) | 65.75 | 7.11 | 65.00 (63.75; 63.75) | 63.15 | 8.65 | 63.00 (60.35; 65.96) | 71.91 | 5.81 | 69.00 (69.95; 74.05) | GH1–2 = 2.591 t1–3 = −6.169 t2–3 = −8.760 | 0.288 <0.001 * <0.001 * |
CD4+, % (30.0–57.0) | 34.29 | 7.01 | 34.00 (32.32; 36.37) | 30.41 | 6.35 | 31.00 (28.35; 32.47) | 42.09 | 5.53 | 43.00 (39.94; 43.70) | U1–2 = 697.5 t1–3 = −7.792 t2–3 = −11.675 | 0.015 <0.001 * <0.001 * |
CD8+, % (16.0–35.0) | 31.29 | 8.18 | 31.00 (28.99; 33.59) | 31.05 | 5.04 | 31.00 (29.42; 32.69) | 25.74 | 4.37 | 26.00 (24.36; 27.40) | GH1–2 = 0.243 t1–3 = 5.551 t2–3 = 5.308 | 0.984 <0.001 * 0.001 * |
CD4+8+, % (0–1.5) | 1.107 | 0.852 | 1.100 (0.867; 1.347) | 1.232 | 1.213 | 0.900 (0.839; 1.625) | 1.620 | 0.537 | 1.600 (1.423; 1.802) | GH1–2 = −0.123 t1–3 = −0.513 t2–3 = −0.388 | 0.849 0.022 0.123 |
NPA, % (20.0–60.0) | 41.33 | 7.121 | 40.00 (39.33; 43.34) | 41.64 | 6.458 | 40.00 (39.55; 43.73) | 35.14 | 4.710 | 36.00 (33.74; 36.96) | U1–2 = 1056.0 t1–3 = 5.980 t2–3 = 6.288 | 0.614 <0.001 * <0.001 * |
Indicators, %; (Ref) | Group 1 (n = 51) | Group 2 (n = 39) | Group 3 (n = 35) | Post Hoc Comparisons | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | Me (95% CI) | M | SD | Me (95% CI) | M | SD | Me (95% CI) | |||
CD19+, % (6.0–24.0) | 14.04 | 5.657 | 14.00 (12.45; 15;63) | 12.59 | 5.674 | 12.00 (10.75; 14.43) | 16.63 | 3.687 | 17.00 (15.36; 17.90) | GH1–2 = 1.449 t1–3 = −2.589 t2–3 = −4.039 | 0.455 0.045 0.002 * |
CD3+56/16+, %; (0.0–5.0) | 1.88 | 1.50 | 1.50 (1.46; 2.30) | 2.50 | 2.04 | 1.50 (1.84; 3.16) | 3.15 | 2.72 | 2.90 (2.22; 4.09) | GH 1–2 = −0.616 t1–3 = −1.271 t2–3 = −0.655 | 0.259 0.011 * 0.292 |
CD3–56/16+, %; (3.0–15.0) | 14.49 | 5.20 | 13.80 (13.03; 15.95) | 20.23 | 11.14 | 18.00 (16.62; 23.84) | 14.33 | 5.596 | 13.00 (12.41; 16.26) | GH1–2 = −5.734 t1–3 = 0.158 t2–3 = 5.893 | 0.012 * 0.993 0.002 * |
Indicators, %; (Ref) | Group 1 (n = 51) | Group 2 (n = 39) | Group 3 (n = 35) | Kruskal–Wallis Test | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | Me (95% CI) | M | SD | Me (95% CI) | M | SD | Me (95% CI) | |||
IgA, g/L; (0.63–4.84) | 2.610 | 1.215 | 2.644 (2.268; 2.951) | 2.526 | 1.245 | 2.912 (2.123; 2.929) | 2.866 | 1.037 | 3.101 (2.510; 3.222) | 1.629 | 0.443 |
IgM, g/L; (0.22–2.4) | 1.273 | 0.459 | 1.360 (1.144; 1.402) | 1.294 | 0.427 | 1.433 (1.155; 1.432) | 1.332 | 0.421 | 1.450 (1.187; 1.476) | 0.174 | 0.917 |
IgG, g/L; (5.4–18.22) | 12.66 | 4.41 | 12.13 (11.41; 13.90) | 13.46 | 4.03 | 13.54 (12.15; 14.77) | 11.62 | 3.27 | 12.69 (10.49; 12.74) | 3.035 | 0.219 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koigeldinova, S.; Alexeyev, A.; Zharylkassyn, Z.; Otarov, Y.; Omarkulov, B.; Tilemissov, M.; Ismailov, C. Immune Status of Workers with Professional Risk of Being Affected by Chrysotile Asbestos in Kazakhstan. Int. J. Environ. Res. Public Health 2022, 19, 14603. https://doi.org/10.3390/ijerph192114603
Koigeldinova S, Alexeyev A, Zharylkassyn Z, Otarov Y, Omarkulov B, Tilemissov M, Ismailov C. Immune Status of Workers with Professional Risk of Being Affected by Chrysotile Asbestos in Kazakhstan. International Journal of Environmental Research and Public Health. 2022; 19(21):14603. https://doi.org/10.3390/ijerph192114603
Chicago/Turabian StyleKoigeldinova, Sholpan, Alexey Alexeyev, Zhengisbek Zharylkassyn, Yertay Otarov, Bauyrzhan Omarkulov, Magzhan Tilemissov, and Chingiz Ismailov. 2022. "Immune Status of Workers with Professional Risk of Being Affected by Chrysotile Asbestos in Kazakhstan" International Journal of Environmental Research and Public Health 19, no. 21: 14603. https://doi.org/10.3390/ijerph192114603
APA StyleKoigeldinova, S., Alexeyev, A., Zharylkassyn, Z., Otarov, Y., Omarkulov, B., Tilemissov, M., & Ismailov, C. (2022). Immune Status of Workers with Professional Risk of Being Affected by Chrysotile Asbestos in Kazakhstan. International Journal of Environmental Research and Public Health, 19(21), 14603. https://doi.org/10.3390/ijerph192114603