Prognostic Performance of Cystatin C in COVID-19: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Identification
2.2. Study Selection Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Selection and Characteristics
3.2. Meta-Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dzieciatkowski, T.; Szarpak, L.; Filipiak, K.J.; Jaguszewski, M.; Ladny, J.R.; Smereka, J. COVID-19 challenge for modern medicine. Cardiol. J. 2020, 27, 175–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, P.; Zhou, Y.; Wang, F.; Wang, H.; Zhang, M.; Pan, X.; Zhao, Q.; Liu, J. Clinical characteristics, laboratory outcome characteristics, comorbidities, and complications of related COVID-19 deceased: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2020, 32, 1869–1878. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wang, L.; Ye, J.; Gu, Z.; Wang, S.; Xia, J.; Xie, Y.; Li, Q.; Xu, R.; Lin, N. Predictors of mortality in patients with coronavirus disease 2019: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 663. [Google Scholar] [CrossRef]
- Jacobsson, B.; Lignelid, H.; Bergerheim, U. Transthyretin and cystatin C are catabolized in proximal tubular epithelial cells and the proteins are not useful as markers for renal cell carcinomas. Histopathology 1995, 26, 559–564. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, R.; Wu, H.; Yi, J.; Luo, L.; Dong, G.; Jing, H. Cystatin C as a reliable marker of renal function following heart valve replacement surgery with cardiopulmonary bypass. Clin. Chim. Acta 2006, 374, 116–121. [Google Scholar] [CrossRef]
- Abrahamson, M.; Olafsson, I.; Palsdottir, A.; Ulvsbäck, M.; Lundwall, A.; Jensson, O.; Grubb, A. Structure and expression of the human cystatin C gene. Biochem. J. 1990, 268, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Herget-Rosenthal, S.; Bokenkamp, A.; Hofmann, W. How to estimate GFR-serum creatinine, serum cystatin C or equations? Clin. Biochem. 2007, 40, 153–161. [Google Scholar] [CrossRef]
- Mazur, M.J.; Heilman, R.L. Early detection of acute renal failure by serum cystatin C: A new opportunity for a hepatologist. Liver Transplant. 2005, 11, 705–707. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Yamauchi, M.; Musha, H.; Mikami, T.; Kawasaki, K.; Miyake, F. Impact of Contrast-Induced Nephropathy and Cardiovascular Events by Serum Cystatin C in Renal Insufficiency Patients Undergoing Cardiac Catheterization. Angiology 2010, 61, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Zi, M.; Xu, Y. Involvement of cystatin C in immunity and apoptosis. Immunol. Lett. 2018, 196, 80–90. [Google Scholar] [CrossRef]
- Anavi, S.; Tirosh, O. iNOS as a metabolic enzyme under stress conditions. Free Radic. Biol. Med. 2020, 146, 16–35. [Google Scholar] [CrossRef] [PubMed]
- Fajgenbaum, D.C.; June, C.H. Cytokine storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef] [PubMed]
- Farouk, S.S.; Fiaccadori, E.; Cravedi, P.; Campbell, K.N. COVID-19 and the kidney: What we think we know so far and what we don’t. J. Nephrol. 2020, 33, 1213–1218. [Google Scholar] [CrossRef]
- Nadim, M.K.; Forni, L.G.; Mehta, R.L.; Connor, M.J., Jr.; Liu, K.D.; Ostermann, M.; Rimmele, T.; Zarbock, A.; Bell, S.; Bihorac, A.; et al. COVID-19-associated acute kidney injury: Consensus report of the 25th acute disease quality initiative (ADQI) workgroup. Nat. Rev. Nephrol. 2020, 16, 747–764. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thomas, J. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley and Sons, Ltd.: Chichester, UK, 2019. [Google Scholar]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [Green Version]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Abbas, H.F.; Al-Tu’ma, F.J.; Al-Saiegh, R.M. Role of Calprotectin and Cystatin C Levels as in COVID-19 Complication Pathogenesis of Iraqi Pandemic. Turk. J. Physiother. Rehabil. 2022, 32, 28310–28324. [Google Scholar]
- Cao, J.; Tu, W.-J.; Cheng, W.; Yu, L.; Liu, Y.-K.; Hu, X.; Liu, Q. Clinical Features and Short-term Outcomes of 102 Patients with Coronavirus Disease 2019 in Wuhan, China. Clin. Infect. Dis. 2020, 71, 748–755. [Google Scholar] [CrossRef]
- Deng, M.; Qi, Y.; Deng, L.; Wang, H.; Xu, Y.; Li, Z.; Meng, Z.; Tang, J.; Dai, Z. Obesity as a Potential Predictor of Disease Severity in Young Patients with COVID-19: A Retrospective Study. Obesity 2020, 28, 1815–1825. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, D.; Zhang, L.; Zheng, X.; Zhang, G.; Pan, K.; Yu, H.; Zhang, L.; Hu, X. Neurological and psychiatric presentations associated with COVID-19. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Jha, K.; Kumar, T.; Bhushan, D.; Kumar, S.; Verma, P.; Ganguly, A.; Kumar, Y. Zabihullah Role of cystatin C and calprotectin as potential early prognostic biomarkers in COVID-19 patients admitted to a dedicated COVID care facility. J. Fam. Med. Prim. Care 2022, 11, 3971–3979. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Peng, D.; Zhu, H.-M.; Li, B.-Y.; Yang, X.; Sun, X.-L.; Zhang, M. Predictive value of serum cystatin C for risk of mortality in severe and critically ill patients with COVID-19. World J. Clin. Cases 2020, 8, 4726–4734. [Google Scholar] [CrossRef]
- Li, J.; Yang, L.; Zeng, Q.; Li, Q.; Yang, Z.; Han, L.; Huang, X.; Chen, E. Determinants of mortality of patients with COVID-19 in Wuhan, China: A case-control study. Ann. Palliat. Med. 2021, 10, 3937–3950. [Google Scholar] [CrossRef]
- Lin, L.; Chen, X.; Chen, J.; Pan, X.; Xia, P.; Lin, H.; Du, H. The predictive value of serum level of cystatin C for COVID-19 severity. Sci. Rep. 2021, 11, 21964. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, P.; Cao, W.; Liu, Z.; Ma, J.; Zheng, K.; Chen, L.; Li, X.; Qin, Y.; Li, X. Divergence between serum creatine and cystatin C in estimating glomerular filtration rate of critically ill Patients with COVID-19. Ren. Fail. 2021, 43, 1104–1114. [Google Scholar] [CrossRef]
- Ramos-Santos, K.; Cortes-Telles, A.; Uc-Miam, M.E.; Avila-Nava, A.; Lugo, R.; Aké, R.C.; Gutiérrez-Solis, A.L. Cystatin C is a marker for acute kidney injury, but not for mortality among Patients with COVID-19 in Mexico. Braz. J. Infect. Dis. 2022, 26, 102365. [Google Scholar] [CrossRef]
- Pode Shakked, N.; de Oliveira, M.H.S.; Cheruiyot, I.; Benoit, J.L.; Plebani, M.; Lippi, G.; Benoit, S.W.; Henry, B.M. Early prediction of COVID-19-associated acute kidney injury: Are serum NGAL and serum Cystatin C levels better than serum creatinine? Clin. Biochem. 2022, 102, 1–8. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Y.; Sun, J.; Pan, H.; Yao, F.; Jiao, X. Selection of an Optimal Combination Panel to Better Triage COVID-19 Hospitalized Patients. J. Inflamm. Res. 2020, 13, 773–787. [Google Scholar] [CrossRef]
- Temiz, M.Z.; Hacibey, I.; Yazar, R.O.; Sevdi, M.S.; Kucuk, S.H.; Alkurt, G.; Doganay, L.; Dinler Doganay, G.; Dincer, M.M.; Yuruk, E.; et al. Altered kidney function induced by SARS-CoV-2 infection and acute kidney damage markers predict survival outcomes of Patients with COVID-19: A prospective pilot study. Ren. Fail. 2022, 44, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Deng, R.; Gou, L.; Fu, Z.; Zhang, X.; Shao, F.; Wang, G.; Fu, W.; Xiao, J.; Ding, X.; et al. Preliminary study to identify severe from moderate cases of COVID-19 using combined hematology parameters. Ann. Transl. Med. 2020, 8, 593. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, S.; Zhang, Y.; Gao, K.; Zuo, J.; Tan, N.; Du, K.; Ma, Y.; Hou, Y.; Li, Q.; et al. Clinical features and risk factors for severe inpatients with COVID-19: A retrospective study in China. PLoS ONE 2020, 15, e0244125. [Google Scholar] [CrossRef] [PubMed]
- Wasfy, S.F.; Wasfey, E.F.; Elmaraghy, A.A.; AbdelFatah, E.B.; Tharwat, A.I. Cystatin C and Neutrophil Gelatin- associated Lipocalin (NGAL) Can Predict Acute Kidney Injury and In-Hospital Mortality in Patients with COVID-19. J. Cell Mol. Anesth. 2022, 7, 32–39. [Google Scholar]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943, Erratum in JAMA Intern. Med. 2020, 180, 1031. [Google Scholar] [CrossRef] [Green Version]
- Xiang, H.-X.; Fei, J.; Xiang, Y.; Xu, Z.; Zheng, L.; Li, X.-Y.; Fu, L.; Zhao, H. Renal dysfunction and prognosis of COVID-19 patients: A hospital-based retrospective cohort study. BMC Infect. Dis. 2021, 21, 158. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, J.; He, Z.; Lü, Y.; Xu, Q.; Ye, C.; Chen, S.; Tang, B.; Yin, K.; Lu, Y.; et al. Predictors for imaging progression on chest CT from coronavirus disease 2019 (COVID-19) patients. Aging 2020, 12, 6037–6048. [Google Scholar] [CrossRef]
- Yao, Q.; Wang, P.; Wang, X.; Qie, G.; Meng, M.; Tong, X.; Bai, X.; Ding, M.; Liu, W.; Liu, K.; et al. A retrospective study of risk factors for severe acute respiratory syndrome coronavirus 2 infections in hospitalized adult patients. Pol. Arch. Intern. Med. 2020, 130, 390–399. [Google Scholar]
- Yildirim, C.; Ozger, H.S.; Yasar, E.; Tombul, N.; Gulbahar, O.; Yildiz, M.; Bozdayi, G.; Derici, U.; Dizbay, M. Early predictors of acute kidney injury in Patients with COVID-19. Nephrology 2021, 26, 513–521. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, Y.; Chen, M.; Wan, Q.; Chen, X. Clinical analysis of risk factors for severe Patients with COVID-19 with type 2 diabetes. J. Diabetes Complicat. 2020, 34, 107666. [Google Scholar] [CrossRef]
- Zhang, X.-B.; Hu, L.; Ming, Q.; Wei, X.-J.; Zhang, Z.-Y.; Chen, L.-D.; Wang, M.-H.; Yao, W.-Z.; Huang, Q.-F.; Ye, Z.-Q.; et al. Risk factors for mortality of coronavirus disease-2019 (COVID-19) patients in two centers of Hubei province, China: A retrospective analysis. PLoS ONE 2021, 16, e0246030. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Bai, Y.; Wang, C.; Zhong, Y.; Lu, N.; Tian, L.; Cai, F.; Jin, R. Risk factors related to the severity of COVID-19 in Wuhan. Int. J. Med. Sci. 2021, 18, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, Z.; Dobrinina, M.; Dong, Y.; Kang, Z.; Chereshnev, V.; Hu, D.; Zhang, Z.; Zhang, J.; Sarapultsev, A. Urinalysis, but Not Blood Biochemistry, Detects the Early Renal Impairment in Patients with COVID-19. Diagnostics 2022, 12, 602. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Mangoni, A.A.; Cystatin, C. COVID-19 severity and mortality: A systematic review and meta-analysis. J. Nephrol. 2022, 35, 59–68. [Google Scholar] [CrossRef]
- Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020, 46, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.W.; Xu, D.; Zhang, H.; Zhou, W.; Wang, L.-H.; Cui, X.G. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: A study based on single-cell transcriptome analysis. Intensive Care Med. 2020, 46, 1114. [Google Scholar] [CrossRef] [Green Version]
- Szarpak, L.; Nowak, B.; Kosior, D.; Zaczynski, A.; Filipiak, K.J.; Jaguszewski, M.J. Cytokines as a predictor of COVID-19 severity: Evidence from meta-analysis. Pol. Arch. Intern. Med. 2021, 131, 98–99. [Google Scholar] [CrossRef]
- Oberbauer, R.; Nenov, V.; Weidekamm, C.; Haas, M.; Szekeres, T.; Mayer, G. Reduction in mean glomerular pore size coincides with the development of large shunt pores in patientswith diabetic nephropathy. Exp. Nephrol. 2001, 9, 49–53. [Google Scholar] [CrossRef]
- Kesson, A.; Lindström, V.; Nyman, U.; Jonsson, M.; Abrahamson, M.; Christensson, A.; Björk, J.; Grubb, A. Shrunken pore syndrome and mortality: A cohort study of patients with measured GFR and known comorbidities. Scand. J. Clin. Lab. Investig. 2020, 80, 412–422. [Google Scholar] [CrossRef]
- Al-Aly, Z.; Xie, Y.; Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 2021, 594, 259–264. [Google Scholar] [CrossRef]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Xu, E.; Al-Aly, Z. Kidney Outcomes in Long COVID. J. Am. Soc. Nephrol. 2021, 32, 2851–2862. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Penfold, R.S.; Merino, J.; Sudre, C.H.; Molteni, E.; Berry, S.; Canas, L.S.; Graham, M.S.; Klaser, K.; Modat, M.; et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: A prospective, community-based, nested, case-control study. Lancet Infect. Dis. 2021, 22, 43–55. [Google Scholar] [CrossRef]
- Jiang, R.; Xu, C.; Zhou, X.; Wang, T.; Yao, G. Detection of Cystatin C biomarker for clinical measurement of renal disease by developed ELISA diagnostic kits. J. Transl. Med. 2014, 12, 205. [Google Scholar] [CrossRef] [PubMed]
Study | Country | Study Group | No. of Patients | Age | Sex, Male | Cystatin C Level | NOS Scale |
---|---|---|---|---|---|---|---|
Abbas et al., 2022 [20] | Iraq | Non-severe | 35 | 56.82 ± 12.574 | 28 (80.0%) | 0.49 ± 0.104 | 8 |
Severe | 36 | 63.04 ± 11.143 | 29 (80.6%) | 0.48 ± 0.103 | |||
Cao et al., 2020 [21] | China | Survivors | 85 | 54.75 ± 3.17 | 40 (47.1%) | 0.96 ± 0.23 | 9 |
Non-survivors | 17 | 72 ± 4.5 | 13 (76.5%) | 1.66 ± 0.97 | |||
Deng et al., 2020 [22] | China | Non-severe | 53 | 34 ± 2 | 24 (45.3%) | 1.12 ± 0.224 | 8 |
Severe | 12 | 33.25 ± 2 | 12 (100%) | 0.788 ± 0.043 | |||
He et al., 2022 [23] | China | Non-severe | 54 | 49.7 ± 5.3 | 26 (48.1%) | 1.15 ± 0.1 | 8 |
Severe | 23 | 63.25 ± 2.25 | 12 (52.2%) | 0.95 ± 0.1 | |||
Kumar et al., 2022 [24] | India | Non-severe | 63 | 52.1 ± 11.1 | NS | 0.82 ± 0.23 | 7 |
Severe | 32 | 54.8 | NS | 1.17 ± 0.55 | |||
Li et al., 2020 [25] | China | Survivors | 64 | 54.09 ± 14.95 | 30 (46.9%) | 0.8 ± 0.05 | 8 |
Non-survivors | 37 | 71.76 ± 10.012 | 23 (62.2%) | 1.05 ± 0.1 | |||
Li et al., 2021 [26] | China | Survivors | 230 | 56.25 ± 3.83 | 108 (47.0%) | 0.9 ± 0.067 | 8 |
Non-survivors | 96 | 70.75 ± 3 | 63 (65.6%) | 1.4 ± 0.167 | |||
Lin et al., 2021 [27] | China | Non-severe | 134 | 59.8 ± 13.0 | 64 (47.8%) | 1.36 ± 0.195 | 8 |
Severe | 28 | 70.1 ± 12.7 | 20 (71.4%) | 1.07 ± 0.05 | |||
Liu et al., 2021 [28] | China | Non-severe | 76 | 62.9 ± 9.3 | 49 (64.5%) | 1.203 ± 0.113 | 9 |
Severe | 76 | 64.5 ± 9.3 | 49 (64.5%) | 1.3 ± 0.22 | |||
Ramos-Santos et al., 2022 [29] | Mexico | Without AKI | 11 | 60.2 ± 10.2 | 7 (63.6%) | 0.73 ± 0.14 | 9 |
With AKI | 27 | 52.5 ± 14.9 | 21 (77.8%) | 1.39 ± 0.88 | |||
Survivors | 15 | NS | NS | 1.01 ± 0.80 | |||
Non-survivors | 23 | NS | NS | 1.32 ± 0.79 | |||
Pode Shakked et al., 2022 [30] | USA | Without AKI | 30 | 65.58 ± 2.93 | 14 (63.6%) | 0.843 ± 0.063 | 8 |
With AKI | 22 | 44.7 ± 3.7 | 17 (56.7%) | 2.098 ± 1.153 | |||
Tang et al., 2020 [31] | China | Non-severe | 60 | 54.25 ± 4.75 | 26 (43.3%) | 1.305 ± 0.146 | 8 |
Severe | 60 | 62.98 ± 6 | 40 (66.7%) | 0.93 ± 0.04 | |||
Temiz et al., 2022 [32] | Turkey | Non-severe | 24 | 53.96 ± 15.4 | NS | 0.86 ± 0.37 | 7 |
Severe | 12 | 71.42 ± 14.62 | NS | 1.52 ± 0.66 | |||
Wang et al., 2020 [33] | China | Non-severe | 35 | 38.5 ± 11.5 | 17 (48.6%) | 2.33 ± 2.5 | 8 |
Severe | 10 | 44 ± 9.8 | 6 (60.0%) | 0.81 ± 0.26 | |||
Wang et al., 2020 (B) [34] | China | Non-severe | 509 | 47.5 ± 5.3 | 164 (32.2%) | 1.043 ± 0.138 | 8 |
Severe | 53 | 57.75 ± 4.25 | 7 (13.2%) | 0.945 ± 0.05 | |||
Wasfy et al., 2022 [35] | Egypt | Without AKI | 64 | 60 ± 2 | 37 (57.8%) | 0.93 ± 0.23 | 9 |
With AKI | 25 | 65.5 ± 2.5 | 14 (56.0%) | 1.06 ± 02.5 | |||
Survivors | 63 | NS | NS | 0.93 ± 0.24 | |||
Non-survivors | 26 | NS | NS | 1.07 ± 0.23 | |||
Wu et al., 2020 [36] | China | Survivors | 40 | 49.28 ± 4.1 | 31 (77.5%) | 0.934 ± 0.088 | 9 |
Non-survivors | 44 | 67.8 ± 3.9 | 29 (65.9%) | 1.105 ± 0.145 | |||
Xiang et al., 2021 [37] | China | Non-severe | 125 | NS | NS | 0.855 ± 0.055 | 7 |
Severe | 29 | NS | NS | 0.81 ± 0.037 | |||
Yang et al., 2020 [38] | China | Non-severe | 202 | 47.6 ± 1.1 | 101 (50.0%) | 1.01 ± 0.04 | 7 |
Severe | 71 | 53.5 ± 1.9 | 33 (46.5%) | 0.8 ± 0.1 | |||
Yao et al., 2020 [39] | China | Non-severe | 83 | 47.5 ± 3.67 | 30 (36.1%) | 1.896 ± 0.829 | 9 |
Severe | 25 | 59.9 ± 6.28 | 13 (52.0%) | 1.415 ± 0.087 | |||
Survivors | 96 | 48.72 ± 4.79 | 7 (58.3%) | 1.428 ± 0.129 | |||
Non-survivors | 12 | 63.6 ± 6.5 | 3 (25.0%) | 2.318 ± 1.025 | |||
Yildirim et al., 2021 [40] | Turkey | Without AKI | 331 | 37 ± 2.67 | 146 (44.1%) | 0.788 ± 0.025 | 8 |
With AKI | 17 | 71.6 ± 2.6 | 12 (70.6%) | 1.63 ± 0.225 | |||
Zhang et al., 2020 [41] | China | Non-severe | 47 | 60.8 ± 3.3 | 18 (39.3%) | 1.183 ± 0.103 | 8 |
Severe | 27 | 70.8 ± 5.8 | 18 (66.7%) | 0.91 ± 0.09 | |||
Zhang et al., 2021 [42] | China | Survivors | 410 | 52.5 ± 4.7 | 219 (53.4%) | 1.043 ± 0.058 | 9 |
Non-survivors | 22 | 64 ± 4 | 11 (50.0%) | 1.488 ± 0.308 | |||
Zhao et al., 2021 [43] | China | Non-severe | 112 | 61.3 ± 2.8 | 45 (40.2%) | 1.325 ± 0.19 | 8 |
Severe | 60 | 70.6 ± 11.6 | 37 (61.7%) | 1.075 ± 0.053 | |||
Zhou et al., 2022 [44] | China | Non-severe | 126 | 44.95 ± 4 | 40 (31.7%) | 0.808 ± 0.038 | 8 |
Severe | 52 | 54.8 ± 4.2 | 32 (61.5%) | 0.773 ± 0.032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matuszewski, M.; Reznikov, Y.; Pruc, M.; Peacock, F.W.; Navolokina, A.; Júarez-Vela, R.; Jankowski, L.; Rafique, Z.; Szarpak, L. Prognostic Performance of Cystatin C in COVID-19: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 14607. https://doi.org/10.3390/ijerph192114607
Matuszewski M, Reznikov Y, Pruc M, Peacock FW, Navolokina A, Júarez-Vela R, Jankowski L, Rafique Z, Szarpak L. Prognostic Performance of Cystatin C in COVID-19: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2022; 19(21):14607. https://doi.org/10.3390/ijerph192114607
Chicago/Turabian StyleMatuszewski, Michal, Yurii Reznikov, Michal Pruc, Frank W. Peacock, Alla Navolokina, Raúl Júarez-Vela, Lukasz Jankowski, Zubaid Rafique, and Lukasz Szarpak. 2022. "Prognostic Performance of Cystatin C in COVID-19: A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 19, no. 21: 14607. https://doi.org/10.3390/ijerph192114607
APA StyleMatuszewski, M., Reznikov, Y., Pruc, M., Peacock, F. W., Navolokina, A., Júarez-Vela, R., Jankowski, L., Rafique, Z., & Szarpak, L. (2022). Prognostic Performance of Cystatin C in COVID-19: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 19(21), 14607. https://doi.org/10.3390/ijerph192114607