A Review on N-Doped Biochar for Oxidative Degradation of Organic Contaminants in Wastewater by Persulfate Activation
Abstract
:1. Introduction
2. Preparation and Modification of NBC
2.1. Preparation Methods of NBC
Method | Biomass | N-Dopant | Temperature (°C) | N Content of Biochar (%) | SSA (m2g−1) | Ref. |
---|---|---|---|---|---|---|
In situ | Spirulins residue | 400–900 | 0.77–3.61 | 67–117.9 | [55] | |
Water hyacinth | 600–800 | 2.8–5.02 | 700.6–1199.3 | [48] | ||
Candida utilis | 700 | 3.69–5.91 | 3.8–47.1 | [56] | ||
Sludge | 700 | 4.94 | - | [49] | ||
Lotus leaf | 700–900 | 1.58–3.43 | 118.93–360.49 | [57] | ||
Bean dreg | 400–900 | 1.27–3.23 | 31.6–3194.9 | [58] | ||
Passion fruit shell | 900 | 1.43 | 536.55 | [59] | ||
Post- treatment | Dry leaf | Urea | 1000 | 1.0 | 118 | [52] |
Spend coffee ground | Urea | 1000 | 2.1 | 439 | ||
Banana peel | Urea | 1000 | 1.1 | 450 | ||
Orange peel | Urea | 1000 | 1.0 | 238 | ||
Saw dust | Urea | 1000 | 0.3 | 423 | ||
Corncob | Urea | 700 | 11.36 | - | [49] | |
Sludge | Urea | 700 | 11.16 | - | ||
Wood residue | Urea | 800 | 12.1 | 588 | [60] | |
Rice straw | Urea | 1000 | 4.39 | 158.3 | [61] | |
Sludge | Urea | 700 | 0.39 | 161.004 | [62,63] | |
Rice straw | Urea | 700–900 | 0.12–18.35 | 333.7–514.3 | [64] | |
Sludge | Urea | 500–800 | 12.141–24.968 | 241.85–370.54 | [65] | |
Spend coffee powder | Urea | 500–1000 | 16.6–25.7 | 23.3–438.8 | [33] | |
Moso bamboo | Urea | 700 | 5.04 | 250.31 | [51,66] | |
Sewage sludge | Urea | 300–900 | 0.081–0.384 | 14.4–36.5 | [62,67] | |
Corncob | Urea | 700 | 10.43 | 4.98 | [31] | |
Pine-wood | 2-methylimidazole | 800 | 2.06 | 1398 | [64,66] | |
Straw | Thiourea | 700–900 | 2.21–4.35 | 417.24–570.74 | [68] | |
Sludge | NH4OH | 600 | 3.9 | 50.6 | [50,51] | |
Reed | NH4NO3 | 400–900 | 1.76–8.11 | 71.5–498.7 | [63,67] | |
Sawdust | Dicyandiamide | 800 | 19.53 | 174.45 | [50,54] |
2.2. Modification of NBC
3. Catalytic Performance of NBC on Persulfate Activation and the Activation Mechanism
3.1. NBC for PS-AOP
Biomass | Oxidant | Catalysts | Pollutant | Reaction Conditions | Removal Efficiency (%) | Rate Constant (min−1) | Active Sites | Activation Mechanism | Ref. |
---|---|---|---|---|---|---|---|---|---|
Raw silk | PMS | PGBF-N-900 | Tetracycline | T = 25 °C, pH = 7, Catalyst = 0.1 g/L, [PMS] = 1 mM, [TC] = 20 mg/L | 96.5 | 0.0206 | C=O, Graphitic N, Defect sites | SO4·−, ·OH, 1O2, Electron transfer | [85] |
Corncob | PDS | NBC3 | Sulfadiazine | T = 25 °C, pH = 7, Catalyst = 1.0 g/L, [PDS] = 1 mM, [SDZ] = 10 μM | 96.5 | 0.0748 | Pyridinic N, Pyrrolic N, C-N atoms | Electron transfer | [31] |
Candida utilis | PMS | NCS-6 | Bisphenol A | T = 25 °C, pH = 7, Catalyst = 0.4 g/L, [PMS]= 0.4 g/L, [TC] = 20 mg/L | 100 | 1.36 | Sp2-C, Defect sites, Graphitic N, Pyridinic N | SO4·−, ·OH, 1O2, Electron transfer | [56] |
Sludge | PDS | NSBC-700 | Sulfadiazine | pH = 3.1, Catalyst = 1.0 g/L, [PDS] = 600 mg/L, [SD] = 20 mg/L | 97 | - | C (adjacent to N atom), C=O, Pyridinic N | Surface-bound radical, 1O2 | [62] |
Sludge | PMS | NC-700 | Methylene blue | T = 25 °C, Catalyst = 0.3 g/L, [PMS] = 0.4g/L, [MB] = 50 mg/L | 93.2 | 0.3009 | Graphitic N, C=O | 1O2, SO4·−, ·OH | [65] |
Pinewood | PMS | NKBC800 | Ciprofloxacin | T = 25 °C, Catalyst = 0.2 g/L, [PMS]= 3 mg/L, [CIP] = 50 mg/L | 87 | 0.053 | C=O, Pyridinic N, Sp2-C | SO4·−, ·OH, 1O2, Electron transfer | [66] |
Spirulina residue | PDS | SDBC900 | Sulfamethoxazole | T = 25 °C, Catalyst = 0.5 g/L, [PDS]= 6 mM, [SMX] = 20 mg/L | 100 | - | Graphitic N | Electron transfer, O2·− | [55] |
Lotus leaf | PDS | LLC800 | Acid orange 7 | T = 25 °C, PH = 6.4 ± 0.1, Catalyst = 0.25 g/L, [PDS]= 4 g/L, [AO7] = 200 mg/L | 99.46 | N.R | Biochar Surface | SO4·−, ·OH, 1O2, O2·− | [57] |
Bean dreg | PDS | BDK900 | Bisphenol A | Catalyst = 0.1 g/L, [PDS]= 5 mM, [BPA] = 80 mg/L | 100 | 0.4296 | Pyridinic N | Surface-bound radical, Electron transfer | [58] |
Rice straw | PMS | NRSBC800 | Acid orange 7 | T = 25 °C, Catalyst = 100 mg/L, [PMS]= 2 mM, [AO7] = 50 mg/L | 100 | 0.21 | Graphitic N, Pyridinic N, Pyrrolic N | SO4·−, ·OH, 1O2, O2·− | [64] |
Straw | PDS | N-BC | Tetracycline | T = 25 °C, Catalyst = 200 mg/L, [PDS]= 2 mM, [TC] = 20 mg/L | 100 | - | Graphitic N, Defect edge, Graphitization structure | Surface-bound reactive species, Electron transfer | [68] |
Sorghum stalk | PDS | SG650 | Sulfadiazine | T = 25 °C, pH = 5.8, Catalyst = 1.8 g/L, [PDS]= 9.1 mM, [SDZ] = 36.3 μM | 94.4 | 0.0102 | PFR, Sp2-C | Electron transfer, 1O2 | [86] |
Reed | PDS | N-BC | Orange G | T = 25 °C, pH = 5.8, Catalyst = 0.2 g/L, [PDS]= 2 mM, [OG] = 50 ppm | 100 | 0.039 | C=O, Defect sites, N-doped sites, Sp2-C | Electron transfer, 1O2 | [63] |
Wood residue | PMS | NC800–20 | Acid orange 7 | T = 25 °C, pH = 3–4, Catalyst = 0.1 g/L, [AO7] = 10 mg/L, AO7:PMS ratio = 1:50 | 100 | 0.342 | Graphitic N, C=O, Pyridinic N, Pyrrolic N | SO4·−, ·OH, 1O2, Electron transfer | [60] |
Sludge | PMS | NSDB800 | Sulfamethoxazole | T = 25 °C, pH = 3–4, Catalyst = 0.2 g/L, [SMX] = 0.04 mM, [PMS] = 0.8 mM | 100 | - | Grapitic N | Surface-bound reactive species | [67] |
Spent coffee ground | PMS | PC-SC | Bisphenol A | T = 25 °C, pH = 4, Catalyst = 0.2 g/L, [BPA] = 5 mg/L, [PMS] = 0.3 g/L | 95% | 0.072 | Graphitic N, Sp2-C | 1O2 | [52] |
Sawdust | PMS | N-C-d-4–800 | Bisphenol A | T = 25 °C, pH = 6.28, Catalyst = 0.5 g/L, [BPA] = 10 mg/L, [PMS] = 2 mM | 100% | 1.48 | Graphitic N, Pyridinic N, Defect sites | SO4·−, ·OH, 1O2, Electron transfer | [54] |
3.2. Modified NBC for PS-AOP
3.3. Detection Technologies for Activation Mechanism
4. Structures of NBCs Affecting the PS Activation and the Role of N Configuration
4.1. Structures of NBCs Affecting the PS Activation
4.2. The Role of N Configuration in PS Activation
5. Conclusions and Outlook
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Liu, Z.; Xu, Y.; Zhou, S.; Wu, Y.; Wang, J.; Huang, Z.; Shi, Y. Remediating Potentially Toxic Metal and Organic Co-Contamination of Soil by Combining In Situ Solidification/Stabilization and Chemical Oxidation: Efficacy, Mechanism, and Evaluation. Int. J. Environ. Res. Public Health 2018, 15, 2595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, W.; Jin, C.; Han, Y.; Huang, Z.; Niu, T.; Li, J. The Coordinated Development and Regulation Research on Public Health, Ecological Environment and Economic Development: Evidence from the Yellow River Basin of China. Int. J. Environ. Res. Public Health 2022, 19, 6927. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Cui, M.; Cheng, S.; Zhang, S.; Li, Y.; Luo, T.; Zheng, T.; Li, H. Effective Electro-Activation Process of Hydrogen Peroxide/Peroxydisulfate Induced by Atomic Hydrogen for Rapid Oxidation of Norfloxacin over the Carbon-Based Pd Nanocatalyst. Int. J. Environ. Res. Public Health 2022, 19, 12332. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, X.; Sun, C.; He, H.; Dai, Y.; Yang, S.; Lin, Y.; Zhan, X.; Li, Q.; Zhou, Y. Catalytic Degradation of Diatrizoate by Persulfate Activation with Peanut Shell Biochar-Supported Nano Zero-Valent Iron in Aqueous Solution. Int. J. Environ. Res. Public Health 2018, 15, 1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhang, H.; Chen, L.; Fan, X.; Yang, Y. Optimization of PNP Degradation by UV-Activated Granular Activated Carbon Supported Nano-Zero-Valent-Iron-Cobalt Activated Persulfate by Response Surface Method. Int. J. Environ. Res. Public Health 2022, 19, 8169. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Stanley, E.H.; Vander Zanden, M.J. State of the World’s Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annu. Rev. Environ. Resour. 2011, 36, 75–99. [Google Scholar] [CrossRef] [Green Version]
- UNWater. Water for a Sustainable World: The UN World Water Development Report 2015; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2015. [Google Scholar]
- Hu, P.; Long, M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B Environ. 2016, 181, 103–117. [Google Scholar] [CrossRef]
- Xiong, Z.; Syed-Hassan, S.S.A.; Xu, J.; Wang, Y.; Hu, S.; Su, S.; Zhang, S.; Xiang, J. Evolution of coke structures during the pyrolysis of bio-oil at various temperatures and heating rates. J. Anal. Appl. Pyrolysis 2018, 134, 336–342. [Google Scholar] [CrossRef]
- Frontistis, Z. Degradation of the Nonsteroidal Anti-Inflammatory Drug Piroxicam by Iron Activated Persulfate: The Role of Water Matrix and Ultrasound Synergy. Int. J. Environ. Res. Public Health 2018, 15, 2600. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Hanna, K.; Deng, N. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. J. Hazard. Mater. 2009, 166, 407–414. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, J.; Gao, Y.; Ma, J.; Pang, S.Y.; Li, J.; Lu, X.T.; Yuan, L.P. Activation of Peroxymonosulfate by Benzoquinone: A Novel Nonradical Oxidation Process. Environ. Sci. Technol. 2015, 49, 12941–12950. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhu, J.; Zhu, Q.; Wang, C.; Cao, Y. Spinel ferrites materials for sulfate radical-based advanced oxidation process: A review. Sci. Total Environ. 2022, 847, 157405. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, P.; Yang, X.; Shan, L.; Zhang, W.; Shao, X.; Niu, R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater. 2010, 179, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Wacławek, S.; Lutze, H.V.; Grübel, K.; Padil, V.V.T.; Černík, M.; Dionysiou, D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–62. [Google Scholar] [CrossRef]
- Rodriguez-Chueca, J.; Garcia-Canibano, C.; Lepisto, R.J.; Encinas, A.; Pellinen, J.; Marugan, J. Intensification of UV-C tertiary treatment: Disinfection and removal of micropollutants by sulfate radical based Advanced Oxidation Processes. J. Hazard. Mater. 2019, 372, 94–102. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Huang, Y.H.; Huang, Y.F.; Huang, C.I.; Chen, C.Y. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst. J. Hazard. Mater. 2009, 170, 1110–1118. [Google Scholar] [CrossRef]
- Tan, C.; Dong, Y.; Fu, D.; Gao, N.; Ma, J.; Liu, X. Chloramphenicol removal by zero valent iron activated peroxymonosulfate system: Kinetics and mechanism of radical generation. Chem. Eng. J. 2018, 334, 1006–1015. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Wang, Y.; Le Roux, J.; Yang, Y.; Croue, J.P. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environ. Sci. Technol. 2014, 48, 5868–5875. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Xiao, T.; Zhang, J.; Chen, Y.; Li, L. Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7 in aqueous solution. Sep. Purif. Technol. 2015, 143, 19–26. [Google Scholar] [CrossRef]
- Shukla, P.R.; Wang, S.; Sun, H.; Ang, H.M.; Tadé, M. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Appl. Catal. B Environ. 2010, 100, 529–534. [Google Scholar] [CrossRef]
- Saputra, E.; Muhammad, S.; Sun, H.; Wang, S. Activated carbons as green and effective catalysts for generation of reactive radicals in degradation of aqueous phenol. RSC Advances 2013, 3, 21905–21910. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Wang, Y.; Liu, S.; Ge, L.; Wang, L.; Zhu, Z.; Wang, S. Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation. Chem. Commun. 2013, 49, 9914–9916. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Gao, L.; Li, J.; Fang, J.; Cai, W.; Li, X.; Xu, A. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation. J. Hazard. Mater. 2016, 316, 60–68. [Google Scholar] [CrossRef]
- Duan, X.; Su, C.; Zhou, L.; Sun, H.; Suvorova, A.; Odedairo, T.; Zhu, Z.; Shao, Z.; Wang, S. Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Appl. Catal. B Environ. 2016, 194, 7–15. [Google Scholar] [CrossRef]
- Duan, X.; Ao, Z.; Zhou, L.; Sun, H.; Wang, G.; Wang, S. Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Appl. Catal. B: Environ. 2016, 188, 98–105. [Google Scholar] [CrossRef]
- Ye, S.; Zeng, G.; Wu, H.; Zhang, C.; Dai, J.; Liang, J.; Yu, J.; Ren, X.; Yi, H.; Cheng, M.; et al. Biological technologies for the remediation of co-contaminated soil. Crit. Rev. Biotechnol. 2017, 37, 1062–1076. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Zeng, G.; Wu, H.; Liang, J.; Zhang, C.; Dai, J.; Xiong, W.; Song, B.; Wu, S.; Yu, J. The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resour. Conserv. Recycl. 2019, 140, 278–285. [Google Scholar] [CrossRef]
- Du, W.; Zhang, Q.; Shang, Y.; Wang, W.; Li, Q.; Yue, Q.; Gao, B.; Xu, X. Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation. Appl. Catal. B Environ. 2020, 262, 118302. [Google Scholar] [CrossRef]
- Wang, H.; Guo, W.; Liu, B.; Wu, Q.; Luo, H.; Zhao, Q.; Si, Q.; Sseguya, F.; Ren, N. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism. Water Res. 2019, 160, 405–414. [Google Scholar] [CrossRef]
- Sun, H.; Peng, X.; Zhang, S.; Liu, S.; Xiong, Y.; Tian, S.; Fang, J. Activation of peroxymonosulfate by nitrogen-functionalized sludge carbon for efficient degradation of organic pollutants in water. Bioresour. Technol. 2017, 241, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.-D.; Lisak, G.; Webster, R.D.; Liang, Y.-N.; Veksha, A.; Giannis, A.; Moo, J.G.S.; Lim, J.-W.; Lim, T.-T. Insights into the thermolytic transformation of lignocellulosic biomass waste to redox-active carbocatalyst: Durability of surface active sites. Appl. Catal. B Environ. 2018, 233, 120–129. [Google Scholar] [CrossRef]
- Liu, C.; Chen, L.; Ding, D.; Cai, T. From rice straw to magnetically recoverable nitrogen doped biochar: Efficient activation of peroxymonosulfate for the degradation of metolachlor. Appl. Catal. B Environ. 2019, 254, 312–320. [Google Scholar] [CrossRef]
- Liu, H.; Sun, P.; Feng, M.; Liu, H.; Yang, S.; Wang, L.; Wang, Z. Nitrogen and sulfur co-doped CNT-COOH as an efficient metal-free catalyst for the degradation of UV filter BP-4 based on sulfate radicals. Appl. Catal. B Environ. 2016, 187, 1–10. [Google Scholar] [CrossRef]
- Kang, J.; Duan, X.; Wang, C.; Sun, H.; Tan, X.; Tade, M.O.; Wang, S. Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability. Chem. Eng. J. 2018, 332, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Ao, Z.; Sun, H.; Indrawirawan, S.; Wang, Y.; Kang, J.; Liang, F.; Zhu, Z.H.; Wang, S. Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis. ACS Appl. Mater. Interfaces 2015, 7, 4169–4178. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-Y.A.; Zhang, Z.-Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst. Chem. Eng. J. 2017, 313, 1320–1327. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, Y.; Niu, Q.; Zeng, G.; Lai, C.; Liu, S.; Huang, D.; Qin, L.; Liu, X.; Li, B.; et al. New notion of biochar: A review on the mechanism of biochar applications in advannced oxidation processes. Chem. Eng. J. 2021, 416, 129027. [Google Scholar] [CrossRef]
- Donghui Guo, R.S. Chisato Akiba, Shunsuke Saji, Takahiro Kondo, Junji Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365. [Google Scholar]
- Luo, H.; Fu, H.; Yin, H.; Lin, Q. Carbon materials in persulfate-based advanced oxidation processes: The roles and construction of active sites. J. Hazard. Mater. 2022, 426, 128044. [Google Scholar] [CrossRef]
- Chen, X.; Oh, W.-D.; Hu, Z.-T.; Sun, Y.-M.; Webster, R.D.; Li, S.-Z.; Lim, T.-T. Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes. Appl. Catal. B Environ. 2018, 225, 243–257. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Murdock, A.T.; Tsang, J.; Britton, J.; Pennycook, T.J.; Koos, A.; Nellist, P.D.; Grobert, N.; Yates, J.R. Probing the Bonding in Nitrogen-Doped Graphene Using Electron Energy Loss Spectroscopy. ACS Nano 2013, 7, 7145–7150. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Lin, Z.; Chen, H.; Yan, S.; Huang, Y.; Hu, X.; Zhang, S. A review on N-doped biochar for enhanced water treatment and emerging applications. Fuel Process. Technol. 2022, 237, 107468. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, L.; Luo, J.; Gong, H.; Zhu, N. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives. J. Hazard. Mater. 2022, 438, 129437. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, P.; Zhou, Q.; Lee, S.L.J. A Mini Review on Persulfate Activation by Sustainable Biochar for the Removal of Antibiotics. Materials 2022, 15, 5832. [Google Scholar] [CrossRef]
- Song, G.; Qin, F.; Yu, J.; Tang, L.; Pang, Y.; Zhang, C.; Wang, J.; Deng, L. Tailoring biochar for persulfate-based environmental catalysis: Impact of biomass feedstocks. J. Hazard. Mater. 2022, 424, 127663. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.; Zhou, W.; Li, L.; Huang, S.; Chen, S. Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction. Nanoscale 2015, 7, 6136–6142. [Google Scholar] [CrossRef]
- Yin, R.; Guo, W.; Wang, H.; Du, J.; Wu, Q.; Chang, J.-S.; Ren, N. Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism. Chem. Eng. J. 2019, 357, 589–599. [Google Scholar] [CrossRef]
- Mian, M.M.; Liu, G. Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: Understanding the role of active sites and mechanism. Chem. Eng. J. 2020, 392, 123681. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; He, R.; Zhao, J.; Kang, W.; Lv, J. Effect of pyrolysis temperature on the activated permonosulfate degradation of antibiotics in nitrogen and sulfur-doping biochar: Key role of environmentally persistent free radicals. Chemosphere 2022, 294, 133737. [Google Scholar] [CrossRef]
- Oh, W.-D.; Veksha, A.; Chen, X.; Adnan, R.; Lim, J.-W.; Leong, K.-H.; Lim, T.-T. Catalytically active nitrogen-doped porous carbon derived from biowastes for organics removal via peroxymonosulfate activation. Chem. Eng. J. 2019, 374, 947–957. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Xu, L.; Wu, C.; Liu, P.; Bai, X.; Du, X.; Jin, P.; Yang, L.; Jin, X.; Shi, X.; Wang, Y. Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants. Chem. Eng. J. 2020, 387, 124065. [Google Scholar] [CrossRef]
- Ho, S.H.; Chen, Y.D.; Li, R.; Zhang, C.; Ge, Y.; Cao, G.; Ma, M.; Duan, X.; Wang, S.; Ren, N.Q. N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation. Water Res. 2019, 159, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Hu, W.; Wang, X.; Tong, W.; Li, P.; Zhou, H.; Wang, Y.; Zhang, Y. Molten salt induced nitrogen-doped biochar nanosheets as highly efficient peroxymonosulfate catalyst for organic pollutant degradation. Environ. Pollut. 2020, 260, 114053. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.; Pang, X.; Wei, X.; Sun, X.; Liu, H.; Sheng, P.; Zhu, M.; Yang, X. Efficient Degradation of Printing and Dyeing Wastewater by Lotus Leaf-Based Nitrogen Self-Doped Mesoporous Biochar Activated Persulfate: Synergistic Mechanism of Adsorption and Catalysis. Catalysts 2022, 12, 1004. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, Q.; Wang, Z.; Hua, S.; Ding, D.; Cai, T.; Zhang, R. Pyrrolic N-rich biochar without exogenous nitrogen doping as a functional material for bisphenol A removal: Performance and mechanism. Appl. Catal. B Environ. 2021, 291, 120093. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, D.; Zhang, R.; Ding, Y.; Ren, Z.; Fu, M.; Cao, X.; Zeng, G. Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway. J. Hazard. Mater. 2021, 419, 126495. [Google Scholar] [CrossRef]
- Zaeni, J.R.J.; Lim, J.-W.; Wang, Z.; Ding, D.; Chua, Y.-S.; Ng, S.-L.; Oh, W.-D. In situ nitrogen functionalization of biochar via one-pot synthesis for catalytic peroxymonosulfate activation: Characteristics and performance studies. Sep. Purif. Technol. 2020, 241, 116702. [Google Scholar] [CrossRef]
- Ding, D.; Yang, S.; Qian, X.; Chen, L.; Cai, T. Nitrogen-doping positively whilst sulfur-doping negatively affect the catalytic activity of biochar for the degradation of organic contaminant. Appl. Catal. B Environ. 2020, 263, 118348. [Google Scholar] [CrossRef]
- Pei, X.; Peng, X.; Jia, X.; Wong, P.K. N-doped biochar from sewage sludge for catalytic peroxydisulfate activation toward sulfadiazine: Efficiency, mechanism, and stability. J. Hazard. Mater. 2021, 419, 126446. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Huang, X.; Ma, F.; Wang, L.; Duan, X.; Wang, S. Catalytic Removal of Aqueous Contaminants on N-Doped Graphitic Biochars: Inherent Roles of Adsorption and Nonradical Mechanisms. Environ. Sci. Technol. 2018, 52, 8649–8658. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Fang, Y.; Sun, P.; Xie, K.; Zhai, Z.; Liu, H.; Liu, H. N-Doped Biochar as a New Metal-Free Activator of Peroxymonosulfate for Singlet Oxygen-Dominated Catalytic Degradation of Acid Orange 7. Nanomaterials 2021, 11, 2288. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Xie, Y.; Lu, S.; Li, P.; Xie, T.; Zhang, Y.; Wang, Y. One-step synthesis of nitrogen-doped sludge carbon as a bifunctional material for the adsorption and catalytic oxidation of organic pollutants. Sci. Total Environ. 2019, 680, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Yuan, Y.; Yang, X.; Xu, H.; Mohamed, A.K.; Zhang, J.; Zhao, C.; Liu, L.; Wang, B.; Wang, X.; et al. Carbon defects in biochar facilitated nitrogen doping: The significant role of pyridinic nitrogen in peroxymonosulfate activation and ciprofloxacin degradation. Chem. Eng. J. 2022, 441, 135864. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Nitrogen doping sludge-derived biochar to activate peroxymonosulfate for degradation of sulfamethoxazole: Modulation of degradation mechanism by calcination temperature. J. Hazard. Mater. 2021, 418, 126309. [Google Scholar] [CrossRef]
- Zhong, Q.; Lin, Q.; He, W.; Fu, H.; Huang, Z.; Wang, Y.; Wu, L. Study on the nonradical pathways of nitrogen-doped biochar activating persulfate for tetracycline degradation. Sep. Purif. Technol. 2021, 276, 119354. [Google Scholar] [CrossRef]
- Paraknowitsch, J.P.; Thomas, A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839–2855. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Huang, R.; Sun, R.; Yang, J.; Sillanpää, M. A review on persulfates activation by functional biochar for organic contaminants removal: Synthesis, characterizations, radical determination, and mechanism. J. Environ. Chem. Eng. 2021, 9, 106267. [Google Scholar] [CrossRef]
- Sun, W.; Pang, K.; Ye, F.; Pu, M.; Zhou, C.; Huang, H.; Zhang, Q.; Niu, J. Carbonization of camphor sulfonic acid and melamine to N,S-co-doped carbon for sulfamethoxazole degradation via persulfate activation: Nonradical dominant pathway. Sep. Purif. Technol. 2021, 279, 119723. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, M.; Wang, L.; Qu, R.; Wang, Z. Catalytic degradation of 2-phenylbenzimidazole-5-sulfonic acid by peroxymonosulfate activated with nitrogen and sulfur co-doped CNTs-COOH loaded CuFe2O4. Chem. Eng. J. 2017, 307, 95–104. [Google Scholar] [CrossRef]
- Xing, B.; Dong, J.; Yang, G.; Jiang, N.; Liu, X.; Yuan, J. An insight into N,S-codoped activated carbon for the catalytic persulfate oxidation of organic pollutions in water: Effect of surface functionalization. Appl. Catal. A Gen. 2020, 602, 117714. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, Y.; Xu, X.; Dai, X.; Zhu, L. Peroxymonosulfate activation by iron self-doped sludge-derived biochar for degradation of perfluorooctanoic acid: A singlet oxygen-dominated nonradical pathway. Chem. Eng. J. 2022, 450, 137953. [Google Scholar] [CrossRef]
- Zhong, Q.; Lin, Q.; Huang, R.; Fu, H.; Zhang, X.; Luo, H.; Xiao, R. Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar. Chem. Eng. J. 2020, 380, 122608. [Google Scholar] [CrossRef]
- Zhao, X.; An, Q.-D.; Xiao, Z.-Y.; Zhai, S.-R.; Shi, Z. Seaweed-derived multifunctional nitrogen/cobalt-codoped carbonaceous beads for relatively high-efficient peroxymonosulfate activation for organic pollutants degradation. Chem. Eng. J. 2018, 353, 746–759. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Q.; Li, C.; Cui, M.; Chen, Y.; Liu, R.; Cui, K.; Wu, K.; Nie, X.; Wang, S. Synthesizing and characterizing Fe3O4 embedded in N-doped carbon nanotubes-bridged biochar as a persulfate activator for sulfamethoxazole degradation. J. Clean. Prod. 2022, 353, 131669. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Sun, K.; Shao, Y.; Zhang, L.; Zhang, S.; Zhang, X.; Liu, Q.; Chen, Z.; Hu, X. Steam reforming of acetic acid over Ni-Ba/Al2O3 catalysts: Impacts of barium addition on coking behaviors and formation of reaction intermediates. J. Energy Chem. 2020, 43, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Xi, M.; Cui, K.; Cui, M.; Ding, Y.; Guo, Z.; Chen, Y.; Li, C.; Li, X. Enhanced norfloxacin degradation by iron and nitrogen co-doped biochar: Revealing the radical and nonradical co-dominant mechanism of persulfate activation. Chem. Eng. J. 2021, 420, 129902. [Google Scholar] [CrossRef]
- Li, X.; Jia, Y.; Zhou, M.; Su, X.; Sun, J. High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation. J. Hazard. Mater. 2020, 397, 122764. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, X.; Tian, J.; Liu, S.; Liu, W.; Wang, T. Heterogeneous catalytic system of photocatalytic persulfate activation by novel Bi2WO6 coupled magnetic biochar for degradation of ciprofloxacin. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129667. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, S.; Huang, X.; Wei, W.; Ni, B.J. Mechanisms of persulfate activation on biochar derived from two different sludges: Dominance of their intrinsic compositions. J. Hazard. Mater. 2021, 408, 124454. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Sun, H.; Wang, S. Metal-Free Carbocatalysis in Advanced Oxidation Reactions. Acc. Chem. Res. 2018, 51, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Liu, H.; Feng, M.; Guo, L.; Zhai, Z.; Fang, Y.; Zhang, X.; Sharma, V.K. Nitrogen-sulfur co-doped industrial graphene as an efficient peroxymonosulfate activator: Singlet oxygen-dominated catalytic degradation of organic contaminants. Appl. Catal. B Environ. 2019, 251, 335–345. [Google Scholar] [CrossRef]
- Ye, S.; Zeng, G.; Tan, X.; Wu, H.; Liang, J.; Song, B.; Tang, N.; Zhang, P.; Yang, Y.; Chen, Q.; et al. Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer. Appl. Catal. B Environ. 2020, 269, 118850. [Google Scholar] [CrossRef]
- Feng, Z.; Zhou, B.; Yuan, R.; Li, H.; He, P.; Wang, F.; Chen, Z.; Chen, H. Biochar derived from different crop straws as persulfate activator for the degradation of sulfadiazine: Influence of biomass types and systemic cause analysis. Chem. Eng. J. 2022, 440, 135669. [Google Scholar] [CrossRef]
- Ma, W.; Wang, N.; Du, Y.; Xu, P.; Sun, B.; Zhang, L.; Lin, K.-Y.A. Human-Hair-Derived N, S-Doped Porous Carbon: An Enrichment and Degradation System for Wastewater Remediation in the Presence of Peroxymonosulfate. ACS Sustain. Chem. Eng. 2018, 7, 2718–2727. [Google Scholar] [CrossRef]
- Yang, S.; Qiu, X.; Jin, P.; Dzakpasu, M.; Wang, X.C.; Zhang, Q.; Zhang, L.; Yang, L.; Ding, D.; Wang, W.; et al. MOF-templated synthesis of CoFe2O4 nanocrystals and its coupling with peroxymonosulfate for degradation of bisphenol A. Chem. Eng. J. 2018, 353, 329–339. [Google Scholar] [CrossRef]
- Ball, D.L.; Edwards, J.O. The Kinetics and Mechanism of the Decomposition of Caro’s Acid. I. J. Am. Chem. Soc. 1956, 78, 1125–1129. [Google Scholar]
- Sun, K.; Zhang, L.; Zhang, Z.; Shao, Y.; Sun, Y.; Zhang, S.; Liu, Q.; Wang, Y.; Hu, G.; Hu, X. Investigation into Properties of Carbohydrate Polymers Formed from Acid-Catalyzed Conversion of Sugar Monomers/Oligomers over Bronsted Acid Catalysts. Energy Technol. 2020, 8, 1901476. [Google Scholar] [CrossRef]
- Xiao, K.; Liang, F.; Liang, J.; Xu, W.; Liu, Z.; Chen, B.; Jiang, X.; Wu, X.; Xu, J.; Beiyuan, J.; et al. Magnetic bimetallic Fe, Ce-embedded N-enriched porous biochar for peroxymonosulfate activation in metronidazole degradation: Applications, mechanism insight and toxicity evaluation. Chem. Eng. J. 2022, 433, 134387. [Google Scholar] [CrossRef]
- Yu, J.; Tang, L.; Pang, Y.; Zeng, G.; Wang, J.; Deng, Y.; Liu, Y.; Feng, H.; Chen, S.; Ren, X. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chem. Eng. J. 2019, 364, 146–159. [Google Scholar] [CrossRef]
- Luo, J.; Yi, Y.; Ying, G.; Fang, Z.; Zhang, Y. Activation of persulfate for highly efficient degradation of metronidazole using Fe(II)-rich potassium doped magnetic biochar. Sci. Total Environ. 2022, 819, 152089. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-T.; Yi, T.-S.; Gao, L.-M.; Ma, P.-F.; Zhang, T.; Yang, J.-B.; Gitzendanner, M.A.; Fritsch, P.W.; Cai, J.; Luo, Y.; et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 2019, 5, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Cheng, J.; Lu, Z.; Tian, Z.; Xu, J.; He, Y. Biochar co-doped with nitrogen and boron switching the free radical based peroxydisulfate activation into the electron-transfer dominated nonradical process. Appl. Catal. B Environ. 2022, 301, 120832. [Google Scholar] [CrossRef]
- He, J.; Xiao, Y.; Tang, J.; Chen, H.; Sun, H. Persulfate activation with sawdust biochar in aqueous solution by enhanced electron donor-transfer effect. Sci. Total Environ. 2019, 690, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Yan, M.; Tan, X.; Liang, J.; Zeng, G.; Wu, H.; Song, B.; Zhou, C.; Yang, Y.; Wang, H. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Appl. Catal. B Environ. 2019, 250, 78–88. [Google Scholar] [CrossRef]
- Huang, D.; Luo, H.; Zhang, C.; Zeng, G.; Lai, C.; Cheng, M.; Wang, R.; Deng, R.; Xue, W.; Gong, X.; et al. Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: Insight into the influences on Fenton-like process. Chem. Eng. J. 2019, 361, 353–363. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Xu, C.; Sun, J.; Gao, L. Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: Reduction effect and mechanisms. RSC Adv. 2013, 3, 1194–1200. [Google Scholar] [CrossRef]
- Luo, J.; Bo, S.; Qin, Y.; An, Q.; Xiao, Z.; Zhai, S. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation. Chem. Eng. J. 2020, 395, 125063. [Google Scholar] [CrossRef]
- Brown, R.A.; Kercher, A.K.; Nguyen, T.H.; Nagle, D.C.; Ball, W.P. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org. Geochem. 2006, 37, 321–333. [Google Scholar] [CrossRef]
- Peng, W.; Liu, S.; Sun, H.; Yao, Y.; Zhi, L.; Wang, S. Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water. J. Mater. Chem. A 2013, 1, 5854–5859. [Google Scholar] [CrossRef]
- Pan, X.; Chen, J.; Wu, N.; Qi, Y.; Xu, X.; Ge, J.; Wang, X.; Li, C.; Qu, R.; Sharma, V.K.; et al. Degradation of aqueous 2,4,4’-Trihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products. Water Res. 2018, 143, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Li, W.; Yang, L.; Xiao, F.; An, G.; Wang, Y.; Wang, D. Activation of peroxymonosulfate by sp2-hybridized microalgae-derived carbon for ciprofloxacin degradation: Importance of pyrolysis temperature. Chem. Eng. J. 2019, 370, 1286–1297. [Google Scholar] [CrossRef]
- Liang, P.; Zhang, C.; Duan, X.; Sun, H.; Liu, S.; Tade, M.O.; Wang, S. An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: Formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environ. Sci. Nano 2017, 4, 315–324. [Google Scholar] [CrossRef]
Biomass | Oxidant | Attached FunctionalGroups | Catalysts | Pollutant | Reaction Conditions | Removal Efficiency (%) | Rate Constant (min−1) | Active Sites | Activation Mechanism | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Rice straw | PMS | CoFe2O4 | MNBC800 | Metolachlor | pH = unadjusted, Catalyst = 0.2g/L, [MET] = 10 mg/L, [PMS] = 0.5 mM | 100 | 0.104 | Graphitic N, Co2+ | SO4·−, ·OH, 1O2, Electron transfer | [34] |
Sludge | PMS | Co, S | Co9S8@N-S-BC | Sulfamethoxazole | T = 25 °C, pH = 3, Catalyst = 0.2 g/L, [NOR] = 10 mg/L, [PMS] = 1.6 mM | 100 | 0.379 | Carbon defects, Quaternary N, the carbon atoms next to pyridinic N, C=O, -C-S-C-, Co (II) | SO4·−, ·OH | [90] |
Maize straw | PDS | Fe | Fe@N co-doped biochar | Norfloxacin | T = 25 °C, pH = 7, Catalyst = 0.1 g/L, [SMX] = 0.08 mM, [PMS] = 10 mmol/L | 96.45 | 0.258 | Fe, Graphitic N, C-OH/C = N | SO4·−,· ·OH, 1O2 | [79] |
Banyan | PMS | Fe, Ce | Fe-Ce@N-BC | Metronidazole | T = 25 °C, pH = 5.74, Catalyst = 0.75 g/L, [MNZ] = 0.01 g/L, [PMS] = 2 mM | 97.5 | 0.0566 | Graphitic N, Pyridinic N, C=O, Defects, Fe2+/Fe3+, Ce3+/Ce4+ | SO4·−, ·OH, 1O2 | [91] |
Sawdust | PMS | Fe | Fe-N-C-BPA | Bisphenol A | T = 25 °C, pH = 6.76, Catalyst = 0.1 g/L, [BPA] = 0.01 g/L, [PMS] = 0.5 mM | 97 | 0.0556 | Fe-Nx, Pyridinic N, graphitic N, Fe2O3, Fe0 | SO4·− ·OH, 1O2 | [78] |
Rice husk | PMS | Fe3O4, NCNT | Fe3O4@NCNTs-BC800 | Sulfamethoxazole | T = 25 °C, Ph = 7, Catalyst = 0.4 g/L, [SMX] = 0.01 g/L, [PMS] = 0.6 mM | 98.2 | 0.092 | Pyridinic N, Fe (II), Fe (III) | Surface bound O2·−, ·OH, SO4·−, Electron transfer | [77] |
Human hair | PMS | S | NSC-800 | Bisphenol A | Catalyst = 0.08 g/L, [BPA] = 25 mg/L, [PMS] = 0.4 g/L | 98.4 | - | Graphitic N, Sp2-C, -C-S-C, Defect sites | 1O2, ·OH, SO4·− | [87] |
Glucose | PDS | Cu | N-Cu-biochar | Tetracycline | Catalyst = 200 mg/L, pH = 5, [TC] = 20 mg/L, [PDS] = 2 mM | 100 | 0.0482 | Cu2+ | ·OH, SO4·−, Electron transfer | [75] |
Maso bamboo | PMS | S | NSBC-500 | Antibiotic | Catalyst = 3 mg/L, [antibiotic] = 20 mg/L, [PMS] = 5 mM | 70.97 | 0.0274 | EPFR, Defect structure | SO4·−, ·OH, 1O2, O2·− | [51] |
Camphor sulfonic | PDS | S | NSC-750 | Sulfamethoxazole | pH = 5, Catalyst = 0.2 g/L, [SMX] = 20 mg/L, [PDS] = 0.4 mM | 96 | 0.0348 | Pyridinic N, C-S-C, Defect sites, C=O | 1O2, ·OH, SO4·−, Electron transfer | [71] |
Sludge | PDS | Fe | MS-800 | Tetracycline | pH =2.17, Catalyst = 0.2 g/L, [TC] = 100 mg/L, [PDS] = 4.2 mM | 82.24 | 0.0096 | Fe species, Sp2-C, N species | ·OH, SO4·− | [92] |
Wheat straw | PDS | Fe | Fe-N-BC | Acid orange 7 | pH = 3, Catalyst = 0.2 g/L, [AO7] = 20 mg/L, [PDS] = 1 mM | 100 | 0.114 | Fe species, N species, PFR | 1O2, SO4·−, ·OH, O2·−, Surface-bounded radical, Electron transfer | [80] |
Wood chip | PDS | Fe, K | KMBC | Metronidazole | T = 25 °C, pH = 6.5, Catalyst = 0.5 g/L, [MNZ] = 20 mg/L, [PDS] = 1 mM | 98.4 | 0.025 | Fe(II) PFR | 1O2, SO4·−, ·OH, O2·−, Surface-bounded radicals, Electron transfer | [93] |
Banana | PDS | Fe2O3 | Fe2O3@BC-2 | Bisphenol A | T = 25 °C, pH = unadjustment, Catalyst = 0.3g/L, [BPA] = 20 mg/L, [PDS] = 5 mM | 100 | 0.1849 | Pyridinic N, Graphitic N, -OOH, -OH Defect sites, PFR, Fe species | SO4·−, ·OH, O2·− | [94] |
Melamine | PDS | S | ACO850-20N20S | Methyl orange | T = 30 °C, pH = 5, Catalyst = 0.8 g/L, [MO] = 200 mg/L, [PDS] = 1.2 g/L | 99 | 0.0075 | C=O, C-S-C, Graphitic N, Pyridinic N | Surface bound radical | [73] |
Sludge | PDS | Fe | SDBC | Sulfamethoxazole | T = 25 °C, pH = 5, Catalyst = 2.0 g/L, [SMX]= 40 μM, [PDS] = 1.5 mM | 94.6 | 0.0145 | Fe species, N species | 1O2 | [49] |
Sludge | PMS | Fe | ISBC | Perfluorooctanoic acid | T = 60 °C, pH = 6.4, Catalyst =1 g/L, [PFOA] = 2 mg/L, [PMS] = 10 mM | 99.9 | 0.054 | Pyridinic N, C=O, Quinone groups | 1O2 | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Gao, W.; Zhu, H.; Chen, H.; Yan, S.; Zhao, M.; Sun, H.; Zhang, J.; Zhang, S. A Review on N-Doped Biochar for Oxidative Degradation of Organic Contaminants in Wastewater by Persulfate Activation. Int. J. Environ. Res. Public Health 2022, 19, 14805. https://doi.org/10.3390/ijerph192214805
Gao Y, Gao W, Zhu H, Chen H, Yan S, Zhao M, Sun H, Zhang J, Zhang S. A Review on N-Doped Biochar for Oxidative Degradation of Organic Contaminants in Wastewater by Persulfate Activation. International Journal of Environmental Research and Public Health. 2022; 19(22):14805. https://doi.org/10.3390/ijerph192214805
Chicago/Turabian StyleGao, Yaxuan, Wenran Gao, Haonan Zhu, Haoran Chen, Shanshan Yan, Ming Zhao, Hongqi Sun, Junjie Zhang, and Shu Zhang. 2022. "A Review on N-Doped Biochar for Oxidative Degradation of Organic Contaminants in Wastewater by Persulfate Activation" International Journal of Environmental Research and Public Health 19, no. 22: 14805. https://doi.org/10.3390/ijerph192214805
APA StyleGao, Y., Gao, W., Zhu, H., Chen, H., Yan, S., Zhao, M., Sun, H., Zhang, J., & Zhang, S. (2022). A Review on N-Doped Biochar for Oxidative Degradation of Organic Contaminants in Wastewater by Persulfate Activation. International Journal of Environmental Research and Public Health, 19(22), 14805. https://doi.org/10.3390/ijerph192214805