A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement
Abstract
:1. Introduction
2. Sustainable Materials
3. Components and Production of Asphalt Mixture
4. Life Cycle Assessment
5. Energy Consumption and Economic Benefits
6. Greenhouse Gas (GHG) Emission
7. Health Hazards for Workers
8. Limitations, Recommendations and Future Directions
- The composite of WMA technology with different asphalt technologies such as RAP and bio-asphalt technologies are strongly recommended to be further studied in order to mitigate the environmental and CO2 emissions and energy consumption of conventional technologies.
- Advanced optimisation, modelling, and simulation methods such as machine learning are also recommended to be applied with respect to studying the environmental and energy consumption of WMA technology separately and combined with other relative technologies.
- Investigating the possibility of using waste materials in WMA technologies and comparing their environmental and economic impacts to the common conventional WMA additives.
- The long-term environmental impact of different additives that are used as WMA additives is another research aspect that should be studied.
- Validating the laboratory findings on the environmental and economic benefits of WMA technology that have been reported in the literature by conducting field studies over the different regions in various environmental conditions.
- Standards and specifications that are needed to guide researchers and pavement industries in using WMA technology in a wide range of developed and developing countries still need to be established.
9. Conclusions
- Generally, asphalt mixture production comprises aggregate heating, asphalt heating, and asphalt mixing. However, the highest percentage of energy in the asphalt mixture production and afterwards the carbon emission occurs during aggregate heating;
- The energy consumption and emissions in the production of asphalt mixtures are related to many factors, such as the type of aggregate and its heat capacity, aggregate moisture content, type of fuel, fuel consumption, and production temperature;
- Depending on the asphalt mixture, the production temperature of WMA is 10–40 °C lower than the conventional hot mix asphalt (HMA). This reduction in temperature positively affects several aspects, such as fuel consumption and CO2 emissions;
- Furthermore, in terms of environmental benefits, the use of WMA can reduce the emission of gases and fumes and global warming. Concerning the LCA of WMA compared to HMA in terms of environmental aspects, it is inclined to be more favourable for WMA;
- The economic benefit of warm technology is the reduced financial cost because WMA uses 20–70% less energy;
- The low production temperature also causes less wear and tear to the plant and thus provides additional cost savings;
- The paving and working conditions, organic additives, and foaming technologies reduce asphalt binder viscosity and thus enhance workability and facilitate compaction;
- Moreover, low viscosity availability encourages an increase in reclaimed asphalt pavement content and, therefore, provides lower application temperatures;
- In addition, the benefits are coupled with the application of RAP into the new asphalt binder involving WMA additives;
- The other benefits of the paving temperature being closer to the ambient temperature and heat are less dramatic: longer hauling distance, sooner opening of a traffic lane, less exposure to fumes, and a healthy work environment, which reduces the risk of health problems among the workers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alsolieman, H.A.; Babalghaith, A.M.; Memon, Z.A.; Al-Suhaibani, A.S.; Milad, A. Evaluation and Comparison of Mechanical Properties of Polymer-Modified Asphalt Mixtures. Polymers 2021, 13, 2282. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, L.N.; Hassan, M.M.; Vallabhu, B.; Kabir, M.S. Louisiana’s experience with WMA technologies: Mechanistic, environmental, and economic analysis. J. Mater. Civ. Eng. 2015, 27, 04014185. [Google Scholar] [CrossRef]
- Abd Rashid, M.; Zakaria, R.; Aminudin, E.; Adzar, J.; Shamsuddin, S.; Munikanan, V.; Alias, N.; Sooria, S.; Saha, K. Critical Green Road Criteria for Malaysia Green Rural Road Index. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Jabatan Kerja Raya (JKR). Malaysia, Standard Specification for Road Work. In Section 4: Flexible Pavement; Malaysian Public Works Department: Kuala Lumpur, Malaysia, 2008. [Google Scholar]
- Thives, L.P.; Ghisi, E. Asphalt mixtures emission and energy consumption: A review. Renew. Sustain. Energy Rev. 2017, 72, 473–484. [Google Scholar] [CrossRef]
- Cline, W.R. Meeting the Challenge of Global Warming. In Global Crises, Global Solutions; Lomborg, B., Ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Hassan, M. Life-Cycle Assessment of Warm-Mix Asphalt: An envirOnmental and Economic Perspective. Ph.D. Thesis, Lousiana Univerty, Civil Engineering Class, Lafayette, LO, USA, 2009. [Google Scholar]
- Rahmad, S.; Khahro, S.H.; Rosyidi, S.A.P.; Widyatmoko, I.; Memon, N.A.; Al-Sabaeei, A.M.; Milad, A.; Sutanto, M.H.; Yusoff, N.I.M. Assessment of metal leaching from rediset-polymer modified asphalt binder on groundwater and soil contamination. Case Stud. Constr. Mater. 2022, 16, e01108. [Google Scholar] [CrossRef]
- Bilema, M.A.; Aman, M.Y.; Hassan, N.A.; Ahmad, K.A.; Elghatas, H.M.; Radwan, A.A.; Shyaa, A.S. Moisture Sensitivity of Crumb Rubber Modified Modifier Warm Mix Asphalt Additive for Two Different Compaction Temperatures. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Kuantan, Malaysia, 10–11 August 2018; IOP Publishing: Kuantan, Malaysia, 2018. [Google Scholar]
- US Environmental Protection Agency. “Fast Facts. US Transportation Sector Greenhouse Gas Emissions: 1990–2018”. 2020. Available online: https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions (accessed on 17 October 2022).
- Sukhija, M.; Saboo, N. A comprehensive review of warm mix asphalt mixtures-laboratory to field. Constr. Build. Mater. 2021, 274, 121781. [Google Scholar] [CrossRef]
- Ma, F.; Sha, A.; Lin, R.; Huang, Y.; Wang, C. Greenhouse gas emissions from asphalt pavement construction: A case study in China. Int. J. Environ. Res. Public Health 2016, 13, 351. [Google Scholar] [CrossRef]
- Vidal, R.; Moliner, E.; Martínez, G.; Rubio, M.C. Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resour. Conserv. Recycl. 2013, 74, 101–114. [Google Scholar] [CrossRef]
- Oliveira, J.; Silva, H.; Fonseca, P.; Kim, Y.; Hwang, S.; Pyun, J.; Lee, H. Laboratory and field study of a WMA mixture produced with a new temperature reduction additive. In Proceedings of the 2nd International Conference on Warm Mix Asphalt, St. Louis, MO, USA, 11–13 October 2011; pp. 11–13. [Google Scholar]
- Davidson, J.K. Reducing Paving Emissions through the Use of Warm Mix Technology. In Congres Annual—Bitume Quebec, Trois Rivieres, Canada; Canadian Technical Asphalt Association: West Kelowna, BC, Canada, 2007. [Google Scholar]
- Ma, H.; Zhang, Z.; Zhao, X.; Wu, S. A comparative life cycle assessment (LCA) of warm mix asphalt (WMA) and hot mix asphalt (HMA) pavement: A case study in China. Adv. Civ. Eng. 2019, 2019, 9391857. [Google Scholar] [CrossRef]
- Hamzah, M.O.; Golchin, B. A laboratory investigation on the rheological properties of asphalt binder containing Rediset. J. East. Asia Soc. Transp. Stud. 2013, 10, 1537–1550. [Google Scholar]
- Middleton, B.; Forfylow, R. Evaluation of warm-mix asphalt produced with the double barrel green process. Transp. Res. Rec. 2009, 2126, 19–26. [Google Scholar] [CrossRef]
- Rubio, M.d.C.; Moreno, F.; Martínez-Echevarría, M.J.; Martínez, G.; Vázquez, J.M. Comparative analysis of emissions from the manufacture and use of hot and half-warm mix asphalt. J. Clean. Prod. 2013, 41, 1–6. [Google Scholar] [CrossRef]
- Vaitkus, A.; Čygas, D.; Laurinavičius, A.; Perveneckas, Z. Analysis and evaluation of possibilities for the use of warm mix asphalt in Lithuania. Balt. J. Road Bridge Eng. 2009, 4, 80–86. [Google Scholar] [CrossRef]
- Rubio, M.C.; Martínez, G.; Baena, L.; Moreno, F. Warm mix asphalt: An overview. J. Clean. Prod. 2012, 24, 76–84. [Google Scholar] [CrossRef]
- Silva, H.M.R.D.; Oliveira, J.R.M.; Ferreira, C.I.G.; Pereira, P.A.A. Assessment of the performance of warm mix asphalts in road pavements. Int. J. Pavement Res. Technol. 2010, 3, 119–127. [Google Scholar]
- Merusi, F.; Polacco, G.; Filippi, S.; Giuliani, F. Structural transitions and physical networks in wax-modified bitumens. Road Mater. Pavement Des. 2013, 14, 289–309. [Google Scholar] [CrossRef]
- Kristjansdottir, O. Warm Mix Asphalt for Cold Weather Paving; University of Washington: Washington, DC, USA, 2006. [Google Scholar]
- Ai, C.; Li, Q.J.; Qiu, Y. Testing and assessing the performance of a new warm mix asphalt with SMC. J. Traffic Transp. Eng. (Engl. Ed.) 2015, 2, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Punith, V.S.; Amirkhanian, S.N. Effects of non-foaming WMA additives on asphalt binders at high performance temperatures. Fuel 2012, 94, 144–155. [Google Scholar] [CrossRef]
- Capitão, S.D.; Picado-Santos, L.G.; Martinho, F. Pavement engineering materials: Review on the use of warm-mix asphalt. Constr. Build. Mater. 2012, 36, 1016–1024. [Google Scholar] [CrossRef]
- d’Angelo, J.; Harm, E.; Bartoszek, J.; Baumgardner, G.; Corrigan, M.; Cowsert, J.; Harman, T.; Jamshidi, M.; Jones, W.; Newcomb, D. Warm-Mix Asphalt: European Practice; Federal Highway Administration, Office of International Programs: Washington, DC, USA, 2008. [Google Scholar]
- Prowell, B.D.; Hurley, G.C.; Frank, B. Warm-Mix Asphalt: Best Practices; National Asphalt Pavement Association: Lanham, MD, USA, 2011. [Google Scholar]
- Pérez-Martínez, M.; Moreno-Navarro, F.; Martín-Marín, J.; Ríos-Losada, C.; Rubio-Gámez, M.C. Analysis of cleaner technologies based on waxes and surfactant additives in road construction. J. Clean. Prod. 2014, 65, 374–379. [Google Scholar] [CrossRef]
- Kheradmand, B.; Muniandy, R.; Hua, L.T.; Yunus, R.B.; Solouki, A. An overview of the emerging warm mix asphalt technology. Int. J. Pavement Eng. 2014, 15, 79–94. [Google Scholar] [CrossRef]
- Arabani, M.; Roshani, H.; Hamedi, G.H. Estimating moisture sensitivity of warm mix asphalt modified with zycosoil as an antistrip agent using surface free energy method. J. Mater. Civ. Eng. 2012, 24, 889–897. [Google Scholar] [CrossRef]
- Croteau, J.-M.; Tessier, B. Warm Mix Asphalt Paving Technologies: A Road Builder’s Perspective. In Proceedings of the Annual Conference of the Transportation Association of Canada, Toronto, ON, Canada, 22–24 September 2008. [Google Scholar]
- Harder, G.A.; LeGoff, Y.; Loustau, A.; Martineau, Y.; Heritier, B.; Romier, A. Energy and environmental gains of warm and half-warm asphalt mix: Quantitative approach. In Proceedings of the Transportation Research Board 87th Annual Meeting, Washington, DC, USA, 13–17 January 2008. [Google Scholar]
- Hasan, M.R.M.; You, Z.; Yang, X. A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques. Constr. Build. Mater. 2017, 152, 115–133. [Google Scholar] [CrossRef]
- Ranieri, V.; Kowalski, K.J.; Berloco, N.; Colonna, P.; Perrone, P. Influence of wax additives on the properties of porous asphalts. Constr. Build. Mater. 2017, 145, 261–271. [Google Scholar] [CrossRef]
- Oner, J.; Sengoz, B. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis. PLoS ONE 2015, 10, e116180. [Google Scholar] [CrossRef] [PubMed]
- Goh, S.W.; You, Z.; Van Dam, T.J. Laboratory evaluation and pavement design for warm mix asphalt. In Proceedings of the 2007 Mid-Continent Transportation Research Symposium, Ames, Iowa, 16–17 August 2007; pp. 1–11. [Google Scholar]
- Sargand, S.; Figueroa, J.L.; Edwards, W.; Al-Rawashdeh, A.S. Performance Assessment of Warm Mix Asphalt (WMA) Pavements; Ohio Research Institute for Transportation and the Environment: Columbus, OH, USA, 2009. [Google Scholar]
- Al-Rawashdeh, A.S. Performance Assessment of Warm Mix Asphalt (WMA) Pavements. Ph.D. Thesis, Ohio University, Columbus, OH, USA, 2008. [Google Scholar]
- Calabi-Floody, A.T.; Valdés-Vidal, G.A.; Sanchez-Alonso, E.; Mardones-Parra, L.A. Evaluation of Gas Emissions, Energy Consumption and Production Costs of Warm Mix Asphalt (WMA) Involving Natural Zeolite and Reclaimed Asphalt Pavement (RAP). Sustainability 2020, 12, 6410. [Google Scholar] [CrossRef]
- Dinis-Almeida, M.; Afonso, M.L. Warm Mix Recycled Asphalt—A sustainable solution. J. Clean. Prod. 2015, 107, 310–316. [Google Scholar] [CrossRef]
- Rahman, M.A.; Ghabchi, R.; Zaman, M.; Ali, S.A. Rutting and moisture-induced damage potential of foamed warm mix asphalt (WMA) containing RAP. Innov. Infrastruct. Solut. 2021, 6, 1–11. [Google Scholar] [CrossRef]
- Barazi Jomoor, N.; Fakhri, M.; Keymanesh, M.R. Determining the optimum amount of recycled asphalt pavement (RAP) in warm stone matrix asphalt using dynamic creep test. Constr. Build. Mater. 2019, 228, 116736. [Google Scholar] [CrossRef]
- Olsen, R.; Graff, P.; Daae, H.L.; Bryngelsson, I.-L.; Molander, P.; Ellingsen, D.G. Occupational Exposure during Asphalt Paving—Comparison of Hot and Warm Mix Asphalt in Field Experiments. Ann. Work Expo. Health 2021, 65, 446–457. [Google Scholar] [CrossRef]
- Kumar, R.; Saboo, N.; Kumar, P.; Chandra, S. Effect of warm mix additives on creep and recovery response of conventional and polymer modified asphalt binders. Constr. Build. Mater. 2017, 138, 352–362. [Google Scholar] [CrossRef]
- Martin, H.; Kerstin, Z.; Joachim, M. Reduced emissions of warm mix asphalt during construction. Road Mater. Pavement Des. 2019, 20 (Suppl. 2), S568–S577. [Google Scholar] [CrossRef]
- Vaitkus, A.; Čygas, D.; Laurinavičius, A.; Vorobjovas, V.; Perveneckas, Z. Influence of warm mix asphalt technology on asphalt physical and mechanical properties. Constr. Build. Mater. 2016, 112, 800–806. [Google Scholar] [CrossRef]
- Aurilio, R.M.; Aurilio, M.; Baaj, H. The Effect of a Chemical Warm Mix Additive on the Self-Healing Capability of Bitumen. J. Test. Eval. 2021, 50, 1775–1782. [Google Scholar]
- Zaumanis, M. Warm mix asphalt investigation. In Climate Change, Energy, Sustainability and Pavements, Green Energy and Technology; Gopalakrishnan, K., Steyn, W., Harvey, J., Eds.; Green Energy and Technology Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Behl, A.; Kumar, G.; Sharma, G.; Jain, P. Evaluation of field performance of warm-mix asphalt pavements in India. Procedia Soc. Behav. Sci. 2013, 104, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Hurley, G.C.; Prowell, B.D.; Reinke, G. Evaluation of potential processes for use in warm mix asphalt. J. Assoc. Asph. Paving Technol. 2006, 75, 41–90. [Google Scholar]
- Vaitkus, A.; Vorobjovas, V.; Ziliut, L. The research on the use of warm mix asphalt for asphalt pavement structures. In Proceedings of the XXVII International Baltic Road Conference, Riga, Latvia, 23–26 August 2009; pp. 2–6. [Google Scholar]
- Babalghaith, A.M.; Koting, S.; Sulong, N.H.R.; Karim, M.R.; AlMashjary, B.M. Performance evaluation of stone mastic asphalt (SMA) mixtures with palm oil clinker (POC) as fine aggregate replacement. Constr. Build. Mater. 2020, 262, 120546. [Google Scholar] [CrossRef]
- Fiksel, J.; Bakshi, B.R.; Baral, A.; Guerra, E.; DeQuervain, B. Comparative life cycle assessment of beneficial applications for scrap tires. Clean Technol. Environ. Policy 2011, 13, 19–35. [Google Scholar] [CrossRef]
- Polo-Mendoza, R.; Penabaena-Niebles, R.; Giustozzi, F.; Martinez-Arguelles, G. Eco-friendly design of Warm mix asphalt (WMA) with recycled concrete aggregate (RCA): A case study from a developing country. Constr. Build. Mater. 2022, 326, 126890. [Google Scholar] [CrossRef]
- Xiong, R.; Chu, C.; Qiao, N.; Wang, L.; Yang, F.; Sheng, Y.; Guan, B.; Niu, D.; Geng, J.; Chen, H. Performance evaluation of asphalt mixture exposed to dynamic water and chlorine salt erosion. Constr. Build. Mater. 2019, 201, 121–126. [Google Scholar] [CrossRef]
- Pouranian, M.R.; Shishehbor, M. Sustainability Assessment of Green Asphalt Mixtures: A Review. Environments 2019, 6, 73. [Google Scholar] [CrossRef] [Green Version]
- Hill, B.; Behnia, B.; Buttlar, W.G.; Reis, H. Evaluation of Warm Mix Asphalt Mixtures Containing Reclaimed Asphalt Pavement through Mechanical Performance Tests and an Acoustic Emission Approach. J. Mater. Civ. Eng. 2013, 25, 1887–1897. [Google Scholar] [CrossRef]
- Farooq, M.A.; Mir, M.S. Use of reclaimed asphalt pavement (RAP) in warm mix asphalt (WMA) pavements: A review. Innov. Infrastruct. Solut. 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Guo, M.; Liu, H.; Jiao, Y.; Mo, L.; Tan, Y.; Wang, D.; Liang, M. Effect of WMA-RAP technology on pavement performance of asphalt mixture: A state-of-the-art review. J. Clean. Prod. 2020, 266, 121704. [Google Scholar] [CrossRef]
- Vargas-Nordcbeck, A.; Timm, D.H. Rutting characterization of warm mix asphalt and high RAP mixtures. Road Mater. Pavement Des. 2012, 13 (Suppl. S1), 1–20. [Google Scholar] [CrossRef]
- Fakhri, M.; Ahmadi, A. Recycling of RAP and steel slag aggregates into the warm mix asphalt: A performance evaluation. Constr. Build. Mater. 2017, 147, 630–638. [Google Scholar] [CrossRef]
- Martinho, F.C.G.; Picado-Santos, L.G.; Capitão, S.D. Influence of recycled concrete and steel slag aggregates on warm-mix asphalt properties. Constr. Build. Mater. 2018, 185, 684–696. [Google Scholar] [CrossRef]
- Pasetto, M.; Baliello, A.; Giacomello, G.; Pasquini, E. Sustainable solutions for road pavements: A multi-scale characterization of warm mix asphalts containing steel slags. J. Clean. Prod. 2017, 166, 835–843. [Google Scholar] [CrossRef]
- Fakhri, M.; Azami, A. Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement and crumb rubber. J. Clean. Prod. 2017, 165, 1125–1132. [Google Scholar]
- Fakhri, M.; Hosseini, S.A. Laboratory evaluation of rutting and moisture damage resistance of glass fiber modified warm mix asphalt incorporating high RAP proportion. Constr. Build. Mater. 2017, 134, 626–640. [Google Scholar] [CrossRef]
- Padula, F.R.G.; Nicodemos, S.; Mendes, J.C.; Willis, R.; Taylor, A. Evaluation of fatigue performance of high RAP-WMA mixtures. Int. J. Pavement Res. Technol. 2019, 12, 430–434. [Google Scholar] [CrossRef]
- Mansourian, A.; Razmi, A.; Razavi, M. Evaluation of fracture resistance of warm mix asphalt containing jute fibers. Constr. Build. Mater. 2016, 117, 37–46. [Google Scholar] [CrossRef]
- Mohd Hasan, M.R.; You, Z.; Porter, D.; Goh, S.W. Laboratory moisture susceptibility evaluation of WMA under possible field conditions. Constr. Build. Mater. 2015, 101, 57–64. [Google Scholar] [CrossRef]
- Cheng, J.; Shen, J.; Xiao, F. Moisture susceptibility of warm-mix asphalt mixtures containing nanosized hydrated lime. J. Mater. Civ. Eng. 2011, 23, 1552–1559. [Google Scholar] [CrossRef]
- Khani Sanij, H.; Afkhamy Meybodi, P.; Amiri Hormozaky, M.; Hosseini, S.H.; Olazar, M. Evaluation of performance and moisture sensitivity of glass-containing warm mix asphalt modified with zycothermTM as an anti-stripping additive. Constr. Build. Mater. 2019, 197, 185–194. [Google Scholar] [CrossRef]
- Farooq, M.A.; Mir, M.S.; Sharma, A. Laboratory study on use of RAP in WMA pavements using rejuvenator. Constr. Build. Mater. 2018, 168, 61–72. [Google Scholar] [CrossRef]
- Bilema, M.A.M.; Aman, M.Y.; Ahmad, K.A. Investigating the rheological and physical properties for unaged of crumb rubber-modified binders containing warm mix asphalt additive. In Lecture Notes in Civil Engineering; Springer: Singapore, 2019. [Google Scholar]
- Araujo, D.L.V.; Santos, J.; Martinez-Arguelles, G. Environmental performance evaluation of warm mix asphalt with recycled concrete aggregate for road pavements. Int. J. Pavement Eng. 2022, 1–14. [Google Scholar] [CrossRef]
- Almeida-Costa, A.; Benta, A. Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt. J. Clean. Prod. 2016, 112, 2308–2317. [Google Scholar] [CrossRef]
- Jain, S.; Singh, B. Cold mix asphalt: An overview. J. Clean. Prod. 2020, 280, 124378. [Google Scholar] [CrossRef]
- Taher, M.N.M.; Aman, M.Y. An overview of reclaimed asphalt pavement (RAP) materials in Warm Mix Asphalt using foaming technology. ARPN J. Eng. Appl. Sci. 2016, 11, 9874–9881. [Google Scholar]
- Cheraghian, G.; Cannone Falchetto, A.; You, Z.; Chen, S.; Kim, Y.S.; Westerhoff, J.; Moon, K.H.; Wistuba, M.P. Warm mix asphalt technology: An up to date review. J. Clean. Prod. 2020, 268, 122128. [Google Scholar] [CrossRef]
- Widyatmoko, I. 14—Sustainability of bituminous materials. In Sustainability of Construction Materials, 2nd ed.; Khatib, J.M., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 343–370. [Google Scholar]
- Chowdhury, A.; Button, J.W. A Review of Warm Mix Asphalt; Texas Transportation Institute: Springfield, VA, USA, 2008. [Google Scholar]
- Rondón-Quintana, H.; Hernández-Noguera, J.; Reyes-Lizcano, F. A review of warm mix asphalt technology: Technical, economical and environmental aspects. Ing. E Investig. 2015, 35, 5–18. [Google Scholar]
- Behnood, A. A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties. J. Clean. Prod. 2020, 259, 120817. [Google Scholar] [CrossRef]
- Caputo, P.; Abe, A.A.; Loise, V.; Porto, M.; Calandra, P.; Angelico, R.; Oliviero Rossi, C. The role of additives in warm mix asphalt technology: An insight into their mechanisms of improving an emerging technology. Nanomaterials 2020, 10, 1202. [Google Scholar] [CrossRef]
- Srikanth, G.; Kumar, R.; Vasudeva, R. A Review on Warm Mix Asphalt. In Proceedings of the National Conference: Advanced Structures, Materials and Methodology in Civil Engineering (ASMMCE–2018), Jalandhar, India, 3–4 November 2018; pp. 3–4. [Google Scholar]
- Kie Badroodi, S.; Reza Keymanesh, M.; Shafabakhsh, G. Experimental investigation of the fatigue phenomenon in nano silica-modified warm mix asphalt containing recycled asphalt considering self-healing behavior. Constr. Build. Mater. 2020, 246, 117558. [Google Scholar] [CrossRef]
- Dinis-Almeida, M.; Castro-Gomes, J.; Antunes, M.d.L. Mix design considerations for warm mix recycled asphalt with bitumen emulsion. Constr. Build. Mater. 2012, 28, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Manolis, S.; Eng, P.; Reid, R. Asphalt Mix Performance Testing and Emissions Evaluation for Warm Mix Asphalt Field Project on Ministry of Transportation Ontario Highway 10. In Proceedings of the Fifthy-sixth Annual Conference of the Canadian Technical Asphalt Association, Québec City, QC, Canada, November 2011; pp. 123–149. [Google Scholar]
- Peng, B.; Cai, C.; Yin, G.; Li, W.; Zhan, Y. Evaluation system for CO2 emission of hot asphalt mixture. J. Traffic Transp. Eng. (Engl. Ed.) 2015, 2, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Lee, B.-K. Energy savings and reduction of CO2 emission using Ca(OH)2 incorporated zeolite as an additive for warm and hot mix asphalt production. Energy 2017, 136, 142–150. [Google Scholar] [CrossRef]
- Firmansyah; Tamalkhani. Effect of Field Aging on Adhesive Properties of Warm-Mix Asphalt. In Proceedings of the AIP Conference Proceedings, Kuantan, Malaysia, 25–26 July 2018; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2059, p. 020031. [Google Scholar]
- Pereira, R.; Almeida-Costa, A.; Duarte, C.; Benta, A. Warm mix asphalt: Chemical additives’ effects on bitumen properties and limestone aggregates mixture compactibility. Int. J. Pavement Res. Technol. 2018, 11, 285–299. [Google Scholar] [CrossRef]
- Banerjee, A.; de Fortier Smit, A.; Prozzi, J.A. The effect of long-term aging on the rheology of warm mix asphalt binders. Fuel 2012, 97, 603–611. [Google Scholar] [CrossRef]
- Stimilli, A.; Virgili, A.; Canestrari, F. Warm recycling of flexible pavements: Effectiveness of Warm Mix Asphalt additives on modified bitumen and mixture performance. J. Clean. Prod. 2017, 156, 911–922. [Google Scholar] [CrossRef]
- Khan, M.Z.H.; Koting, S.; Katman, H.Y.B.; Ibrahim, M.R.; Babalghaith, A.M.; Asqool, O. Performance of High Content Reclaimed Asphalt Pavement (RAP) in Asphaltic Mix with Crumb Rubber Modifier and Waste Engine Oil as Rejuvenator. Appl. Sci. 2021, 11, 5226. [Google Scholar] [CrossRef]
- Milad, A.; Ali, A.S.B.; Babalghaith, A.M.; Memon, Z.A.; Mashaan, N.S.; Arafa, S.; Yusoff, N.I.M. Utilisation of Waste-Based Geopolymer in Asphalt Pavement Modification and Construction—A Review. Sustainability 2021, 13, 3330. [Google Scholar] [CrossRef]
- Samieadel, A.; Schimmel, K.; Fini, E.H. Comparative life cycle assessment (LCA) of bio-modified binder and conventional asphalt binder. Clean Technol. Environ. Policy 2018, 20, 191–200. [Google Scholar] [CrossRef]
- Milad, A.; Ahmeda, A.G.; Taib, A.M.; Rahmad, S.; Solla, M.; Yusoff, N.I.M. A review of the feasibility of using crumb rubber derived from end-of-life tire as asphalt binder modifier. J. Rubber Res. 2020, 23, 203–216. [Google Scholar] [CrossRef]
- Babalghaith, A.M.; Koting, S.; Sulong, N.H.R.; Khan, M.Z.H.; Milad, A.; Yusoff, N.I.M.; Ibrahim, M.R.; Mohamed, A.H.B.N. A systematic review of the utilization of waste materials as aggregate replacement in stone matrix asphalt mixes. Environ. Sci. Pollut. Res. 2022, 29, 35557–35582. [Google Scholar] [CrossRef]
- US Geological Survey. 2015 Minerals Yearbook (MALAYSIA); US Geological Survey: Washington, DC, USA, 2018. [Google Scholar]
- US Geological Survey. Mineral Commodity Summaries 2020; US Geological Survey: Washington, DC, USA, 2020. [Google Scholar]
- Aghbashlo, M.; Mobli, H.; Rafiee, S.; Madadlou, A. A review on exergy analysis of drying processes and systems. Renew. Sustain. Energy Rev. 2013, 22, 1–22. [Google Scholar] [CrossRef]
- Peng, B.; Tong, X.; Cao, S.; Li, W.; Xu, G. Carbon emission calculation method and low-carbon technology for use in expressway construction. Sustainability 2020, 12, 3219. [Google Scholar] [CrossRef]
- Stotko, O. Energy and related carbon emission reduction technologies for hot mix asphalt plants. In Proceedings of the 10th conference on asphalt pavements for Southern Africa—CAPSA, Winterton, South Africa, 11–14 September 2011; pp. 11–14. [Google Scholar]
- Peinado, D.; de Vega, M.; García-Hernando, N.; Marugán-Cruz, C. Energy and exergy analysis in an asphalt plant’s rotary dryer. Appl. Therm. Eng. 2011, 31, 1039–1049. [Google Scholar] [CrossRef] [Green Version]
- Bueche, N.; Dumont, A.G. Energy in warm mix asphalt. In Proceedings of the 5th Eurasphalt & Eurobitume Congress, Istanbul, Turkey, 13–15 June 2012. [Google Scholar]
- Hamzah, M.O.; Jamshidi, A.; Shahadan, Z. Evaluation of the potential of Sasobit® to reduce required heat energy and CO2 emission in the asphalt industry. J. Clean. Prod. 2010, 18, 1859–1865. [Google Scholar] [CrossRef]
- Jamshidi, A.; Kurumisawa, K.; Nawa, T.; Mao, J.; Li, B. Characterization of effects of thermal property of aggregate on the carbon footprint of asphalt industries in China. J. Traffic Transp. Eng. (Engl. Ed.) 2017, 4, 118–130. [Google Scholar] [CrossRef]
- Feng, L.; Shi-lin, W.; Jian, X.; Xiao-pei, S.; Ting-gang, L.; Wei, Z. Investigation And Analysis on The Two-Year Energy Consumption on Asphalt Pavement in Lu’an City in China. In Proceedings of the International Symposium on Pavement Life Cycle Assessment, Davis, CA, USA, 14–16 October 2014. [Google Scholar]
- Boundy, B.; Diegel, S.; Wright, L.; Davis, S. Appendix A: Lower and higher heating values of gas, liquid and solid fuels. In Biomass Energy Data Book; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2011. [Google Scholar]
- Mallick, R.B.; Kandhal, P.S.; Bradbury, R.L. Using warm mix asphalt technology to incorporate high percentage of reclaimed asphalt pavement (RAP) material in asphalt mixtures. Transp. Res. Rec. J. Transp. Res. Board 2008, 2051, 71–79. [Google Scholar] [CrossRef]
- Brown, C. Emergent Sustainability: The Concept of Sustainable Development in a Complex World. In Globalization and Environmental Challenges: Reconceptualizing Security in the 21st Century; Brauch, H.G., Spring, Ú.O., Mesjasz, C., Grin, J., Dunay, P., Behera, N.C., Chourou, B., Kameri-Mbote, P., Liotta, P.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 141–149. [Google Scholar]
- Glasby, G.P. Concept of sustainable development: A meaningful goal? Sci. Total Environ. 1995, 159, 67–80. [Google Scholar] [CrossRef]
- Haider, H.; AlMarshod, S.Y.; AlSaleem, S.S.; Ali, A.A.M.; Alinizzi, M.; Alresheedi, M.T.; Shafiquzzaman, M. Life Cycle Assessment of Construction and Demolition Waste Management in Riyadh, Saudi Arabia. Int. J. Environ. Res. Public Health 2022, 19, 7382. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, T.; Mäkelä, K. Environmental Adaption of Concrete: Environmental Impact of Concrete and Asphalt Pavements; VTT Technical Research Centre of Finland: Espoo, Finland, 1996. [Google Scholar]
- Park, K.; Hwang, Y.; Seo, S.; Seo, H. Quantitative assessment of environmental impacts on life cycle of highways. J. Constr. Eng. Manag. 2003, 129, 25–31. [Google Scholar] [CrossRef]
- Yu, B.; Lu, Q. Life cycle assessment of pavement: Methodology and case study. Transp. Res. Part D Transp. Environ. 2012, 17, 380–388. [Google Scholar] [CrossRef]
- Santero, N.J.; Masanet, E.; Horvath, A. Life-cycle assessment of pavements. Part I: Critical review. Resour. Conserv. Recycl. 2011, 55, 801–809. [Google Scholar] [CrossRef]
- Praticò, F.G.; Giunta, M.; Mistretta, M.; Gulotta, T.M. Energy and Environmental Life Cycle Assessment of Sustainable Pavement Materials and Technologies for Urban Roads. Sustainability 2020, 12, 704. [Google Scholar] [CrossRef]
- Harvey, J.; Kendall, A.; Saboori, A. The Role of Life Cycle Assessment in Reducing Greenhouse Gas Emissions from Road Construction and Maintenance; National Center for Sustainable Transportation: Davis, CA, USA, 2015. [Google Scholar]
- Harvey, J.; Meijer, J.; Ozer, H.; Al-Qadi, I.L.; Saboori, A.; Kendall, A. Pavement Life Cycle Assessment Framework; Federal Highway Administration: Washington, DC, USA, 2016. [Google Scholar]
- Araújo, J.P.C.; Oliveira, J.R.; Silva, H.M. The importance of the use phase on the LCA of environmentally friendly solutions for asphalt road pavements. Transp. Res. Part D Transp. Environ. 2014, 32, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Chen, W.; Ding, X.; Zhang, W.; Yu, S. Comprehensive Life Cycle Environmental Assessment of Preventive Maintenance Techniques for Asphalt Pavement. Sustainability 2021, 13, 4887. [Google Scholar] [CrossRef]
- Sollazzo, G.; Longo, S.; Cellura, M.; Celauro, C. Impact analysis using life cycle assessment of asphalt production from primary data. Sustainability 2020, 12, 10171. [Google Scholar] [CrossRef]
- Santero, N. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2010. [Google Scholar]
- Bagui, S.K.; Das, A.; Verma, K.K.; Bagui, S. Variation of pavement design with environmental temperature variation. Malays. J. Civ. Eng. 2017, 29, 307–319. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, D.; Yan, G.; Zheng, H. Life cycle assessment of road surface paving with warm mix asphalt (WMA) replacing hot mix asphalt (HMA). In Proceedings of the 2010 International Conference on E-Product E-Service and E-Entertainment, Henan, China, 7–9 November 2010; pp. 1–5. [Google Scholar]
- Moghadas Nejad, F.; Azarhoosh, A.; Hamedi, G.H.; Roshani, H. Rutting performance prediction of warm mix asphalt containing reclaimed asphalt pavements. Road Mater. Pavement Des. 2014, 15, 207–219. [Google Scholar] [CrossRef]
- Tatari, O.; Nazzal, M.; Kucukvar, M. Comparative sustainability assessment of warm-mix asphalts: A thermodynamic based hybrid life cycle analysis. Resour. Conserv. Recycl. 2012, 58, 18–24. [Google Scholar] [CrossRef]
- Jamshidi, A.; Hamzah, M.O.; You, Z. Performance of Warm Mix Asphalt containing Sasobit®: State-of-the-art. Constr. Build. Mater. 2013, 38, 530–553. [Google Scholar] [CrossRef]
- Wu, S.; Qian, S. Comparison of Warm Mix Asphalt and Hot Mix Asphalt Pavement Based on Life Cycle Assessment; International Symposium on Pavement LCA: Sacramento, CA, USA, 2014. [Google Scholar]
- Abdalla, A.; Faheem, A.F.; Walters, E. Life cycle assessment of eco-friendly asphalt pavement involving multi-recycled materials: A comparative study. J. Clean. Prod. 2022, 362, 132471. [Google Scholar] [CrossRef]
- Blankendaal, T.; Schuur, P.; Voordijk, H. Reducing the environmental impact of concrete and asphalt: A scenario approach. J. Clean. Prod. 2014, 66, 27–36. [Google Scholar] [CrossRef]
- Rosyidi, S.A.P.; Idiajir, B.; Akhir, N.M.; Rahmad, S.; Lestari, N.P.; Widoanindyawati, V.; Al-Sabaeei, A.M.; Milad, A.; Mashaan, N.S.; Md Yusoff, N.I. Physical, Chemical and Thermal Properties of Palm Oil Boiler Ash/Rediset-Modified Asphalt Binder. Sustainability 2022, 14, 3016. [Google Scholar] [CrossRef]
- Klemeš, J.J. Environmental policy decision-making support tools and pollution reduction technologies: A summary. Clean Technol. Environ. Policy 2010, 12, 587–589. [Google Scholar] [CrossRef]
- Gillespie, I. Quantifying the Energy Used in an Asphalt Coating Plant; University of Strathclyde: Glasgow, UK, 2012; p. 164. [Google Scholar]
- Kristjánsdóttir, Ó.; Muench, S.T.; Michael, L.; Burke, G. Assessing potential for warm-mix asphalt technology adoption. Transp. Res. Rec. 2007, 2040, 91–99. [Google Scholar] [CrossRef]
- Merusi, F.; Giuliani, F. Rheological characterization of wax-modified asphalt binders at high service temperatures. Mater. Struct. 2011, 44, 1809–1820. [Google Scholar] [CrossRef]
- Milad, A.; Taib, A.M.; Ahmeda, A.G.; Solla, M.; Yusoff, N.I.M. A review of the use of reclaimed asphalt pavement for road paving applications. J. Teknol. 2020, 82, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Romier, A.; Audeon, M.; David, J.; Martineau, Y.; Olard, F. Low-energy asphalt with performance of hot-mix asphalt. Transp. Res. Rec. 2006, 1962, 101–112. [Google Scholar] [CrossRef]
- Hettiarachchi, C.; Hou, X.; Wang, J.; Xiao, F. A comprehensive review on the utilization of reclaimed asphalt material with warm mix asphalt technology. Constr. Build. Mater. 2019, 227, 117096. [Google Scholar] [CrossRef]
- Cervarich, M. Foaming the Asphalt: New Warm-Mix Technique Challenges Conventional Wisdom. HMAT Hot Mix Asph. Technol. 2007, 12, 23–24. [Google Scholar]
- Larsen, O.; Moen, O.; Robertus, C.; Koenders, B. WAM Foam asphalt production at lower operating temperatures as an environmentally friendly alternative to HMA. In Proceedings of the 3rd Eurasphalt and Eurobitume Congress, Vienna, Austria, 12–14 May 2004. [Google Scholar]
- Zaumanis, M. Warm Mix Asphalt. In Climate Change, Energy, Sustainability and Pavements; Gopalakrishnan, K., Steyn, W.J., Harvey, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 309–334. [Google Scholar]
- Hatmoko, J.U.D.; Hidayat, A.; Setiawati, A.; Prasetyo, S.C.A. Measuring Carbon Footprint of Flexible Pavement Construction Project in Indonesia. In E3S Web of Conferences; EDP Sciences: Semarang, Indonesia, 2018; p. 07001. [Google Scholar]
- Intergovernmental Panel on Climate Change. IPCC Fourth Assessment Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007; pp. 580–595. [Google Scholar]
- Ma, F.; Sha, A.; Yang, P.; Huang, Y. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China. Int. J. Environ. Res. Public Health 2016, 13, 632. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.M.; To, W.M.; Lam, K.H.; Lo, W.C.; Chung, W.L. Electricity consumption in Hong Kong: Trend analysis and greenhouse gases emission. HKIE Trans. 2014, 21, 81–88. [Google Scholar] [CrossRef]
- Wilkinson, A.; Woodward, D.; Magee, B.; Tretsiakova-McNally, S. A state of the art review into the use of geopolymer cement for road applications. In Bituminous Mixtures and Pavements VI; Taylor And Francis Group: London, UK, 2015; p. 147. [Google Scholar]
- Olivier, J.G.; Peters, J.A.; Janssens-Maenhout, G.; Wilson, J. Long-Term Trend in Global CO2 Emissions; Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2011. [Google Scholar]
- Keches, C.; LeBlanc, A. Reducing Greenhouse Gas Emissions from Asphalt Materials; Worcester Polytechnic Institute: Worcester, MA, USA, 2007. [Google Scholar]
- Davidson, J.K.; Pedlow, R. Reducing Paving Emissions Using Warm Mix Technology. In Proceedings of the annual conference-Canadian Technical Asphalt Association, Niagara Falls, ON, Canada, 18–21 November 2007; Polyscience Publications: Laval, QC, Canada, 2007; Volume 52, p. 39. [Google Scholar]
- Prowell, B.D. Warm Mix Asphalt; Federal Highway Administration, US Department of Transportation: Washington, DC, USA, 2007. [Google Scholar]
- Sargand, S.; Nazzal, M.D.; Al-Rawashdeh, A.; Powers, D. Field evaluation of warm-mix asphalt technologies. J. Mater. Civ. Eng. 2012, 24, 1343–1349. [Google Scholar] [CrossRef]
- Myers, R.; Shrager, B.; Brooks, G. Hot Mix Asphalt Plants Emission Assessment Report; Report No.EPA-454/R-00-019; U.S. Environmental Protection Agency: Durham, NC, USA, 2000. [Google Scholar]
- Clark, C.R.; Burnett, D.M.; Parker, C.M.; Arp, E.W.; Swanson, M.S.; Minsavage, G.D.; Kriech, A.J.; Osborn, L.V.; Freeman, J.J.; Barter, R.A.; et al. Asphalt fume dermal carcinogenicity potential: I. dermal carcinogenicity evaluation of asphalt (bitumen) fume condensates. Regul. Toxicol. Pharmacol. 2011, 61, 9–16. [Google Scholar] [CrossRef]
- Hunter, R.N.; Self, A.; Read, J.; Hobson, E. The Shell Bitumen Handbook; ICE Publishing: London, UK, 2015. [Google Scholar]
- Prowell, B.; Frank, B.; Osborne, L.; Kriech, T.; West, R. Effects of WMA on Plant Energy and Emissions and Worker Exposures to Respirable Fumes; National Cooperative Highway Research Program: Washington, DC, USA, 2014. [Google Scholar]
- Aminian, O.; Saburi, A.; Mohseni, H.; Akbari, H.; Chavoshi, F.; Akbari, H. Occupational risk of bladder cancer among Iranian male workers. Urol. Ann. 2014, 6, 135. [Google Scholar]
- Behrens, T.; Schill, W.; Wild, P.; Frentzel-Beyme, R.; Ahrens, W. Mortality in a German cohort of asphalt workers with potential bitumen exposure. J. Occup. Environ. Hyg. 2007, 4 (Suppl. 1), 201–208. [Google Scholar] [CrossRef]
- Hooiveld, M.; Spee, T.; Burstyn, I.; Kromhout, H.; Heederik, D. Lung cancer mortality in a Dutch cohort of asphalt workers: Evaluation of possible confounding by smoking. Am. J. Ind. Med. 2003, 43, 79–87. [Google Scholar] [CrossRef]
- Lauby-Secretan, B.; Baan, R.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Galichet, L.; Straif, K. Bitumens and bitumen emissions, and some heterocyclic polycyclic aromatic hydrocarbons. Lancet Oncol. 2011, 12, 1190–1191. [Google Scholar] [CrossRef]
- Boffetta, P.; Burstyn, I.; Partanen, T.; Kromhout, H.; Svane, O.; Langård, S.; Järvholm, B.; Frentzel-Beyme, R.; Kauppinen, T.; Stücker, I. Cancer mortality among European asphalt workers: An international epidemiological study. I. Results of the analysis based on job titles. Am. J. Ind. Med. 2003, 43, 18–27. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer Agents Classified by the IARC Monographs. Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 6 November 2022).
- Fuhst, R.; Creutzenberg, O.; Ernst, H.; Hansen, T.; Pohlmann, G.; Preiss, A.; Rittinghausen, S. 24 months inhalation carcinogenicity study of bitumen fumes in Wistar (WU) rats. J. Occup. Environ. Hyg. 2007, 4 (Suppl. S1), 20–43. [Google Scholar] [CrossRef]
- Raulf-Heimsoth, M.; Pesch, B.; Kendzia, B.; Spickenheuer, A.; Bramer, R.; Marczynski, B.; Merget, R.; Brüning, T. Irritative effects of vapours and aerosols of bitumen on the airways assessed by non-invasive methods. Arch. Toxicol. 2011, 85, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Tepper, A.L.; Burr, G.A.; Feng, H.A.; Singal, M.; Miller, A.K.; Hanley, K.W.; Olsen, L.D. Acute symptoms associated with asphalt fume exposure among road pavers. Am. J. Ind. Med. 2006, 49, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Norseth, T.; Waage, J.; Dale, I. Acute effects and exposure to organic compounds in road maintenance workers exposed to asphalt. Am. J. Ind. Med. 1991, 20, 737–744. [Google Scholar] [CrossRef] [PubMed]
- White, G.W. Developing Warm Mix Asphalt for Airport. In Proceedings of the 15th International Flexible Pavement Conference, Brisbane, QLD, Australia, 22–25 September 2013; Australian Asphalt Pavement Association: Brisbane, Australia; pp. 1–17. [Google Scholar]
- Podolsky, J.H.; Buss, A.; Williams, R.C.; Cochran, E.W. The rutting and stripping resistance of warm and hot mix asphalt using bio-additives. Constr. Build. Mater. 2016, 112, 128–139. [Google Scholar] [CrossRef]
- Al-Sabaeei, A.M.; Napiah, M.B.; Sutanto, M.H.; Alaloul, W.S.; Usman, A. A systematic review of bio-asphalt for flexible pavement applications: Coherent taxonomy, motivations, challenges and future directions. J. Clean. Prod. 2020, 249, 119357. [Google Scholar] [CrossRef]
Usage | Type of Waste and WMA Additive | Effect | Reference |
---|---|---|---|
Aggregate | Glass (10% *) + ZycothermTM (0.05, 0.10, 0.15 and 0.20% **) | Reduce resilient modulus, creep, and moisture susceptibility | [72] |
Furnace slag (30% *) + Sasobit® (4% **) or RedisetTM (2% **) | Improve fatigue resistance and stiffness modulus | [64] | |
Steel slag (40% *) + Surfactant-based chemical additive (0.5% **) | Improve the fatigue resistance and mechanical properties of asphalt mixtures | [65] | |
RAP (0, 20 and 40% *)+ Steel slag (0 and 40% *) + Sasobit® (1.5% **) | RAP improves moisture sensitivity and resilient modulus Steel slag improves the resilient modulus The mixes containing RAP and/or slag have a lower rutting potential The WMA containing RAP and/or steel slag has enhanced fatigue resistance | [63] | |
RAP (30 and 60% *) + crumb rubber (CR) (0, 10 and 20% *) + Sasobit® (4 and 5.5% **) | RAP and crumb rubber have a positive effect on moisture susceptibility The result of the fatigue test showed that using RAP and CR improves the fatigue resistance of the asphalt mixtures | [66] | |
RAP (0, 20, 40 and 50% *) + Glass fibre (0.3% ***) + Sasobit® (1.5% **) | Improved rutting and moisture susceptibility resistance | [67] | |
RAP (20, 30, 40, 50 and 60% *) + Mobile engine oil (10, 12.5, 15, 17.5 and 20% **) + EvothermTM (0.5% **) | Higher RAP proportion results in lower OBC of the RAP-WMA mixes The tensile strength ratio (TSR) decreased with higher amounts of RAP material. Higher rejuvenator dosage reduced the TSR | [73] | |
RAP | The use of WMA increases permanent deformation but adding RAP in the mixture resulted in less rutting | [62] | |
RAP | The 50% RAP WMA has a good fatigue performance | [68] | |
Fibre | Jute fibre (0, 0.3, 0.5 and 0.7% ***) + Sasobit® (3% **) | Enhanced fracture resistance | [69] |
Additive or filler | Hydrated Lime (1% ***) + Advera (0.25%**), Sasobit (3.0%**), and Cecabase RT (0.35% **) | Enhanced moisture susceptibility | [70] |
Nano hydrated lime (1% ***) + Aspha-Min (0.3% ***), Evotherm (0.5% **), and Sasobit (1.5% **) | Increase the indirect tensile strength (ITS) and TSR | [71] |
Mix Type | Production Temperature | Advantages | Disadvantages |
---|---|---|---|
Hot-mix asphalt | 150–180 °C |
|
|
Warm-mix asphalt | 110–140 °C |
|
|
Type of Additive | WMA Process | Product | Company | Dosage | Location | Temperature °C |
---|---|---|---|---|---|---|
Organic Additive | FT Wax | Sasobit® | Sasol | 1.0–2.5% * | Worldwide | 20–30 (R) |
Montan Wax | Asphaltan B | Romonta GmbH | 2.0–4.0% * | Germany | 20–30 (R) | |
Fatty Acid Amide | Licomont BS | Clariant | 3.0% * | Germany | 20–30 (R) | |
Wax | 3E LT or Ecoflex | Colas | Not specified | France | 20–30 (R) | |
Chemical additive | Emulsion | Evotherm® | MeadWestvaco | 0.5–0.7% * | USA, worldwide | 85–115 (R) |
Surfactant | Rediset | Akzo Nobel | 1.5–2.0% * | USA, Norway | 30 (R) | |
Surfactant | Cecabase RT | CECA | 0.2–0.4% ** | USA, Norway | 30 R(R) | |
Liquid Chemical | Iterlow | IterChimica | 0.3–0.5% * | Italy | 120 (P) | |
Foaming Technique | Water-containing | Aspha-Min® | Eurovia and MHI | 0.3% ** | Worldwide | 20–30 (R) |
Water-containing | Advera® | PQ Corporation | 0.25% ** | USA | 10–30 (R) | |
Water-based | WAM Foam | KoloVeidekke and Shell Bitumen | 2–5% water * | Worldwide | 100–200 (P) | |
Water-based | Low Energy Asphalt (LEA®) | LEA-CO | 3% water with fine sand | USA, France, Spain, Italy | 60–80 (P) | |
Water-based | Low Emission Asphalt | McConaughey Technologies | 3% water with fine sand | USA | 90 (P) | |
Water-based | LT Asphalt | Nynas | 0.5–1.0% * | Netherlands | 90 (P) | |
Water-based | LEAB® | Royal Bam Group | 0.1% * | Netherlands | 90 (P) | |
Water-based | Double Barrel Green | Astec | 2.0% water * | USA | 116–135 (P) |
Fuel | Heating Energy for Aggregate [110] | CO2 Emission | ||
---|---|---|---|---|
Value | Unit | Value | Unit | |
Diesel | 42,791,000 | J/kg | 2.6390 | kg/L |
Heating oil | 42,612,000 | J/kg | - | - |
Fuel oil (N°1/2) | 42,686,000 | J/kg | 3.2160 | kg/t |
Natural gas | 47,141,000 | J/kg | 0.1836 | kg/kWh |
Propane gas | 46,296,000 | J/kg | - | - |
Electricity | 3,600,000 | J/kWh | 0.5410 | kg/kWh |
Gas | Type of Energy | ||||
---|---|---|---|---|---|
Coal | Fuel Oil | Diesel/Petrol | Asphalt | Natural Gas | |
CO2 | 94,600 | 77,400 | 74,100 | 80,700 | 56,100 |
CH4 | 1 | 3 | 3 | 3 | 1 |
N2O | 1.5 | 0.6 | 0.6 | 0.6 | 0.1 |
Greenhouse Gas | CO2 | CH4 | N2O |
---|---|---|---|
CO2 equivalent | 1 | 21 | 310 |
Reference | Additive or Process | Type of Emission | |||||
---|---|---|---|---|---|---|---|
CO2 | CO | SO2 | NOX | VOC | Dust | ||
Hamzah and Golchin [17] | Rediset | 31.7 | - | - | - | - | - |
Ma, Zhang, Zhao and Wu [16] | Evotherm | 60 | - | 75.2 | 72.6 | - | - |
Vidal, Moliner, Martínez and Rubio [13] | Synthetic zeolites | 15.8 | 18.4 | 9.67 | 16.5 | - | - |
Davidson [15] | Evotherm | 46 | 63 | 41 | 58 | - | - |
Oliveira, Silva, Fonseca, Kim, Hwang, Pyun and Lee [14] | LEADCAP | 32 | 18 | 24 | 33 | - | - |
Middleton and Forfylow [18] | Double barrel green | 10.9 | 10.4 | −14.3 | 8.3 | - | - |
Vaitkus, Čygas, Laurinavičius and Perveneckas [20,53] | - | 30–40 | 10–30 | 35 | 60–70 | 50 | 20–25 |
Davidson and Pedlow [152] | Evotherm | 17.35 | 19.51 | −17.24 | 20 | - | - |
Larsen, Moen, Robertus and Koenders [143] | WAM-foam | 31.4 | 28.5 | - | 61.5 | - | - |
Rubio, Moreno, Martínez-Echevarría, Martínez and Vázquez [19] | Foaming | 58.5 | 91.9 | 99.9 | 66.7 | - | - |
d’Angelo, Harm, Bartoszek, Baumgardner, Corrigan, Cowsert, Harman, Jamshidi, Jones and Newcomb [28], Prowell [153] | - | 15–40 | 10–30 | 20–35 | 60–70 | - | 25–55 |
Sargand, et al. [154] | Aspha-min | - | 62 | 83.3 | 30.8 | 62.8 | - |
Sargand, Nazzal, Al-Rawashdeh and Powers [154] | Sasobit | - | 63.2 | 83.3 | 21.2 | 51.3 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milad, A.; Babalghaith, A.M.; Al-Sabaeei, A.M.; Dulaimi, A.; Ali, A.; Reddy, S.S.; Bilema, M.; Yusoff, N.I.M. A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement. Int. J. Environ. Res. Public Health 2022, 19, 14863. https://doi.org/10.3390/ijerph192214863
Milad A, Babalghaith AM, Al-Sabaeei AM, Dulaimi A, Ali A, Reddy SS, Bilema M, Yusoff NIM. A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement. International Journal of Environmental Research and Public Health. 2022; 19(22):14863. https://doi.org/10.3390/ijerph192214863
Chicago/Turabian StyleMilad, Abdalrhman, Ali Mohammed Babalghaith, Abdulnaser M. Al-Sabaeei, Anmar Dulaimi, Abdualmtalab Ali, Sajjala Sreedhar Reddy, Munder Bilema, and Nur Izzi Md Yusoff. 2022. "A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement" International Journal of Environmental Research and Public Health 19, no. 22: 14863. https://doi.org/10.3390/ijerph192214863
APA StyleMilad, A., Babalghaith, A. M., Al-Sabaeei, A. M., Dulaimi, A., Ali, A., Reddy, S. S., Bilema, M., & Yusoff, N. I. M. (2022). A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement. International Journal of Environmental Research and Public Health, 19(22), 14863. https://doi.org/10.3390/ijerph192214863