Long-Term Performance of a Hybrid-Flow Constructed Wetlands System for Urban Wastewater Treatment in Caldera de Tirajana (Santa Lucía, Gran Canaria, Spain)
Abstract
:1. Introduction
- A system that is environmentally integrated;
- An adequate effluent quality, whether the treated water is to be discharged or reused;
- A system that is able to adapt to fluctuations in the flow rate and the pollutant load;
- Minimum or null electric energy consumption;
- Simple and low cost maintenance;
- Minimum sludge production.
2. Materials and Methods
2.1. Description of the System
- Inlet structure: The wastewater from a non-separated sewer network reaches the system through a collector pipe. The inlet structure includes a rainwater gate and a spillway.
- Bar screen (A): A coarse, manually-cleaned wastewater screen composed of bars 2 cm apart.
- Septic tank constructed in situ (B): With 2 chambers and a total capacity of about 70 m3.
- Prefabricated Imhoff tank (C): With a capacity of 15 m3 and manufactured by Shaler (ref. CHC-IMH).
- Distribution basin with sump area for intermittent wetland discharge (D): Capacity of 6 m3 with safety overflow, one wastewater inlet from the Imhoff tank, and three outlet connections: two to feed each of the vertical-flow constructed wetlands (VFCWs) and one bypass to the horizontal-flow constructed wetland (HFCW). This system allows intermittent VFCW discharge without the need for feed pumps.
- Two VFCWs (E and F): These are identified as right (R) and left (L), respectively. The surface area of the one on the right (E: RVFCW) is 150 m2 and that of the one on the left (F: LVFCW) is 170 m2. The filter substrate is composed of a 20 cm layer of 20–32 mm gravel, where drainage pipes are embedded, which connect to aeration chimneys, and a second 80 cm surface layer of 6–12 mm gravel, creating a total substrate depth of 1 m. The VFCWs are used in alternating periods of approximately one month, with one in operation while the other is at rest.
- One HFCW (G): The HFCW has an effective treatment surface area of 330 m2 (24.5 m long by 13.5 m wide) and is planted with Typha latifolia, which is a plant species that is harvested twice a year from Caldera de Taburiente and used by local artisans in their handicrafts, as bedding for livestock, and mixed into manure for its reuse as fertilizer. As several studies have reported [9,25,26,27,28], vegetation contributes to the system’s performance, and is therefore an important component of wetlands’ treatment systems.
- Storage lagoon (H): The effluent is taken to a 62.5 m3 storage pond from where it is distributed for the irrigation of olive trees or, occasionally, discharged into a dry canyon.
2.2. Flow Rate Measurements
2.3. Meteorological Variables
2.4. Sampling Plan and Parameters Analysed
- Wastewater influent;
- Septic tank effluent;
- Imhoff tank effluent;
- LVFCW effluent;
- RVFCW effluent;
- HFCW effluent.
2.5. Statistical Analysis of the Data
- Effect of daily rainfall on influent quality;
- Effect of the mean monthly temperature on water quality at each sampling point, since temperature influences the removal of pollutants in constructed wetlands [37];
- Effect of the passage of time on HFCW effluent quality.
3. Results and Discussion
3.1. Treated Flow
3.2. Meteorological Variables
3.3. Characterization of the Water at the Different Sampling Points
3.3.1. Influent of the Santa Lucía HCWS
3.3.2. Primary Treatment Effluent
3.3.3. Secondary Treatment Effluent
- Vertical-flow constructed wetlands, VFCWs
- Horizontal-flow constructed wetland, HFCW
3.4. System Removal Efficiencies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- UNESCO; WSSM. Water Reuse within a Circular Economy Context; UNESCO: Paris, France; i-WSSM: Daejeon, Korea, 2020; ISBN 978-92-3-100413-1. [Google Scholar]
- Šereš, M.; Innemanová, P.; Hnátková, T.; Rozkošný, M.; Stefanakis, A.; Semerád, J.; Cajthaml, T. Evaluation of Hybrid Constructed Wetland Performance and Reuse of Treated Wastewater in Agricultural Irrigation. Water 2021, 13, 1165. [Google Scholar] [CrossRef]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated wastewater reuse for irrigation: Pros and cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef] [PubMed]
- Vera, L.; Martel, G.; Gutierrez, J.F.; Márquez, M. Chapter III: Evaluación de los sistemas de depuración natural. In Gestión Sostenible Del Agua Residual En Entornos Rurales-Proyecto Depuranat; NETBIBLO: Santa Cristina Gherdëina, Italy, 2008; pp. 99–133. [Google Scholar]
- El Kori, N.; del Rio-Gamero, B.; Schallenberg-Rodríguez, J.; Cabrera-del Rosario, S. Mitigation of climate change through the analysis and reduction of greenhouse gases in desalination plants. Desalination Water Treat. 2021, 230, 38–47. [Google Scholar] [CrossRef]
- United Nations. Available online: https://www.un.org (accessed on 15 December 2021).
- Masi, F.; Rizzo, A.; Regelsberger, M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manag. 2018, 216, 275–284. [Google Scholar] [CrossRef]
- Torrens, A.; de la Varga, D.; Ndiaye, A.K.; Folch, M.; Coly, A. Innovative multistage constructed wetland for municipal wastewater treatment and reuse for agriculture in Senegal. Water 2020, 12, 3139. [Google Scholar] [CrossRef]
- Iglesias, M.B.; Campos, P.S.; López, M.O.; Soliño, G.A. Tecnología avanzada en depuración de aguas residuales domésticas en pequeños núcleos de población. Tecnol. Del Agua 2009, 29, 42–52. [Google Scholar]
- Ortega, E.; Salas, J.J.; Ferrer, Y.; Sobrados, L.; Aragon, C. La Depuración De Las Aguas Residuales En Pequeñas Poblaciones Españolas; Centro de Estudios y Experimentación de Obras Públicas (CEDEX): Madrid, Spain, 2008. [Google Scholar]
- del Río-Gamero, B. Mitigación Del Cambio Climático En El Ciclo Integral Del Agua: Aplicación Al Proceso De Tratamiento De Aguas Residuales. Ph.D. Thesis, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain, 2018. [Google Scholar]
- European Commission. Council Directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment. Off. J. Eur. Communities 1991, 135, 40–52. [Google Scholar]
- Moreno, L.; Casermeiro, M.A.; Quintana, J.R.; Fernández-Jurado, M.A.; Castaño, S. Eficacia en la eliminación de macronutrientes de un sistema de depuración de aguas residuales urbanas mediante infiltración directa sobre el terreno (Geodepuración). Geotemas 2004, 6, 169–172. [Google Scholar]
- Plan Nacional De Depuración, Saneamiento, Eficiencia, Ahorro y Reutilización, PLAN DSEAR. Available online: https://www.miteco.gob.es/es/agua/temas/planificacion-hidrologica/plan_dsear_final_tcm30-529674.pdf (accessed on 7 March 2022).
- Marzol Jaén, M.V.; Máyer Suárez, P. Algunas reflexiones acerca del clima de las Islas Canarias. Nimbus Revista de Climatología Meteorología y Paisaje 2012, 29–30, 399–416. [Google Scholar]
- Peñate-Suárez, B. Gestión Sostenible Del Agua Residual En Entornos Rurales, Proyecto Depuranat, 2nd ed.; Instituto Tecnológico de Canarias: Santa Cruz de Tenerife, Spain, 2008. [Google Scholar]
- El fanssi, S.; Ouazzani, N.; Mandi, L. Effectiveness of domestic wastewater treatment using a constructed wetlands and reuse ests of treated wastewater in rural area of Morocco. Geo Eco Trop. 2019, 43, 385–393. [Google Scholar]
- Micek, A.; Jóźwiakowski, K.; Marzec, M.; Listosz, A. Technological reliability and efficiency of wastewater treatment in two hybrid constructed wetlands in the Roztocze National Park (Poland). Water 2020, 12, 3435. [Google Scholar] [CrossRef]
- Pedrero, F.; Albuquerque, A.; Amado, L.; Marecos do Monte, H.; Alarcón, J. Analysis of the Reclamation Treatment Capability of a Constructed Wetland for Reuse. Water Pr. Technol. 2011, 6, 801–808. [Google Scholar] [CrossRef]
- Melián, J.A.H.; Rodríguez, A.J.M.; Araña, J.; Díaz, O.G.; Henríquez, J.J.G. Hybrid Constructed Wetlands for Wastewater Treatment and Reuse in the Canary Islands. Ecol. Eng. 2010, 36, 891–899. [Google Scholar] [CrossRef]
- Biswal, B.K.; Balasubramanian, R. Constructed Wetlands for Reclamation and Reuse of Wastewater and Urban Stormwater: A Review. Front. Environ. Sci. 2022, 10, 1–21. [Google Scholar] [CrossRef]
- EC 2018/0169; Regulation of the European Parliament and of the Council on Minimum Requirements for Water Reuse. European Parliament: Brussels, Belgium, 2018.
- Vera, L.; Martel, G.; Márquez, M. Two years monitoring of the natural system for wastewater reclamation in Santa Lucía, Gran Canaria Island. Ecol. Eng. 2013, 50, 21–30. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Toscano, A.; Marzo, A.; Milani, M.; Cirelli, G.L.; Barbagallo, S. Comparison of removal efficiencies in Mediterranean pilot constructed wetlands vegetated with different plant species. Ecol. Eng. 2015, 75, 155–160. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Xiong, J.; Li, L.; Zhao, B.; Sohail, I.; He, Z. A constructed wetland system with aquatic macrophytes for cleaning contaminated runoff/storm water from urban area in Florida. J. Environ. Manag. 2021, 280, 111794. [Google Scholar] [CrossRef]
- Maucieri, C.; Salvato, M.; Borin, M. Vegetation contribution on phosphorus removal in constructed wetlands. Ecol. Eng. 2020, 152, 105853. [Google Scholar] [CrossRef]
- Saeed, T.; Miah, M.J.; Majed, N.; Alam, M.K.; Khan, T. Effect of effluent recirculation on nutrients and organics removal performance of hybrid constructed wetlands: Landfill leachate treatment. J. Clean. Prod. 2021, 282, 125427–125436. [Google Scholar] [CrossRef]
- Ávila, C.; Salas, J.J.; Martin, I.; Aragón, C.; García, J. Integrated treatment of combined sewer wastewater and stormwater in a hybrid constructed wetland system in southern Spain and its further reuse. Ecol. Eng. 2013, 50, 13–20. [Google Scholar] [CrossRef]
- Vymazal, J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Res. 2013, 47, 4795–4811. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. The use of constructed wetlands for nitrogen removal from agricultural drainage: A review. Sci. Agric. Bohem. 2017, 48, 82–91. [Google Scholar] [CrossRef]
- Ávila, C.; Garfí, M.; García, J. Three-stage hybrid constructed wetland system for wastewater treatment and reuse in warm climate regions. Ecol. Eng. 2013, 61, 43–49. [Google Scholar] [CrossRef]
- American Public Health Association, American Water Works Association, Water Environmental Federation. Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Rousso, B.Z.; Pelissari, C.; Santos, M.O.D.; Sezerino, P.H. Hybrid constructed wetlands system with intermittent feeding applied for urban wastewater treatment in South Brazil. J. Water Sanit. Hyg. Dev. 2019, 9, 559–570. [Google Scholar] [CrossRef]
- Dagnino, J. Coeficiente de correlación lineal de Pearson. Rev. Chil. Anest. 2014, 43, 150–153. [Google Scholar]
- Liang, M.Y.; Han, Y.C.; Easa, S.M.; Chu, P.P.; Wang, Y.L.; Zhou, X.Y. New solution to build constructed wetland in cold climatic region. Sci. Total Environ. 2020, 719, 137124. [Google Scholar] [CrossRef]
- Metcalf & Eddy. Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Truu, M.; Juhanson, J.; Truu, J. Microbial biomass, activity and community composition in constructed wetlands. Sci. Total Environ. 2009, 407, 3958–3971. [Google Scholar] [CrossRef]
- Acero-Oliete, A.; López-Julián, P.L.; Russo, B.; Ruiz-Lozano, O. Comparative Efficiency of Two Different Constructed Wetlands for Wastewater Treatment of Small Populations in Mediterranean Continental Climate. Sustainability 2022, 14, 6511. [Google Scholar] [CrossRef]
- Mesquita, C.; Albuquerque, A.; Amaral, L.; Nogueira, R. Effectiveness and Temporal Variation of a Full-Scale Horizontal Constructed Wetland in Reducing Nitrogen and Phosphorus from Domestic Wastewater. ChemEngineering 2018, 2, 3. [Google Scholar] [CrossRef]
- Ricart, S.; Rico-Amorós, A.M. Constructed Wetlands to Face Water Scarcity and Water Pollution Risks: Learning from Farmers’ Perception in Alicante, Spain. Water 2021, 13, 2431. [Google Scholar] [CrossRef]
- Licata, M.; Ruggeri, R.; Iacuzzi, N.; Virga, G.; Farruggia, D.; Rossini, F.; Tuttolomondo, T. Treatment of Combined Dairy and Domestic Wastewater with Constructed Wetland System in Sicily (Italy). Pollutant Removal Efficiency and Effect of Vegetation. Water 2021, 13, 1086. [Google Scholar] [CrossRef]
- Hdidou, M.; Necibi, M.C.; Labille, J.; el Hajjaji, S.; Dhiba, D.; Chehbouni, A.; Roche, N. Potential Use of Constructed Wetland Systems for Rural Sanitation and Wastewater Reuse in Agriculture in the Moroccan Context. Energies 2022, 15, 156. [Google Scholar] [CrossRef]
- Abou-Elela, S.I.; Golinielli, G.; Abou-Taleb, E.M.; Hellal, M.S. Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecol. Eng. 2013, 61, 460–468. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Jinadasa, K.; Gersberg, R.M.; Liu, Y.; Tan, S.K.; Ng, W.J. Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000–2013). J. Environ. Sci. 2015, 30, 30–46. [Google Scholar] [CrossRef]
- Torrens, A. Subsurface Flow Constructed Wetlands for the Treatment of Wastewater from Different Sources. Design and Operation. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2015. [Google Scholar]
- Molle, P.; Prost-Boucle, S.; Lienard, A. Potential for total nitrogen removal by combining vertical flow and horizontal flow constructed wetlands: A full-scale experiment study. Ecol. Eng. 2008, 34, 23–29. [Google Scholar] [CrossRef]
- Sylvie, M.T.; Ashton, K.C. Vertical-horizontal subsurface flow hybrid constructed wetlands for municipal wastewater treatment in developing countries: A review. Afr. J. Biotechnol. 2021, 20, 358–368. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, H.; Li, W.; Ke, F. Full-scale experiment on domestic wastewater treatment by combining artificial aeration vertical-and horizontal-flow constructed wetlands system. Water Air Soil Pollut. 2012, 223, 5673–5683. [Google Scholar] [CrossRef]
- Municipal Wastewater Treatment uses Vertical Flow Followed by Horizontal Flow in a Two-Stage Hybrid Constructed Wetland Planted with Calibanus Hookeri and Canna Indica (Cannaceae). 2022. Available online: https://assets.researchsquare.com/files/rs-1769898/v1/665bae16-5f02-4d4d-b291-c7fb07ec869e.pdf?c=1658819583 (accessed on 8 September 2022).
- Song, X.; Li, Q.; Yan, D. Nutrient removal by hybrid subsurface flow constructed wetlands for high concentration ammonia nitrogen wastewater. Procedia Environ. Sci. 2010, 2, 1461–1468. [Google Scholar]
- Ilyas, H.; Masih, I. Intensification of constructed wetlands for land area reduction: A review. Environ. Sci. Pollut. Res. 2017, 24, 12081–12091. [Google Scholar] [CrossRef]
- Guedes-Alonso, R.; Montesdeoca-Esponda, S.; Pacheco-Juárez, J.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. A survey of the presence of pharmaceutical residues in wastewaters. Evaluation of their removal using conventional and natural treatment procedures. Molecules 2020, 25, 1639. [Google Scholar] [CrossRef] [PubMed]
- Ávila, C.; Bayona, J.M.; Martín, I.; Salas, J.J.; García, J. Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse. Ecol. Eng. 2015, 80, 108–116. [Google Scholar] [CrossRef]
- Gikas, G.D.; Papaevangelou, V.A.; Tsihrintzis, V.A.; Antonopoulou, M.; Konstantinou, I.K. Removal of Emerging Pollutants in Horizontal Subsurface Flow and Vertical Flow Pilot-Scale Constructed Wetlands. Processes 2021, 9, 2200. [Google Scholar] [CrossRef]
Year | Number of Data Records | Mean Flow, m3/day | Standard Deviation, m3/day | Maximum, m3/day | Minimum, m3/day |
---|---|---|---|---|---|
2008 | 58 | 26.8 | 10.3 | 65.0 | 9.6 |
2009 | 28 | 27.4 | 9.4 | 52.0 | 6.2 |
2010 | 102 | 33.3 | 18.3 | 161.5 | 10.9 |
2013 | 78 | 35.2 | 18.9 | 182.2 | 19.5 |
2015 | 13 | 33.6 | 5.0 | 44.3 | 25.1 |
Parameters | Number of Samples | Mean Value | Standard Deviation | Maximum | Minimum | Vera, 2013 [24] |
---|---|---|---|---|---|---|
BOD5 (mg/L) | 153 | 746 | 206 | >1500 | 280 | 697 ± 353 |
COD (mg/L) | 156 | 1 155 | 424 | 2583 | 182 | 1257 ± 492 |
BOD5/COD | 153 | 0.67 | 0.14 | 0.97 | 0.38 | 0.55 |
TSS (mg/L) | 158 | 448 | 414 | 2921 | 56 | 423 ± 295 |
Total N (mg/L) | 151 | 107 | 32 | 200 | 16 | 116 ± 33 |
NH4 (mg/L) | 154 | 84 | 8 | 149 | 64 | 93 ± 16 |
Parameters | Septic Tank Effluent (2) | Vera, 2013 [24] (2) | Imhoff Effluent (3) |
---|---|---|---|
BOD5 (mg/L) | 506 ± 142 (1300; 47) n = 156 | 418 ± 121 | 432 ± 121 (1000; 140) n = 151 |
COD (mg/L) | 768 ± 231 (2142; 199) n = 158 | 716 ± 236 | 662 ± 176 (1345; 277) n = 152 |
TSS (mg/L) | 207 ± 170 (1413; 26) n = 157 | 302 ± 167 | 158 ± 208 (2420; 26) n = 151 |
Total N (mg/L) | 86 ± 17 (186; 12) n = 150 | 98 ± 23 | 91 ± 70 (901; 14) n = 144 |
NH4 (mg/L) | 75 ± 9 (93; 43) n = 153 | 81 ± 14 | 77 ± 11 (97; 36) n = 147 |
Parameters | RVFCW Effluent (4) | LVFCW Effluent (5) | HFCW Influent | HCWS Effluent (6) |
---|---|---|---|---|
BOD5 (mg/L) | 180 ± 76 (350; 29) n = 83 | 176 ± 92 (450; 18) n = 70 | 178 ± 83 (450; 18) n = 153 | 60 ± 30 (245; 7) n = 137 |
COD (mg/L) | 296 ± 115 (568; 26) n = 86 | 293 ± 119 (701; 121) n = 70 | 293 ± 118 (701; 26) n = 156 | 124 ± 44 (347; 38) n = 139 |
TSS (mg/L) | 47 ± 47 (280; 2) n = 86 | 44 ± 35 (170; 2) n = 69 | 46 ± 42 (280; 2) n = 155 | 14 ± 24 (168;1) n = 134 |
Total N (mg/L) | 73 ± 15 (122; 11) n = 82 | 65 ± 12 (97; 36) n = 67 | 68 ± 18 (122; 11) n = 149 | 56 ± 17 (116; 8) n = 131 |
NH4 (mg/L) | 65 ± 13 (90; 25) n = 83 | 55 ± 12 (77; 29) n = 69 | 60 ± 14 (90; 25) n = 152 | 55 ± 46 (560; 14) n = 135 |
Treatment Stages | Efficiency, % | BOD5 | COD | TSS | Total N | NH4 |
---|---|---|---|---|---|---|
Primary treatment | Septic tank | 32 | 34 | 54 | 20 | 11 |
Imhoff tank | 15 | 14 | 24 | −6 | −3 | |
Overall primary treatment | 42 | 43 | 65 | 15 | 8 | |
Secondary treatment | VFCW | 59 | 56 | 71 | 25 | 22 |
HFCW | 66 | 58 | 70 | 18 | 8 | |
Overall secondary treatment | 86 | 81 | 91 | 38 | 29 | |
Overall system | 92 | 89 | 97 | 48 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martel-Rodríguez, G.M.; Millán-Gabet, V.; Mendieta-Pino, C.A.; García-Romero, E.; Sánchez-Ramírez, J.R. Long-Term Performance of a Hybrid-Flow Constructed Wetlands System for Urban Wastewater Treatment in Caldera de Tirajana (Santa Lucía, Gran Canaria, Spain). Int. J. Environ. Res. Public Health 2022, 19, 14871. https://doi.org/10.3390/ijerph192214871
Martel-Rodríguez GM, Millán-Gabet V, Mendieta-Pino CA, García-Romero E, Sánchez-Ramírez JR. Long-Term Performance of a Hybrid-Flow Constructed Wetlands System for Urban Wastewater Treatment in Caldera de Tirajana (Santa Lucía, Gran Canaria, Spain). International Journal of Environmental Research and Public Health. 2022; 19(22):14871. https://doi.org/10.3390/ijerph192214871
Chicago/Turabian StyleMartel-Rodríguez, Gilberto M., Vanessa Millán-Gabet, Carlos A. Mendieta-Pino, Eva García-Romero, and José R. Sánchez-Ramírez. 2022. "Long-Term Performance of a Hybrid-Flow Constructed Wetlands System for Urban Wastewater Treatment in Caldera de Tirajana (Santa Lucía, Gran Canaria, Spain)" International Journal of Environmental Research and Public Health 19, no. 22: 14871. https://doi.org/10.3390/ijerph192214871
APA StyleMartel-Rodríguez, G. M., Millán-Gabet, V., Mendieta-Pino, C. A., García-Romero, E., & Sánchez-Ramírez, J. R. (2022). Long-Term Performance of a Hybrid-Flow Constructed Wetlands System for Urban Wastewater Treatment in Caldera de Tirajana (Santa Lucía, Gran Canaria, Spain). International Journal of Environmental Research and Public Health, 19(22), 14871. https://doi.org/10.3390/ijerph192214871