Prognostic Implication of Exfoliative Airway Pathology in Cancer-Free Coal Workers’ Pneumoconiosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Pulmonary Function Test
2.3. Chest Radiography and International Labor Organization Scores
2.4. Bronchoalveolar Lavage Analysis
2.5. Bronchial Washing Cytology Analysis
2.6. Statistical Analysis
3. Results
3.1. Bronchoalveolar Lavage Differentials and Exfoliative Cytology Findings
3.2. Patient Demographics and Pulmonary Exfoliative Cytology Findings
3.3. Prognostic Value of Pulmonary Exfoliative Cytology Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coggon, D.; Taylor, A.N. Coal mining and chronic obstructive pulmonary disease: A review of the evidence. Thorax 1998, 53, 398–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckman, L.A.F.; Wang, M.L.; Petsonk, E.L.; Wagner, G.R. Rapid declines in FEV1 and subsequent respiratory symptoms, illnesses, and mortality in coal miners in the United States. Am. J. Respir. Crit. Care Med. 2001, 163, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.A.; Patel, A.; Green, F.H. Lung disease caused by exposure to coal mine and silica dust. In Seminars in Respiratory and Critical Care Medicine; Thieme Medical Publishers: New York, NY, USA, 2008; Volume 29, pp. 651–661. [Google Scholar]
- Mazurek, J.; Laney, A.; Wood, J. Coal workers’ pneumoconiosis-related years of potential life lost before age 65 years-United States, 1968–2006. Morb. Mortal. Wkly. Rep. 2009, 58, 1412–1416. [Google Scholar]
- Meijers, J.; Swaen, G.; Slangen, J. Mortality of Dutch coal miners in relation to pneumoconiosis, chronic obstructive pulmonary disease, and lung function. Occup. Environ. Med. 1997, 54, 708–713. [Google Scholar] [CrossRef]
- Meijers, J.M.; Swaen, G.M.; Slangen, J.J.; Van Vliet, K.; Sturmans, F. Long-term mortality in miners with coal workers’ pneumoconiosis in The Netherlands: A pilot study. Am. J. Ind. Med. 1991, 19, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Zhang, Z. The survival analyses of 2738 patients with simple pneumoconiosis. Occup. Environ. Med. 1996, 53, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attfield, M.; Kuempel, E. Mortality among US underground coal miners: A 23-year follow-up. Am. J. Ind. Med. 2008, 51, 231–245. [Google Scholar] [CrossRef]
- Wang, X.; Yu, I.T.; Wong, T.W.; Yano, E. Respiratory symptoms and pulmonary function in coal miners: Looking into the effects of simple pneumoconiosis. Am. J. Ind. Med. 1999, 35, 124–131. [Google Scholar] [CrossRef]
- Montes, I.I.; Fernández, G.R.; Reguero, J.; Mir, M.A.C.; García-Ordás, E.; Martínez, J.L.A.; González, C.M. Respiratory disease in a cohort of 2,579 coal miners followed up over a 20-year period. Chest 2004, 126, 622–629. [Google Scholar] [CrossRef]
- Jun, J.S.; Im Jung, J.; Kim, H.R.; Im Ahn, M.; Han, D.H.; Ko, J.M.; Park, S.H.; Lee, H.G.; Arakawa, H.; Koo, J.W. Complications of pneumoconiosis: Radiologic overview. Eur. J. Radiol. 2013, 82, 1819–1830. [Google Scholar] [CrossRef]
- Bauer, T.T.; Heyer, C.M.; Duchna, H.W.; Andreas, K.; Weber, A.; Schmidt, E.W.; Ammenwerth, W.; Schultze-Werninghaus, G. Radiological findings, pulmonary function and dyspnea in underground coal miners. Respiration 2007, 74, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Borm, P.; Schins, R. Genotype and phenotype in susceptibility to coal workers’ pneumoconiosis. The use of cytokines in perspective. Eur. Respir. J. 2001, 18, 127s–133s. [Google Scholar]
- Fireman, E.; Greif, J.; Schwarz, Y.; Man, A.; Ganor, E.; Ribak, Y.; Lerman, Y. Assessment of hazardous dust exposure by BAL and induced sputum. Chest 1999, 115, 1720–1728. [Google Scholar] [CrossRef]
- Wilt, J.L.; Banks, D.E.; Weissman, D.N.; Parker, J.E.; Vallyathan, V.; Castranova, V.; Dedhia, H.V.; Stulken, E.; Ma, J.K.; Ma, J.Y.; et al. Reduction of lung dust burden in pneumoconiosis by whole-lung lavage. J. Occup. Environ. Med. 1996, 38, 619–624. [Google Scholar] [CrossRef] [PubMed]
- De Santis, M.; Bosello, S.L.; Peluso, G.; Pinnelli, M.; Alivernini, S.; Zizzo, G.; Bocci, M.; Capacci, A.; La Torre, G.; Mannocci, A.; et al. Bronchoalveolar lavage fluid and progression of scleroderma interstitial lung disease. Clin. Respir. J. 2012, 6, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Daniele, R.P.; Elias, J.A.; Epstein, P.E.; Rossman, M.D. Bronchoalveolar lavage: Role in the pathogenesis, diagnosis, and management of interstitial lung disease. Ann. Intern. Med. 1985, 102, 93–108. [Google Scholar] [CrossRef]
- Welker, L.; Jörres, R.; Costabel, U.; Magnussen, H. Predictive value of BAL cell differentials in the diagnosis of interstitial lung diseases. Eur. Respir. J. 2004, 24, 1000–1006. [Google Scholar] [CrossRef] [Green Version]
- Lesur, O.J.; Mancini, N.M.; Humbert, J.C.; Chabot, F.; Polu, J.M. Interleukin-6, Interferon-gamma, and phospholipid levels in the alveolar lining fluid of human lungs: Profiles in coal worker’s pneumoconiosis and idiopathic pulmonary fibrosis. Chest 1994, 106, 407–413. [Google Scholar] [CrossRef]
- Xing, J.c.; Chen, W.h.; Han, W.h.; Guo, M.f.; Rehn, S.; Bruch, J. Changes of tumor necrosis factor, surfactant protein A, and phospholipids in bronchoalveolar lavage fluid in the development and progression of coal workers’ pneumoconiosis. Biomed. Environ. Sci. 2006, 19, 124. [Google Scholar]
- Anonymous. Standardization of spirometry—1987 update. Statement of the American Thoracic Society. Am. Rev. Respir. Dis. 1987, 136, 1285–1298. [Google Scholar] [CrossRef]
- De Vuyst, P.; Gevenois, P.A.; Van Muylem, A.; Yernault, J.C. Changing patterns in asbestos-induced lung disease. Chest 2004, 126, 999. [Google Scholar] [CrossRef]
- Organizacao Internacional do Trabalho (OIT). Guidelines for the Use of the ILO International Classification of Radiographs of Pneumoconiosis. 2011. Available online: http://www.oit.org/wcmsp5/groups/public/---ed_protect/---protrav/---safework/documents/publication/wcms_108568.pdf (accessed on 22 September 2022).
- Costabel, U.; Danel, C.; Haslam, P.; Higgenbottam, T.; Klech, H.; Pohl, W.; Rennard, S.; Rossi, G.; Rust, M.; Semenzato, G. Technical recommendations and guidelines for bronchoalveolar lavage (BAL). Report of the European Society of Pneumology Task Group on BAL. Eur. Respir. J. 1989, 2, 561–585. [Google Scholar]
- Meyer, K.C.; Raghu, G.; Baughman, R.P.; Brown, K.K.; Costabel, U.; du Bois, R.M.; Drent, M.; Haslam, P.L.; Kim, D.S.; Nagai, S.; et al. An official American Thoracic Society clinical practice guideline: The clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am. J. Respir. Crit. Care Med. 2012, 185, 1004–1014. [Google Scholar] [CrossRef]
- Rennard, S.; Ghafouri, M.; Thompson, A.; Linder, J.; Vaughan, W.; Jones, K.; Ertl, R.; Christensen, K.; Prince, A.; Stahl, M. Fractional processing of sequential bronchoalveolar lavage to separate bronchial and alveolar samples. Am. Rev. Respir. Dis. 1990, 141, 208–217. [Google Scholar] [CrossRef]
- Heron, M.; Grutters, J.; ten Dam-Molenkamp, K.; Hijdra, D.; van Heugten-Roeling, A.; Claessen, A.; Ruven, H.; Van den Bosch, J.; van Velzen-Blad, H. Bronchoalveolar lavage cell pattern from healthy human lung. Clin. Exp. Immunol. 2012, 167, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Wallaert, B.; Hatron, P.Y.; Grosbois, J.M.; Tonnel, A.B.; Devulder, B.; Voisin, C. Subclinical pulmonary involvement in collagen-vascular diseases assessed by bronchoalveolar lavage: Relationship between alveolitis and subsequent changes in lung function. Am. Rev. Respir. Dis. 1986, 133, 574–580. [Google Scholar] [PubMed]
- Kini, S.R. Color Atlas of Differential Diagnosis in Exfoliative and Aspiration Cytopathology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Kayacan, O.; Beder, S.; Karnak, D. Cellular profile of bronchoalveolar lavage fluid in Turkish miners. Postgrad. Med. J. 2003, 79, 527–530. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, C.R.; Jones, J.C.; Alfaro, T.; Ferreira, A.J. Bronchoalveolar lavage in occupational lung diseases. In Seminars in Respiratory and Critical Care Medicine; Thieme Medical Publishers: New York, NY, USA, 2007; Volume 28, pp. 504–513. [Google Scholar]
- Rom, W.N.; Bitterman, P.B.; Rennard, S.I.; Cantin, A.; Crystal, R.G. Characterization of the lower respiratory tract inflammation of nonsmoking individuals with interstitial lung disease associated with chronic inhalation of inorganic dusts. Am. J. Respir. Crit. Care Med. 1987, 136, 1429–1434. [Google Scholar] [CrossRef]
- Rom, W.N. Relationship of inflammatory cell cytokines to disease severity in individuals with occupational inorganic dust exposure. Am. J. Ind. Med. 1991, 19, 15–27. [Google Scholar] [CrossRef]
- Lynch, J.; Standiford, T.J.; Rolfe, M.W.; Kunkel, S.L.; Strieter, R.M. Neutrophilic alveolitis in idiopathic pulmonary fibrosis. Am. Rev. Respir. Dis. 1992, 145, 1433–1439. [Google Scholar] [CrossRef] [PubMed]
- Haslam, P.; Turton, C.; Lukoszek, A.; Salsbury, A.; Dewar, A.; Collins, J.; Turner-Warwick, M. Bronchoalveolar lavage fluid cell counts in cryptogenic fibrosing alveolitis and their relation to therapy. Thorax 1980, 35, 328–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idiopathic, P.F. Diagnosis and Treatment-International Consensus Statement. Am. J. Respir. Crit. Care Med. 2000, 161, 646–664. [Google Scholar]
- Haslam, P.L.; Dewar, A.; Butchers, P.; Primett, Z.S.; Newman-Taylor, A.; Turner-Warwick, M. Mast cells, atypical lymphocytes, and neutrophils in bronchoalveolar lavage in extrinsic allergic alveolitis: Comparison with other interstitial lung diseases. Am. Rev. Respir. Dis. 1987, 135, 35–47. [Google Scholar] [PubMed]
- Robinson, B.W.; Rose, A.H.; James, A.; Whitaker, D.; Musk, A.W. Alveolitis of pulmonary asbestosis: Bronchoalveolar lavage studies in crocidoliteand chrysotile-exposed individuals. Chest 1986, 90, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.W.; Monick, M.; Hunninghake, G.W. Prognostic role of eosinophils in pulmonary fibrosis. Chest 1987, 92, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, A.; Wagner, J.; Ryder, R.; Seal, R.; Lyons, J.; Andersson, N. Post-mortem study of emphysema in coalworkers and non-coalworkers. Lancet 1982, 320, 600–603. [Google Scholar] [CrossRef]
- Ruckley, V.A.; Gauld, S.; Chapman, J.; Davis, J.; Douglas, A.; Fernie, J.; Jacobsen, M.; Lamb, D. Emphysema and dust exposure in a group of coal workers. Am. Rev. Respir. Dis. 1984, 129, 528–532. [Google Scholar] [PubMed]
- Kuempel, E.D.; Wheeler, M.W.; Smith, R.J.; Vallyathan, V.; Green, F.H. Contributions of dust exposure and cigarette smoking to emphysema severity in coal miners in the United States. Am. J. Respir. Crit. Care Med. 2009, 180, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Fahy, J.V.; Dickey, B.F. Airway mucus function and dysfunction. N. Engl. J. Med. 2010, 363, 2233–2247. [Google Scholar] [CrossRef] [Green Version]
- Thornton, D.J.; Rousseau, K.; McGuckin, M.A. Structure and function of the polymeric mucins in airways mucus. Annu. Rev. Physiol. 2008, 70, 459–486. [Google Scholar] [CrossRef]
- Fischer, B.M.; Voynow, J.A. Neutrophil elastase induces MUC 5AC gene expression in airway epithelium via a pathway involving reactive oxygen species. Am. J. Respir. Cell Mol. Biol. 2002, 26, 447–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longphre, M.; Li, D.; Gallup, M.; Drori, E.; Ordonez, C.; Redman, T.; Wenzel, S.; Bice, D.; Fahy, J.; Basbaum, C.; et al. Allergen-induced IL-9 directly stimulates mucin transcription in respiratory epithelial cells. J. Clin. Investig. 1999, 104, 1375–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyner, J.W.; Kim, E.Y.; Ide, K.; Pelletier, M.R.; Roswit, W.T.; Morton, J.D.; Battaile, J.T.; Patel, A.C.; Patterson, G.A.; Castro, M.; et al. Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. J. Clin. Investig. 2006, 116, 309–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innes, A.L.; Woodruff, P.G.; Ferrando, R.E.; Donnelly, S.; Dolganov, G.M.; Lazarus, S.C.; Fahy, J.V. Epithelial mucin stores are increased in the large airways of smokers with airflow obstruction. Chest 2006, 130, 1102–1108. [Google Scholar] [CrossRef]
- Song, K.S.; Lee, W.J.; Chung, K.C.; Koo, J.S.; Yang, E.J.; Choi, J.Y.; Yoon, J.H. Interleukin-1β and tumor necrosis factor-α induce MUC5AC overexpression through a mechanism involving ERK/p38 mitogen-activated protein kinases-MSK1-CREB activation in human airway epithelial cells. J. Biol. Chem. 2003, 278, 23243–23250. [Google Scholar] [CrossRef]
- Vanhee, D.; Gosset, P.; Boitelle, A.; Wallaert, B.; Tonnel, A. Cytokines and cytokine network in silicosis and coal workers’ pneumoconiosis. Eur. Respir. J. 1995, 8, 834–842. [Google Scholar] [CrossRef]
- Lassalle, P.; Gosset, P.; Aerts, C.; Fournier, E.; Lafitte, J.J.; Degreef, J.M.; Wallaert, B.; Tonnel, A.B.; Voisin, C. Abnormal secretion of interleukin-1 and tumor necrosis factor α by alveolar macrophages in coal worker’s pneumoconiosis: Comparison between simple pneumoconiosis and progressive massive fibrosis. Exp. Lung Res. 1990, 16, 73–80. [Google Scholar] [CrossRef]
- Vallyathan, V.; Goins, M.; Lapp, L.N.; Pack, D.; Leonard, S.; Shi, X.; Castranova, V. Changes in bronchoalveolar lavage indices associated with radiographic classification in coal miners. Am. J. Respir. Crit. Care Med. 2000, 162, 958–965. [Google Scholar] [CrossRef]
- Donaldson, K.; Borm, P.J. The quartz hazard: A variable entity. Ann. Occup. Hyg. 1998, 42, 287–294. [Google Scholar] [CrossRef]
Current Smoker | Never or Former Smoker | |||
---|---|---|---|---|
CWP | Control | CWP | Control | |
n | 51 | 36 | 46 | 44 |
Total cell count | 43.5 (28.7–58.3) | 23.0 (11.4–29.0) | 19.6 (10.5–29.0) | 8.8 (7.6–11.2) |
Macrophage | 30.6 (12.4–48.7) | 21.5 (11.2–25.3) | 12.8 (7.4–17.9) | 7.9 (6.7–9.3) |
Neutrophil | 1.9 (0.7–7.4) | 0.1 (0.3–0.3) | 1.4 (0.4–2.9) | 0.1 (0.0–0.2) |
Lymphocyte | 0.7 (0.3–2.3) | 0.9 (0.5–1.2) | 0.8 (0.5–2.7) | 1.0 (0.5–1.3) |
Eosinophil | 1.2 (0.3–3.1) | 0.1 (0.0–0.1) | 0.8 (0.1–2.5) | 0.0 (0.0–0.0) |
CWP | Control | |
---|---|---|
n | 97 | 80 |
Total cell count | 1048 (445–1654) | 859 (343–1284) |
Goblet cell hyperplasia | 356 (230–925) | 174 (84–370) |
Hyperplastic change | 366 (145–548) | 253 (123–421) |
Squamous metaplasia | 252 (123–445) | 434 (132–522) |
Total (n = 177) | Control (n = 80) | CWP (n = 97) | p | |
---|---|---|---|---|
Alveolitis (%) | <0.001 | |||
severe | 50 (28) | 13 (26) | 37 (74) | |
mild to moderate | 127 (72) | 67 (53) | 60 (47) | |
Goblet cell hyperplasia (%) | <0.001 | |||
severe | 30 (17) | 4 (13) | 26 (87) | |
mild to moderate | 147 (83) | 76 (52) | 71 (48) | |
Hyperplastic change (%) | 0.023 | |||
severe | 48 (27) | 15 (31) | 33 (69) | |
mild to moderate | 129 (73) | 65 (50) | 64 (50) | |
Squamoous metaplasia (%) | <0.001 | |||
severe | 59 (33) | 11 (19) | 48 (81) | |
mild to moderate | 118 (67) | 69 (58) | 49 (42) |
Bronchoalveolar Lavage | Bronchial Exfoliative Cytology | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | N (%) | Severe Alveolitis | p | Severe GCH | p | Severe HC | p | Severe SM | p |
Age, yr | 67 ± 8 | 65 ± 10 | 66 ± 10 | ||||||
<70 yr | 50 (51) | 44 (59.5) | 0.083 | 13 (50.0) | 0.854 | 20 (60.6) | 0.2 | 22 (45.8) | 0.265 |
≥70 yr | 47 (49) | 30 (40.5) | 13 (50.0) | 13 (39.4) | 26 (54.2) | ||||
Gender | |||||||||
Male | 71 (73) | 32 (86.5) | 0.032 | 23 (88.5) | 0.043 | 25 (75.8) | 0.683 | 38 (79.2) | 0.189 |
Female | 26 (27) | 5 (13.5) | 3 (11.5) | 8 (24.2) | 10 (20.8) | ||||
Miner duration | 18 ± 9 | 20 ± 10 | 21 ± 10 | ||||||
<25 yr | 67 (69) | 20 (54.1) | 0.012 | 15 (57.7) | 0.142 | 22 (66.7) | 0.713 | 34 (70.8) | 0.71 |
≥25 yr | 30 (31) | 17 (45.9) | 11 (42.3) | 11 (33.3) | 14 (29.2) | ||||
Smoking | |||||||||
Never or former | 46 (47) | 16 (43.2) | 0.517 | 9 (34.6) | 0.126 | 16 (48.5) | 0.88 | 22 (45.8) | 0.756 |
Current | 51 (53) | 21 (56.8) | 17 (65.4) | 17 (51.5) | 26 (54.2) | ||||
Tuberculosis Hx | |||||||||
Absent | 64 (66) | 26 (70.3) | 0.484 | 16 (25) | 0.576 | 20 (60.6) | 0.423 | 31 (64.6) | 0.774 |
Present | 33 (34) | 11 (29.7) | 10 (30) | 13 (39.4) | 17 (35.4) | ||||
PFT | |||||||||
Normal | 37 (38.1) | 7 (18.9) | 0.002 | 4 (15.4) | 0.005 | 10 (30.3) | 0.254 | 18 (37.5) | 0.897 |
Abnormal | 60 (61.9) | 30 (81.1) | 22 (84.6) | 23 (69.7) | 30 (62.5) | ||||
ILO class | |||||||||
Simple | |||||||||
Category 1 | 23 (23) | 7 (18.9) | 0.018 a | 4 (15.4) | 0.006 a | 10 (30.3) | 0.009 a | 12 (25.0) | 0.215 a |
Category 2 | 26 (27) | 7 (18.9) | 4 (15.4) | 12 (36.4) | 12 (25.0) | ||||
Category 3 | 10 (10) | 3 (8.1) | 2 (7.7) | 4 (12.1) | 2 (4.2) | ||||
Complicated | |||||||||
Type A | 14 (15) | 5 (13.5) | 4 (15.4) | 1 (3.0) | 5 (10.4) | ||||
Type B | 14 (15) | 10 (27.0) | 6 (23.1) | 3 (9.1) | 10 (20.8) | ||||
Type C | 10 (10) | 5 (13.5) | 6 (23.1) | 3 (9.1) | 7 (14.6) |
Univariate | Multivariate | |||
---|---|---|---|---|
Factors | p | HR | 95%CI | p |
Age (≥70 yr) | 0.627 | |||
Gender (male) | 0.108 | |||
Miner duration (≥25 yr) | 0.002 | 5.451 | 1.595–21.34 | 0.009 |
Current smoker | 0.016 | 5.046 | 1.327–33.24 | 0.038 |
Tuberculosis history | 0.154 | |||
Complicated CWP | 0.022 | 1.751 | 0.499–7.018 | 0.392 |
Abnormal PFT | 0.033 | 2.475 | 0.427–20.57 | 0.342 |
Severe alveolitis | 0.002 | 5.408 | 0.963–17.17 | 0.049 |
Severe GCH | <0.001 | 3.532 | 1.116–12.92 | 0.039 |
Severe HC | 0.849 | |||
Severe SM | 0.347 |
Risk Group p | Material | Findings |
---|---|---|
Grade 1 | BAL differential count | neutrophils <7.0% and/or eosinophils <3.0% |
Bronchoscopic cytology | absence of GCH in >90% of all bronchial epithelial clusters | |
Grade 2 | BAL differential count | neutrophils <7.0% and/or eosinophils <3.0% |
Bronchoscopic cytology | GCH >90% of all bronchial epithelial clusters | |
or | ||
BAL differential count | neutrophils ≥7.0% and/or eosinophils ≥3.0% | |
Bronchoscopic cytology | absence of GCH in >90% of all bronchial epithelial clusters | |
Grade 3 | BAL differential count | neutrophils ≥7.0% and/or eosinophils ≥3.0% |
Bronchoscopic cytology | and GCH >90% of all bronchial epithelial clusters |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, U.; Kim, T.-E.; Park, C.K.; Yoon, H.-K.; Sa, Y.J.; Kim, H.-L.; Kim, T.-J. Prognostic Implication of Exfoliative Airway Pathology in Cancer-Free Coal Workers’ Pneumoconiosis. Int. J. Environ. Res. Public Health 2022, 19, 14975. https://doi.org/10.3390/ijerph192214975
Cho U, Kim T-E, Park CK, Yoon H-K, Sa YJ, Kim H-L, Kim T-J. Prognostic Implication of Exfoliative Airway Pathology in Cancer-Free Coal Workers’ Pneumoconiosis. International Journal of Environmental Research and Public Health. 2022; 19(22):14975. https://doi.org/10.3390/ijerph192214975
Chicago/Turabian StyleCho, Uiju, Tae-Eun Kim, Chan Kwon Park, Hyoung-Kyu Yoon, Young Jo Sa, Hyo-Lim Kim, and Tae-Jung Kim. 2022. "Prognostic Implication of Exfoliative Airway Pathology in Cancer-Free Coal Workers’ Pneumoconiosis" International Journal of Environmental Research and Public Health 19, no. 22: 14975. https://doi.org/10.3390/ijerph192214975
APA StyleCho, U., Kim, T. -E., Park, C. K., Yoon, H. -K., Sa, Y. J., Kim, H. -L., & Kim, T. -J. (2022). Prognostic Implication of Exfoliative Airway Pathology in Cancer-Free Coal Workers’ Pneumoconiosis. International Journal of Environmental Research and Public Health, 19(22), 14975. https://doi.org/10.3390/ijerph192214975