An Overview of Innovative Approaches to Support Timely and Agile Health Communication Research and Practice
Abstract
:1. Introduction
2. Approaches to Make Health Communication Efforts More Precise, Agile, and Effective
2.1. Digital Segmentation and Microtargeting
Ethical and Practical Considerations
2.2. Social Media Influencer Campaigns
Ethical and Practical Considerations
2.3. Recommendation Algorithms
Ethical and Practical Considerations
2.4. Adaptive Interventions
Ethical and Practical Considerations
3. Approaches to Make Health Communication Research More Timely and Useful
3.1. A/B Testing
Ethical and Practical Considerations
3.2. Efficient Message Testing Protocols
Ethical and Practical Considerations
3.3. Rapid Cycle, Iterative Message Testing
Ethical and Practical Considerations
3.4. Megastudies
Ethical and Practical Considerations
3.5. Agent-Based Modeling
Ethical and Practical Considerations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Noar, S.M.; Austin, L. (Mis) communicating about COVID-19: Insights from health and crisis communication. Health Commun. 2020, 35, 1735–1739. [Google Scholar] [CrossRef]
- Evans, W.D.; Thomas, C.N.; Favatas, D.; Smyser, J.; Briggs, J. Digital segmentation of priority populations in public health. Health Educ. Behav. 2019, 46, 81S–89S. [Google Scholar] [CrossRef] [PubMed]
- Jamison, A.M.; Broniatowski, D.A.; Dredze, M.; Wood-Doughty, Z.; Khan, D.; Quinn, S.C. Vaccine-related advertising in the Facebook Ad Archive. Vaccine 2020, 38, 512–520. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Kwak, H.; Qureshi, H.M.; Weber, I. Precision Public Health Campaign: Delivering Persuasive Messages to Relevant Segments Through Targeted Advertisements on Social Media. JMIR Form. Res. 2021, 5, e22313. [Google Scholar] [CrossRef]
- Morrison, L.; Chen, C.; Torres, J.; Wehner, M.; Junn, A.; Linos, E. Facebook advertising for cancer prevention: A pilot study. Br. J. Dermatol. 2019, 181, 858. [Google Scholar] [CrossRef]
- de Vere Hunt, I.; Dunn, T.; Mahoney, M.; Chen, M.; Nava, V.; Linos, E. A Social Media-Based Public Health Campaign Encouraging COVID-19 Vaccination Across the United States. Am. J. Public Health 2022, 112, e1–e4. [Google Scholar]
- Serrano, W.C.; Chren, M.-M.; Resneck, J.S.; Aji, N.N.; Pagoto, S.; Linos, E. Online advertising for cancer prevention: Google ads and tanning beds. JAMA Dermatol. 2016, 152, 101–102. [Google Scholar] [CrossRef] [Green Version]
- Graham, J.E.; Moore, J.L.; Bell, R.C.; Miller, T. Digital marketing to promote healthy weight gain among pregnant women in Alberta: An implementation study. J. Med. Internet Res. 2019, 21, e11534. [Google Scholar] [CrossRef]
- World Health Organization. Ethics and Governance of Artificial Intelligence for Health: WHO Guidance; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Reiter, P.L.; Katz, M.L.; Bauermeister, J.A.; Shoben, A.B.; Paskett, E.D.; McRee, A.-L. Recruiting young gay and bisexual men for a human papillomavirus vaccination intervention through social media: The effects of advertisement content. JMIR Public Health Surveill. 2017, 3, e7545. [Google Scholar] [CrossRef]
- Meta. Removing Certain Ad Targeting Options and Expanding Our Ad Controls. Available online: https://www.facebook.com/business/news/removing-certain-ad-targeting-options-and-expanding-our-ad-controls (accessed on 14 July 2022).
- Nix, N.; Dwoskin, E. Justice Department and Meta Settle Landmark Housing Discrimination Case. The Washington Post. 21 June 2022. Available online: https://www.washingtonpost.com/technology/2022/06/21/facebook-doj-discriminatory-housing-ads/ (accessed on 4 November 2022).
- Hitlin, P.; Rainie, L. Facebook Algorithms and Personal Data; Pew Research Center: Washington, DC, USA, 2019. [Google Scholar]
- Susser, D. Ethical Considerations for Digitally Targeted Public Health Interventions. Am. J. Public Health 2020, 110, S290–S291. [Google Scholar] [CrossRef]
- Kostygina, G.; Tran, H.; Binns, S.; Szczypka, G.; Emery, S.; Vallone, D.; Hair, E. Boosting health campaign reach and engagement through use of social media influencers and memes. Soc. Media Soc. 2020, 6, 2056305120912475. [Google Scholar] [CrossRef]
- Lutkenhaus, R.O.; Jansz, J.; Bouman, M.P. Tailoring in the digital era: Stimulating dialogues on health topics in collaboration with social media influencers. Digit. Health 2019, 5, 2055207618821521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Bérail, P.; Bungener, C. Favorite YouTubers as a source of health information during quarantine: Viewers trust their favorite YouTubers with health information. Soc. Netw. Anal. Min. 2022, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bonnevie, E.; Rosenberg, S.D.; Kummeth, C.; Goldbarg, J.; Wartella, E.; Smyser, J. Using social media influencers to increase knowledge and positive attitudes toward the flu vaccine. PLoS ONE 2020, 15, e0240828. [Google Scholar] [CrossRef] [PubMed]
- Pöyry, E.; Reinikainen, H.; Luoma-Aho, V. The Role of Social Media Influencers in Public Health Communication: Case COVID-19 Pandemic. Int. J. Strateg. Commun. 2022, 16, 469–484. [Google Scholar] [CrossRef]
- Boon, C.; Golloub, E. How social media influencers helped the NYC public health system raise awareness of COVID-19 testing among historically disadvantaged populations. J. Digit. Soc. Media Mark. 2021, 9, 198–204. [Google Scholar]
- Guo, M.; Ganz, O.; Cruse, B.; Navarro, M.; Wagner, D.; Tate, B.; Delahanty, J.; Benoza, G. Keeping it fresh with hip-hop teens: Promising targeting strategies for delivering public health messages to hard-to-reach audiences. Health Promot. Pract. 2020, 21, 61S–71S. [Google Scholar] [CrossRef] [Green Version]
- Topf, J.M.; Williams, P.N. COVID-19, social media, and the role of the public physician. Blood Purif. 2021, 50, 595–601. [Google Scholar] [CrossRef]
- Bonnevie, E.; Smith, S.M.; Kummeth, C.; Goldbarg, J.; Smyser, J. Social media influencers can be used to deliver positive information about the flu vaccine: Findings from a multi-year study. Health Educ. Res. 2021, 36, 286–294. [Google Scholar] [CrossRef]
- Kim, H.S.; Yang, S.; Kim, M.; Hemenway, B.; Ungar, L.; Cappella, J.N. An experimental study of recommendation algorithms for tailored health communication. Comput. Commun. Res. 2019, 1, 103–129. [Google Scholar] [CrossRef]
- Sadasivam, R.S.; Cutrona, S.L.; Kinney, R.L.; Marlin, B.M.; Mazor, K.M.; Lemon, S.C.; Houston, T.K. Collective-intelligence recommender systems: Advancing computer tailoring for health behavior change into the 21st century. J. Med. Internet Res. 2016, 18, e4448. [Google Scholar] [CrossRef] [PubMed]
- Sadasivam, R.S.; Borglund, E.M.; Adams, R.; Marlin, B.M.; Houston, T.K. Impact of a collective intelligence tailored messaging system on smoking cessation: The Perspect randomized experiment. J. Med. Internet Res. 2016, 18, e6465. [Google Scholar] [CrossRef] [PubMed]
- Faro, J.M.; Nagawa, C.S.; Allison, J.A.; Lemon, S.C.; Mazor, K.M.; Houston, T.K.; Sadasivam, R.S. Comparison of a collective intelligence tailored messaging system on smoking cessation between African American and white people who smoke: Quasi-experimental design. JMIR mHealth uHealth 2020, 8, e18064. [Google Scholar] [CrossRef] [PubMed]
- Bayer, R.; Fairchild, A.L. Means, ends and the ethics of fear-based public health campaigns. J. Med. Internet Ethics 2016, 42, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Valentine, L.; D’Alfonso, S.; Lederman, R. Recommender systems for mental health apps: Advantages and ethical challenges. AI Soc. 2022, 1–12. [Google Scholar] [CrossRef]
- Paraschakis, D. Towards an Ethical Recommendation Framework. In Proceedings of the 2017 11th International Conference on Research Challenges in Information Science (RCIS), Brighton, UK, 10–12 May 2017; pp. 211–220. [Google Scholar]
- Milano, S.; Taddeo, M.; Floridi, L. Recommender systems and their ethical challenges. Ai Soc. 2020, 35, 957–967. [Google Scholar] [CrossRef] [Green Version]
- Arigo, D.; Jake-Schoffman, D.E.; Wolin, K.; Beckjord, E.; Hekler, E.B.; Pagoto, S.L. The history and future of digital health in the field of behavioral medicine. J. Behav. Med. 2019, 42, 67–83. [Google Scholar] [CrossRef]
- Hekler, E.; Tiro, J.A.; Hunter, C.M.; Nebeker, C. Precision health: The role of the social and behavioral sciences in advancing the vision. Ann. Behav. Med. 2020, 54, 805–826. [Google Scholar] [CrossRef]
- Dorsch, M.P.; An, L.C.; Hummel, S.L. A novel just-in-time contextual mobile app intervention to reduce sodium intake in hypertension: Protocol and rationale for a randomized controlled trial (LowSalt4Life Trial). JMIR Res. Protoc. 2018, 7, e11282. [Google Scholar] [CrossRef] [Green Version]
- Dorsch, M.P.; Cornellier, M.L.; Poggi, A.D.; Bilgen, F.; Chen, P.; Wu, C.; An, L.C.; Hummel, S.L. Effects of a novel contextual just-in-time mobile app intervention (LowSalt4Life) on sodium intake in adults with hypertension: Pilot randomized controlled trial. JMIR mHealth uHealth 2020, 8, e16696. [Google Scholar] [CrossRef]
- Klasnja, P.; Smith, S.; Seewald, N.J.; Lee, A.; Hall, K.; Luers, B.; Hekler, E.B.; Murphy, S.A. Efficacy of contextually tailored suggestions for physical activity: A micro-randomized optimization trial of HeartSteps. Ann. Behav. Med. 2019, 53, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Conroy, D.E.; Hojjatinia, S.; Lagoa, C.M.; Yang, C.-H.; Lanza, S.T.; Smyth, J.M. Personalized models of physical activity responses to text message micro-interventions: A proof-of-concept application of control systems engineering methods. Psychol. Sport Exerc. 2019, 41, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Kwasnicka, D.; Naughton, F. N-of-1 methods: A practical guide to exploring trajectories of behaviour change and designing precision behaviour change interventions. Psychol. Sport Exerc. 2020, 47, 101570. [Google Scholar] [CrossRef]
- Kwasnicka, D.; Inauen, J.; Nieuwenboom, W.; Nurmi, J.; Schneider, A.; Short, C.E.; Dekkers, T.; Williams, A.J.; Bierbauer, W.; Haukkala, A. Challenges and solutions for N-of-1 design studies in health psychology. Health Psychol. Rev. 2019, 13, 163–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pew Research Center. Mobile Fact Sheet. Available online: https://www.pewresearch.org/internet/fact-sheet/mobile/ (accessed on 1 July 2022).
- Carpenter, S.M.; Menictas, M.; Nahum-Shani, I.; Wetter, D.W.; Murphy, S.A. Developments in mobile health just-in-time adaptive interventions for addiction science. Curr. Addict. Rep. 2020, 7, 280–290. [Google Scholar] [CrossRef]
- Ziegenfuss, J.Y.; Renner, J.; Harvey, L.; Katz, A.S.; Mason, K.A.; McCann, P.; Mettner, J.; Nelson, K.D.; Taswell, R.; Wacholz, B.K. Peer Reviewed: Responses to a Social Media Campaign Promoting Safe Fish Consumption Among Women. Prev. Chronic Dis. 2019, 16, E99. [Google Scholar] [CrossRef]
- Fan, K.L.; Black, C.K.; DeFazio, M.V.; Luvisa, K.; Camden, R.; Song, D.H. Bridging the knowledge gap: An examination of the ideal postoperative autologous breast reconstruction educational material with A/B testing. Plast. Reconstr. Surg. 2020, 145, 258–266. [Google Scholar] [CrossRef]
- Sundstrom, B.; Cartmell, K.B.; White, A.A.; Well, H.; Pierce, J.Y.; Brandt, H.M. Correcting HPV vaccination misinformation online: Evaluating the HPV vaccination NOW social media campaign. Vaccines 2021, 9, 352. [Google Scholar] [CrossRef]
- Austrian, J.; Mendoza, F.; Szerencsy, A.; Fenelon, L.; Horwitz, L.I.; Jones, S.; Kuznetsova, M.; Mann, D.M. Applying a/B testing to clinical decision support: Rapid randomized controlled trials. J. Med. Internet Res. 2021, 23, e16651. [Google Scholar] [CrossRef]
- Horwitz, L.I.; Kuznetsova, M.; Jones, S.A. Creating a learning health system through rapid-cycle, randomized testing. N. Engl. J. Med. 2019, 381, 1175–1179. [Google Scholar] [CrossRef]
- Benbunan-Fich, R. The ethics of online research with unsuspecting users: From A/B testing to C/D experimentation. Res. Ethics 2017, 13, 200–218. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Martin, J.; Wilson, C. Who’s the Guinea Pig? Investigating Online A/B/n Tests in-the-Wild. In Proceedings of the Conference on Fairness, Accountability, and Transparency, Atlanta, GA, USA, 29–31 January 2019; pp. 201–210. [Google Scholar]
- Meyer, M.N.; Heck, P.R.; Holtzman, G.S.; Anderson, S.M.; Cai, W.; Watts, D.J.; Chabris, C.F. Objecting to experiments that compare two unobjectionable policies or treatments. Proc. Natl. Acad. Sci. USA 2019, 116, 10723–10728. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Cappella, J.N. Reliable, valid and efficient evaluation of media messages: Developing a message testing protocol. J. Commun. Manag. 2019, 23, 179–197. [Google Scholar] [CrossRef]
- Kim, M.; Cappella, J.N. An efficient message evaluation protocol: Two empirical analyses on positional effects and optimal sample size. J. Health Commun. 2019, 24, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, J.F.; Brickman, J. Adding to the message testing tool belt: Assessing the feasibility and acceptability of an EMA-style, mobile approach to pretesting mHealth interventions. Health Commun. 2021, 36, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Bartels, S.M.; Combs, K.G.; Lazard, A.J.; Shelus, V.; Davis, C.H.; Rothschild, A.; Drewry, M.; Carpenter, K.; Newman, E.; Goldblatt, A. Development and application of an interdisciplinary rapid message testing model for COVID-19 in North Carolina. Public Health Rep. 2021, 136, 413–420. [Google Scholar] [CrossRef]
- Din, H.N.; McDaniels-Davidson, C.; Nodora, J.; Madanat, H. Profiles of a health information–seeking population and the current digital divide: Cross-sectional analysis of the 2015–2016 California health interview survey. J. Med. Internet Res. 2019, 21, e11931. [Google Scholar] [CrossRef]
- Milkman, K.L.; Gromet, D.; Ho, H.; Kay, J.S.; Lee, T.W.; Pandiloski, P.; Park, Y.; Rai, A.; Bazerman, M.; Beshears, J. Megastudies improve the impact of applied behavioural science. Nature 2021, 600, 478–483. [Google Scholar] [CrossRef]
- Milkman, K.L.; Gandhi, L.; Patel, M.S.; Graci, H.N.; Gromet, D.M.; Ho, H.; Kay, J.S.; Lee, T.W.; Rothschild, J.; Bogard, J.E. A 680,000-person megastudy of nudges to encourage vaccination in pharmacies. Proc. Natl. Acad. Sci. USA 2022, 119, e2115126119. [Google Scholar] [CrossRef]
- Milkman, K.L.; Patel, M.S.; Gandhi, L.; Graci, H.N.; Gromet, D.M.; Ho, H.; Kay, J.S.; Lee, T.W.; Akinola, M.; Beshears, J. A megastudy of text-based nudges encouraging patients to get vaccinated at an upcoming doctor’s appointment. Proc. Natl. Acad. Sci. USA 2021, 118, e2101165118. [Google Scholar] [CrossRef]
- Yan, H.; Yates, J.F. Improving acceptability of nudges: Learning from attitudes towards opt-in and opt-out policies. Judgm. Decis. Mak. 2019, 14, 26. [Google Scholar]
- Carey, G.; Malbon, E.; Carey, N.; Joyce, A.; Crammond, B.; Carey, A. Systems science and systems thinking for public health: A systematic review of the field. BMJ Open 2015, 5, e009002. [Google Scholar] [CrossRef] [PubMed]
- Waldherr, A.; Hilbert, M.; González-Bailón, S. Worlds of Agents: Prospects of Agent-Based Modeling for Communication Research. Commun. Methods Meas. 2021, 15, 243–254. [Google Scholar] [CrossRef]
- Geschke, D.; Lorenz, J.; Holtz, P. The triple-filter bubble: Using agent-based modelling to test a meta-theoretical framework for the emergence of filter bubbles and echo chambers. Br. J. Soc. Psychol. 2019, 58, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Barbrook-Johnson, P.; Badham, J.; Gilbert, N. Uses of agent-based modeling for health communication: The TELL ME case study. Health Commun. 2017, 32, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Tracy, M.; Cerdá, M.; Keyes, K.M. Agent-based modeling in public health: Current applications and future directions. Ann. Rev. Public Health 2018, 39, 77. [Google Scholar] [CrossRef] [Green Version]
- Kagho, G.O.; Balac, M.; Axhausen, K.W. Agent-based models in transport planning: Current state, issues, and expectations. Procedia Comput. Sci. 2020, 170, 726–732. [Google Scholar] [CrossRef]
- Badham, J.; Chattoe-Brown, E.; Gilbert, N.; Chalabi, Z.; Kee, F.; Hunter, R.F. Developing agent-based models of complex health behaviour. Health Place 2018, 54, 170–177. [Google Scholar] [CrossRef]
- Choi, T.; Park, S. Theory building via agent-based modeling in public administration research: Vindications and limitations. Int. J. Public Sect. Manag. 2021, 34, 614–629. [Google Scholar] [CrossRef]
- Eberlen, J.; Scholz, G.; Gagliolo, M. Simulate this! An introduction to agent-based models and their power to improve your research practice. Int. Rev. Soc. Psychol. 2017, 30, 149–160. [Google Scholar] [CrossRef]
Approach | Description | Selected Examples from the Literature |
---|---|---|
Digital Segmentation and Microtargeting | Efforts that use digital platforms to granularly segment and target audiences based on factors such as demographics, interests, social network characteristics, location, and online behaviors. |
|
Social Media Influencer Campaigns | Campaigns that utilize influencers (i.e., individuals who have a high number of followers on social media, either in general or among a specific subpopulation) to disseminate health messages. |
|
Recommendation Algorithms | Systems that generate personalized suggestions through the use of algorithms that predict a target individual’s reaction to items (e.g., messages) that they have not previously interacted with based on the target individual’s past preferences, the preferences of other similar individuals, or a combination of these. |
|
Adaptive Interventions | Interventions that allow for personalized tailoring of intervention components to better meet an individual’s needs and circumstances. |
|
A/B Testing | A strategy for comparing two (or more) versions of a variable through a controlled experiment to assess which option more effectively achieves a pre-specified outcome. |
|
Efficient Message Testing Protocols | Methods that enable candidate messages to be evaluated quickly and efficiently. |
|
Rapid Cycle, Iterative Message Testing | A method for quickly and iteratively developing, testing, and sharing messages with practitioners that reduces the time needed for evidence-based messages to be put into practice. |
|
Megastudies | Large field experiments in which the effects of many different interventions are tested synchronously in one population using common, objectively measured outcomes. |
|
Agent-Based Modeling | A method for simulating complex systems, where autonomous agents (whose actions are governed by a set of rules that encode behavioral mechanisms) interact with each other in a given environment. |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaysynsky, A.; Heley, K.; Chou, W.-Y.S. An Overview of Innovative Approaches to Support Timely and Agile Health Communication Research and Practice. Int. J. Environ. Res. Public Health 2022, 19, 15073. https://doi.org/10.3390/ijerph192215073
Gaysynsky A, Heley K, Chou W-YS. An Overview of Innovative Approaches to Support Timely and Agile Health Communication Research and Practice. International Journal of Environmental Research and Public Health. 2022; 19(22):15073. https://doi.org/10.3390/ijerph192215073
Chicago/Turabian StyleGaysynsky, Anna, Kathryn Heley, and Wen-Ying Sylvia Chou. 2022. "An Overview of Innovative Approaches to Support Timely and Agile Health Communication Research and Practice" International Journal of Environmental Research and Public Health 19, no. 22: 15073. https://doi.org/10.3390/ijerph192215073
APA StyleGaysynsky, A., Heley, K., & Chou, W. -Y. S. (2022). An Overview of Innovative Approaches to Support Timely and Agile Health Communication Research and Practice. International Journal of Environmental Research and Public Health, 19(22), 15073. https://doi.org/10.3390/ijerph192215073