Comparative Study on International Research Hotspots and National-Level Policy Keywords of Dynamic Disaster Monitoring and Early Warning in China (2000–2021)
Abstract
:1. Introduction
2. Knowledge Map Visualization Analysis of International Research Evolution of Dynamic Disaster Monitoring and Early Warning in China
2.1. The Stage Distribution and Highly Cited Articles of China’s International Research on Dynamic Disaster Monitoring and Early Warning
2.2. The Main Discipline Categories, Countries, and Regions of China’s International Research on Dynamic Disaster Monitoring and Early Warning
2.3. The Main Institutions and Scholars of China’s International Research on Dynamic Disaster Monitoring and Early Warning
2.4. The Research Hotspots of China’s International Research on Dynamic Disaster Monitoring and Early Warning
3. Quantitative Analysis of China’s Dynamic Disaster Monitoring and Early Warning National-Level Policy Documents
3.1. The Stage Division of China’s Dynamic Disaster Monitoring and Early Warning National-Level Policy
3.2. The Quantitative Analysis of China’s Dynamic Disaster Monitoring and Early Warning National-Level Policy Documents and Comparative Study between Policy Keywords and Research Hotspots
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The State Council of The People’s Republic of China. China’s Disaster Reduction Action. 2009. Available online: http://www.gov.cn/zwgk/2009-05/11/content_1310227.htm (accessed on 11 May 2009).
- National Disaster Reduction Commission. The Circular of National Disaster Reduction Commission on Printing and Distributing the National Comprehensive Disaster Prevention and Reduction Plan for the “Fourteenth Five Year Plan”. 2022. Available online: http://www.gov.cn/zhengce/zhengceku/2022-07/22/content_5702154.htm (accessed on 19 June 2022).
- Liu, T.; Zhang, W.; Wu, H.; Fan, L. Visualization analysis of disaster monitoring research in China based on Bibliometrics. J. Mudanjiang Norm. Univ. (Nat. Sci. Ed.) 2020, 113, 35–40. [Google Scholar]
- Li, X.; Chen, S.; Li, Z.; Wang, E.; Zhai, M. Research on the mechanism of rockburst based on resonance effect. J. Min. Saf. Eng. 2022, 39, 527–535. [Google Scholar]
- Liu, Z.; Guan, D.; Moore, S.; Henry, L.; Su, J.; Zhang, Q. Climate policy: Steps to China’s carbon peak. Nature 2015, 522, 279–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, L. Promote the modernization of national emergency management system and capacity. J. China Emerg. Manag. Sci. 2020, 2, 7–9. [Google Scholar]
- Wu, Y.; Liao, H. Strengthen the application and research of multi-disaster and multi-process disaster monitoring and early warning. Disast. Re. Chin. 2022, 13, 25–26. [Google Scholar]
- Basher, R. Global early warning systems for natural hazards: Systematic and people-centred. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 2167–2182. [Google Scholar] [CrossRef]
- Ahmed, B.; Rahman, M.S.; Islam, R.; Sammonds, P.; Zhou, C.; Uddin, K.; Al-Hussaini, T.M. Developing a Dynamic Web-GIS Based Landslide Early Warning System for the Chittagong Metropolitan Area, Bangladesh. ISPRS Int. J. Geo-Inf. 2018, 7, 485. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, H.J.; Roberts, M.J.; van der Keur, P.; Harjanne, A.; Egilson, D.; Alfonso, L. Participatory early warning and monitoring systems: A Nordic framework for web-based flood risk management. Int. J. Disaster Risk Redct. 2018, 31, 1295–1306. [Google Scholar] [CrossRef]
- Da Silva, G.F.P.; Pegetti, A.L.; Piacesi, M.T.; Belderrain, M.C.N.; Bergiante, N.C.R. Dynamic modeling of an early warning system for natural disasters. Syst. Res. Behav. Sci. 2020, 37, 292–314. [Google Scholar] [CrossRef]
- Dibley, A.; Wetzer, T.; Hepburn, C. National COVID debts: Climate change imperils countries’ ability to repay. Nature 2021, 592, 184–187. [Google Scholar] [CrossRef]
- Tellman, B.; Eakin, H. Risk management alone fails to limit the impact of extreme climate events. Nature 2022, 608, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W. Geological disaster monitoring and early warning system based on big data analysis. Arab. J. Geosci. 2020, 13, 946. [Google Scholar] [CrossRef]
- He, Y.; Jiang, R.; Gu, S. Applied prospect of modern information technology in relation to mountain flood disaster monitoring and early warning system. J. Inform. Optim. Sci. 2017, 38, 1151–1167. [Google Scholar] [CrossRef]
- Kafle, S.K. Disaster early warning systems in Nepal: Institutional and operational frameworks. J. Geogr. Nat. Disast. 2017, 7, 196. [Google Scholar] [CrossRef]
- Yang, S.; Jin, A.; Nie, W.; Liu, C.; Li, Y. Research on SSA-LSTM-Based Slope Monitoring and Early Warning Model. Sustainability 2022, 14, 10246. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, T.; Yao, T.; An, B. Mnitooring and early warning system of Cirenmaco glacial lake in the central Himalayas. Int. J. Disaster Risk Reduct. 2022, 73, 102914. [Google Scholar] [CrossRef]
- Macherera, M.; Chimbari, M.J. A review of studies on community based early warning systems. Jàmbá J. Disaster Risk Stud. 2016, 8, 206. [Google Scholar] [CrossRef]
- Saberi-Movahed, F.; Mohammadifard, M.; Mehrpooya, A.; Rezaei-Ravari, M.; Berahmand, K.; Rostami, M.; Karami, S.; Najafzadeh, M.; Hajinezhad, D.; Jamshidi, M.; et al. Decoding clinical biomarker space of COVID-19: Exploring matrix factorization-based feature selection methods. Comput. Biol. Med. 2022, 146, 105426. [Google Scholar] [CrossRef]
- Mehrpooya, A.; Saberi-Movahed, F.; Azizizadeh, N.; Rezaei-Ravari, M.; Saberi-Movahed, F.; Eftekhari, M.; Tavassoly, I. High dimensionality reduction by matrix factorization for systems pharmacology. Briefings Bioinform. 2021, 23, bbab410. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Oliveto, G.; Saberi-Movahed, F. Estimation of Scour Propagation Rates around Pipelines While Considering Simultaneous Effects of Waves and Currents Conditions. Water 2022, 14, 1589. [Google Scholar] [CrossRef]
- Fathani, T.F.; Karnawati, D.; Wilopo, W. An integrated methodology to develop a standard for landslide early warning systems. Nat. Hazards Earth Syst. Sci. 2016, 16, 2123–2135. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Meng, X.; Xu, X. Natural hazard chain research in China: A review. Nat. Hazards 2014, 70, 1631–1659. [Google Scholar] [CrossRef]
- Liu, C.; Guo, L.; Ye, L.; Zhang, S.; Zhao, Y.; Song, T. A review of advances in China’s flash flood early-warning system. Nat. Hazards 2018, 92, 619–634. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Dong, X.; Li, L. Integrate space-air-ground early detection monitoring and warning system for potential catastrophic geohazards. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 957–966. [Google Scholar]
- Sun, D. Construction of monitoring and early warning system for mountain torrents in China. Chin. Flood Drought Manag. 2019, 29, 4–5. [Google Scholar]
- Yuan, L.; Jiang, Y.; He, X.; Dou, L.; Zhao, Y.; Zhao, X.; Wang, K.; Yu, Q.; Lu, X.; Li, H. Research progress of precise risk accurate identification and monitoring early warning on typical dynamic disasters in coal mine. J. Chin. Coal Soc. 2018, 43, 306–318. [Google Scholar]
- Yuan, L. Research progress on risk identification, assessment, monitoring and early warning technologies of typical dynamic hazards in coal mines. J. Chin. Coal Soc. 2020, 45, 1557–1566. [Google Scholar]
- Wang, T.; Lin, H. The necessity, feasibility and application solution for multi-earthquake early warning systems. J. Chin. Emerg. Manag. Sci. 2020, 2, 56–61. [Google Scholar]
- Zhou, L.; Dai, Y. Which is more effective in China? How communication tools influence public acceptance of nuclear power energy. Energ. Policy 2020, 147, 111887. [Google Scholar] [CrossRef]
- Tan, L.; Guo, J.; Mohanarajah, S.; Zhou, K. Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices. Nat. Hazards 2021, 107, 2389–2417. [Google Scholar] [CrossRef]
- Niu, Y.; Li, Z.; Wang, E.; Shan, T.; Wang, H.; Xu, S.; Sun, W.; Wang, G.; Xue, X.; Liu, J. Response Characteristics of Electric Potential and Its Relationship with Dynamic Disaster during Mining Activities: A Case Study in Xuehu Coal Mine, China. Int. J. Environ. Res. Public Health 2022, 19, 8949. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Du, X.; Tan, J.; Zhu, J. Three-dimensional visualization simulation assessment system based on multi-source data fusion for the Wenchuan earthquake. J. Appl. Remote Sens. 2009, 3, 031640. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Y.; Zuo, Z.; Chen, Z.; Wang, X.; Zhang, W. Monitoring and assessment of barrier lakes formed after the Wenchuan earthquake based on multitemporal remote sensing data. J. Appl. Remote Sens. 2009, 3, 031665. [Google Scholar] [CrossRef]
- Li, X.; Wang, E.; Li, Z.; Liu, Z.; Song, D.; Qiu, L. Rock burst monitoring by integrated microseismic and electromagnetic radiation methods. Rock Mech. Rock Eng. 2016, 49, 4393–4406. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Wang, E.; Feng, J.; Chen, L.; Li, N.; Kong, X. Extraction of microseismic waveforms characteristics prior to rock burst using Hilbert–Huang transform. Measurement 2016, 91, 101–113. [Google Scholar] [CrossRef]
- Qiu, L.; Liu, Z.; Wang, E.; He, X.; Feng, J.; Li, B. Early-warning of rock burst in coal mine by low-frequency electromagnetic radiation. Eng. Geol. 2020, 279, 105755. [Google Scholar] [CrossRef]
- Qiu, L.; Song, D.; He, X.; Wang, E.; Li, Z.; Yin, S.; Wei, M.; Liu, Y. Multifractal of electromagnetic waveform and spectrum about coal rock samples subjected to uniaxial compression. Fractals 2020, 28, 2050061. [Google Scholar] [CrossRef]
- Liu, X.; Nie, B. Fractal characteristics of coal samples utilizing image analysis and gas adsorption. Fuel 2016, 182, 314–322. [Google Scholar] [CrossRef]
- Fan, J.; Meng, J.; Ludescher, J.; Chen, X.; Ashkenazy, Y.; Kurths, J.; Havlin, S.; Schellnhuber, H.J. Statistical physics approaches to the complex Earth system. Phys. Rep. 2021, 896, 1–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xue, L.; Zhou, Y. How do low-carbon policies promote green diffusion among alliance-based firms in China? An evolutionary-game model of complex networks. J. Clean. Prod. 2019, 210, 518–529. [Google Scholar] [CrossRef]
- Zhang, H.; Comfort, L. Adaptation to disasters: A ten-year retrospective on the 2008 Wenchuan Earthquake, China. Saf. Sci. 2020, 130, 104869. [Google Scholar] [CrossRef]
- Niu, H. Smart safety early warning model of landslide geological hazard based on BP neural network. Saf. Sci. 2020, 123, 104572. [Google Scholar]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; de Miguel, A.S.; Roman, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Greig, J.A.; Shen, Z.; Shi, Y. The impacts of COVID-19 on clean energy labor markets: Evidence from multifaceted analysis of public health interventions and COVID-health factors. Energ. Policy 2022, 164, 112880. [Google Scholar] [CrossRef]
- Chen, X.; Li, L.; Wang, L.; Qi, L. The current situation and prevention and control countermeasures for typical dynamic disasters in kilometer-deep mines in China. Saf. Sci. 2019, 115, 229–236. [Google Scholar] [CrossRef]
- Wang, H.; Wang, E.; Li, Z.; Shen, R.; Liu, X.; Gao, X.; Li, B.; Zhang, Q. Study on safety pressure of water jet breaking coal based on the characteristic analysis of electromagnetic radiation signal. Process. Saf. Environ. 2020, 144, 284–296. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, E.; Feng, X.; Niu, Y.; Ali, M.; Lin, S.; Wang, H. Rockburst risk analysis during high-hard roof breaking in deep mines. Nat. Resour. Res. 2020, 29, 4085–4101. [Google Scholar] [CrossRef]
- Li, B.; Wang, E.; Shang, Z.; Liu, X.; Li, Z.; Li, B.; Wang, H.; Niu, Y.; Song, Y. Optimize the early warning time of coal and gas outburst by Multi-source information fusion method during the tunneling process. Process. Saf. Environ. 2021, 149, 839–849. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, E.; Feng, X.; Wang, C.; Qiu, L.; Wang, H. Assessment of Rockburst Risk in Deep Mining: An Improved Comprehensive Index Method. Nat. Resour. Res. 2021, 30, 1817–1834. [Google Scholar] [CrossRef]
- Liu, X.; Nie, B.; Wang, W.; Wang, Z.; Zhang, L. The use of AFM in quantitative analysis of pore characteristics in coal and coal-bearing shale. Mar. Pet. Geol. 2019, 105, 331–337. [Google Scholar] [CrossRef]
- Liu, X.; Nie, B.; Guo, K.; Zhang, C.; Wang, Z.; Wang, L. Permeability enhancement and porosity change of coal by liquid carbon dioxide phase change fracturing. Eng. Geol. 2021, 287, 106106. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Liu, S.; Liu, Z. AE waveform characteristics of rock mass under uniaxial loading based on Hilbert-Huang transform. J. Cent. South Univ. 2021, 28, 1843–1856. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Zhang, Q.; Gao, X.; Feng, F. Research on theory, simulation and measurement of stress behavior under regenerated roof condition. Geomech. Eng. 2021, 26, 49–61. [Google Scholar]
- Zhang, Y.; Tang, J.; Liao, R.; Zhang, M.; Zhang, Y.; Wang, X.; Su, Z. Application of an enhanced BP neural network model with water cycle algorithm on landslide prediction. Stoch. Env. Res. Risk A 2021, 35, 1273–1291. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Wang, E.; Li, Z. Rockburst mechanism in coal rock with structural surface and the microseismic (MS) and electromagnetic radiation (EMR) response. Eng. Fail. Anal. 2021, 124, 105396. [Google Scholar] [CrossRef]
- Chen, C. A Glimpse of the First Eight Months of the COVID-19 Literature on Microsoft Academic Graph. Front. Res. Metr. Anal. 2020, 5, 607286. [Google Scholar] [CrossRef]
- Gao, J.; Ding, Y. Visualization Analysis of Cooperation Network Configuration of Creative Research Group based on Scientometrics. Sci. Technol. Prog. Policy 2018, 35, 9–17. [Google Scholar]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, C. CiteSpace: Text Mining and Visualization in Scientific Literature; Capital University of Economics and Business Press: Beijing, China, 2016; pp. 149–152. [Google Scholar]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data. Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Ren, T.; Zhang, J. Policy Documents Quantitative Research: A New Direction for Public Policy Study. J. Public Manag. 2015, 12, 129–137. [Google Scholar]
- Huang, C. Quantitative Research on Policy Literature; Science Press: Beijing, China, 2016; pp. 3–46. [Google Scholar]
- Huang, C.; Yue, X.; Yang, M.; Su, J.; Chen, J. A quantitative study on the diffusion of public policy in China: Evidence from the S & T finance sector. J. Chin. Gov. 2017, 2, 235–254. [Google Scholar]
- Huang, C.; Wang, S.; Su, J.; Zhao, P. A Social Network Analysis of Changes in China’s Education Policy Information Transmission System (1978–2013). High. Educ. Policy 2018, 3, 323–345. [Google Scholar] [CrossRef]
- Gao, J.; Huang, X.; Zhang, L. Comparative Analysis between International Research Hotspots and National-Level Policy Keywords on Artificial Intelligence in China from 2009 to 2018. Sustainability 2019, 11, 6574. [Google Scholar] [CrossRef]
- Li, M.; Wang, M.; Qi, H.; Qi, Y. Evolution of international research on science and technology policy. Stud. Sci. Sci. 2018, 36, 1565–1574. [Google Scholar]
Highly Cited Papers | Citations |
---|---|
1. Levin, N.; Kyba, C.C.M.; Zhang, Q.; de Miguel, A.S.; Roman, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; Wang, Z.; Shrestha, R.M.; Elvidge, C.D. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [35] | 207 |
2. Li, X.; Chen, S.; Wang, E.; Li, Z. Rockburst mechanism in coal rock with structural surface and the microseismic (MS) and electromagnetic radiation (EMR) response. Eng. Fail. Anal. 2021, 124, 105396. [47] | 85 |
3. Zhang, Y.; Tang, J.; Liao, R.; Zhang, M.; Zhang, Y.; Wang, X.; Su, Z. Application of an enhanced BP neural network model with water cycle algorithm on landslide prediction. Stoch. Env. Res. Risk A. 2021, 35, 1273–1291. [46] | 85 |
4. Li, X.; Chen, S.; Liu, S.; Liu, Z. AE waveform characteristics of rock mass under uniaxial loading based on Hilbert-Huang transform. J. Cent. South Univ. 2021, 28, 1843–1856. [44] | 82 |
5. Li, X.; Chen, S.; Zhang, Q.; Gao, X.; Feng, F. Research on theory, simulation and measurement of stress behavior under regenerated roof condition. Geomech. Eng. 2021, 26, 49–61. [45] | 77 (Hot Paper) |
6. Fan, J.; Meng, J.; Ludescher, J.; Chen, X.; Ashkenazy, Y.; Kurths, J.; Havlin, S.; Schellnhuber, H.J. Statistical physics approaches to the complex Earth system. Phys. Rep. 2021, 896, 1–84. [31] | 31 |
No. | Web of Science Categories | Paper Numbers |
---|---|---|
1 | Geosciences Multidisciplinary | 117 |
2 | Environmental Sciences | 105 |
3 | Engineering Electrical Electronic | 83 |
4 | Remote Sensing | 82 |
5 | Water Resources | 51 |
6 | Computer Science Information Systems | 49 |
7 | Engineering Civil | 47 |
8 | Imaging Science Photographic Technology | 46 |
9 | Engineering Geological | 43 |
10 | Meteorology Atmospheric Sciences | 39 |
No. | Countries/Regions | Paper Numbers |
---|---|---|
1 | USA | 39 |
2 | Australia | 10 |
3 | Japan | 10 |
4 | Pakistan | 9 |
5 | England | 8 |
6 | Germany | 6 |
7 | Canada | 5 |
8 | Spain | 4 |
9 | Austria | 4 |
10 | Belgium | 4 |
No. | Institutions (Affiliations) | Paper Numbers |
---|---|---|
1 | China University of Mining Technology | 95 |
2 | Chinese Academy of Science | 87 |
3 | University of Chinese Academy of Science CAS | 30 |
4 | Wuhan University | 28 |
5 | Shandong University of Science and Technology | 26 |
6 | China University of Geosciences | 24 |
7 | Chongqing University | 22 |
8 | Helmholtz Association | 18 |
9 | University of Science Technology Beijing | 17 |
10 | Xi’an University of Science and Technology | 17 |
No. | Scholars (Researchers, Authors) | Paper Numbers |
---|---|---|
1 | Wang, Enyuan | 26 |
2 | Li, Zhonghui | 16 |
3 | Li, Chengwu | 9 |
4 | Li, Xuelong | 9 |
5 | Niu, Yuechuan | 8 |
6 | Lai, Xingping | 7 |
7 | Li, Baolin | 7 |
8 | Cui, Feng | 7 |
9 | He, Xueqiu | 6 |
10 | Liu, Xiao Fei | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Zhang, W.; Yang, C.; Wang, R.; Shao, S.; Li, J.; Zhang, L.; Li, Z.; Liu, S.; Si, W. Comparative Study on International Research Hotspots and National-Level Policy Keywords of Dynamic Disaster Monitoring and Early Warning in China (2000–2021). Int. J. Environ. Res. Public Health 2022, 19, 15107. https://doi.org/10.3390/ijerph192215107
Gao J, Zhang W, Yang C, Wang R, Shao S, Li J, Zhang L, Li Z, Liu S, Si W. Comparative Study on International Research Hotspots and National-Level Policy Keywords of Dynamic Disaster Monitoring and Early Warning in China (2000–2021). International Journal of Environmental Research and Public Health. 2022; 19(22):15107. https://doi.org/10.3390/ijerph192215107
Chicago/Turabian StyleGao, Jie, Wu Zhang, Chunbaixue Yang, Rui Wang, Shuai Shao, Jiawei Li, Limiao Zhang, Zhijian Li, Shu Liu, and Wentao Si. 2022. "Comparative Study on International Research Hotspots and National-Level Policy Keywords of Dynamic Disaster Monitoring and Early Warning in China (2000–2021)" International Journal of Environmental Research and Public Health 19, no. 22: 15107. https://doi.org/10.3390/ijerph192215107
APA StyleGao, J., Zhang, W., Yang, C., Wang, R., Shao, S., Li, J., Zhang, L., Li, Z., Liu, S., & Si, W. (2022). Comparative Study on International Research Hotspots and National-Level Policy Keywords of Dynamic Disaster Monitoring and Early Warning in China (2000–2021). International Journal of Environmental Research and Public Health, 19(22), 15107. https://doi.org/10.3390/ijerph192215107