Health Risk Assessment of Trace Metals in Bottled Water Purchased from Various Retail Stores in Pretoria, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
Laboratory Analysis of the Water Samples
2.2. Trace Element Analysis
Risk Assessment
3. Results
4. Human Health Risk Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dkhar, E.N.; Dkhar, P.S.; Anal, J.M.H. Trace Elements Analysis in Drinking Water of Meghalaya by Using Graphite Furnace-Atomic Absorption Spectroscopy and in relation to Environmental and Health Issues. J. Chem. 2014, 2014, 975810. [Google Scholar] [CrossRef] [Green Version]
- Carlucci, D.; De Gennaro, B.; Roselli, L. Competitive strategies of Italian bottled water industry: Evidence from a hedonic analysis. Italy Rev. Agric. Econ. 2016, 71, 292–304. [Google Scholar]
- Gautam, B. Chemical Evaluation of Trace Elements in Bottled Water. J. Healthc. Eng. 2020, 2020, 8884700. [Google Scholar] [CrossRef]
- da Silva Costa, R.; Fernandes, T.S.M.; Almeida, E.D.S.; Oliveira, J.T.; Guedes, J.A.C.; Zocolo, G.J.; de Sousa, F.W.; Nascimento, R.F.D. Potential risk of BPA and phthalates in commercial water bottles: A minireview. J. Water Health 2021, 19, 411–435. [Google Scholar] [CrossRef]
- Gerassimidou, S.; Lanska, P.; Hahladakis, J.N.; Lovat, E.; Vanzetto, S.; Geueke, B.K.; Groh, K.J.; Muncke, J.; Maffini, M.; Martin, O.V.; et al. Unpacking the complexity of the PET drink bottles value chain: A chemicals perspective. J. Hazard. Mater. 2022, 430, 128410. [Google Scholar] [CrossRef]
- Griffin, N.J.; Palmer, C.G.; Scherman, P.A. Critical Analysis of Environmental Water Quality in South Africa: Historic and Current Trends. Water Res. Comm. 2014, 1, 5. [Google Scholar]
- Onyele, O.G.; Anyanwu, E.D. Human Health Risk Assessment of some Heavy Metals in a Rural Spring, Southeastern Nigeria. Afr. J. Environ. Nat. Sci. Res. 2018, 1, 15–23. [Google Scholar]
- Hormel, L.; Wardropper, C.B.; Scott, C.B.; Gallardo, M.V.I.; Roon, D.; Armijos, C.I. Factors Influencing Water Quality Perceptions in an Urban and Rural Watershed in Southern Ecuador: A Case Study of Applied Interdisciplinary Research Training in Ecuador. Case Stud. Environ. 2021, 5, 1434937. [Google Scholar] [CrossRef]
- UNEP. A Snapshot of the World’s Water Quality: Towards a Global Assessment; United Nations Environment Programme: Nairobi, Kenya, 2016. [Google Scholar]
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, N.; Izzuddin, M.; Ishak, S.; Ahmad, M.; Umar, K.; Md Yusuff, M.S.; Anees, M.T.; Qadir, A.; Khalaf, Y. Modification of the Water Quality Index (WQI) Process for Simple Calculation Using the Multi-Criteria Decision-Making (MCDM) Method: A Review. Water 2021, 13, 905. [Google Scholar] [CrossRef]
- Wu, J.; Man, Y.; Sun, G.; Shang, L. Occurrence and Health-Risk Assessment of Trace Metals in Raw and Boiled Drinking Water from Rural Areas of China. Water 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Meride, Y.; Ayenew, B. Drinking water quality assessment and its effects on residents’ health in Wondo genet campus, Ethiopia. Environ. Syst. Res. 2016, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Nriagu, J.; Kim, M. Trace Metals in Drinking Water: Sources and Effects. In Security of Public Water Supplies; Springer: Dordrecht, The Netherland, 2000; pp. 115–131. [Google Scholar]
- Dashtizadeh, M.; Kamani, H.; Ashrafi, S.D.; Panahi, A.H.; Mahvi, A.H.; Balarak, D.; Hoseini, M.; Ansari, H.; Bazrafshan, E.; Parsafar, F. Human health risk assessment of trace elements in drinking tap water in Zahedan city, Iran. J. Environ. Health Sci. Eng. 2019, 17, 1163–1169. [Google Scholar] [CrossRef]
- Sullivan, C.A.; Meigh, J.R. Targeting attention on local vulnerabilities using an integrated index approach: The example of the climate vulnerability index. Water Sci. Technol. 2005, 51, 69–78. [Google Scholar] [CrossRef]
- Saylor, A.; Prokopy, L.S.; Amberg, S. What’s Wrong with the Tap? Examining Perceptions of Tap Water and Bottled Water at Purdue University. Environ. Manag. 2011, 48, 588–601. [Google Scholar] [CrossRef]
- Qian, N. Bottled Water or Tap Water? A Comparative Study of Drinking Water Choices on University Campuses. Water 2018, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Agency, USA. Inorganic Contaminant Accumulation in Potable Water Distribution Systems, Office of GroundWater and Drinking Water; Environmental Protection Agency: Washington, DC, USA, 2006.
- Graydon, R.; Gonzalez, P.; Laureano-Rosario, A.; Pradieu, G. Bottled water versus tap water: Risk perceptions and drinking water choices at the University of South Florida. Int. J. Sustain. High. Educ. 2019, 20, 654–674. [Google Scholar] [CrossRef]
- Addisie, M.B. Evaluating drinking water quality using water quality parameters and aesthetic attributes. Air Soil Water Res. 2022, 15, 11786221221075005. [Google Scholar] [CrossRef]
- Ab Razak, N.H.; Praveena, S.M.; Aris, A.Z.; Hashim, Z. Drinking water studies: A review on heavy metal, application of biomarker and health risk assessment (a special focus in Malaysia). J. Epidemiol. Glob. Health 2015, 5, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Denantes, J.; Donoso, G. Factors influencing customer satisfaction with water service quality in Chile. Util. Policy 2021, 73, 101295. [Google Scholar] [CrossRef]
- Saad, M.; Sultan, Y.; Ahmed MB, M. Phthalates released from plastic Bottles to inner drinking water which threaten food safety and public health. World J. Pharm. Res. 2015, 4990, 225–233. [Google Scholar]
- Shotyk, W.; Krachler, M.; Chen, B. Contamination of Canadian and European bottled waters with antimony from PET containers. J. Environ. Monit. 2006, 8, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Allafi, A.R. The effect of temperature and storage time on the migration of antimony from polyethylene terephthalate (PET) into commercial bottled water in Kuwait. Acta Biomed. 2020, 91, e2020105. [Google Scholar] [PubMed]
- Jéquier, E.; Constant, F. Water as an essential nutrient: The physiological basis of hydration. Eur. J. Clin. Nutr. 2009, 64, 112–115. [Google Scholar] [CrossRef]
- Popkin, B.M.; D’Anci, K.E.; Rosenberg, I.H. Water, hydration, and health. Nutr. Rev. 2010, 68, 439–458. [Google Scholar] [CrossRef]
- Britannica. South Africa-Resources-and-Power. 2006. Available online: https://www.britannica.com/place/South-Africa/Resources-and-power (accessed on 14 October 2022).
- Ochieng, G.; Seanego, E.; Nkwonta, O. Impacts of mining on water resources in South Africa: A review. Sci. Res. Essays 2010, 5, 3351–3357. [Google Scholar]
- Olowoyo, J.O.; Lion, N.; Unathi, T.; Oladeji, O.M. Concentrations of Pb and Other Associated Elements in Soil Dust 15 Years after the Introduction of Unleaded Fuel and the Human Health Implications in Pretoria, South Africa. Intern. J. Environ. Res. Public Health 2022, 19, 10238. [Google Scholar] [CrossRef]
- Herselman, E.; Steyn, C.; Fey, M.V. Baseline concentration of Cd, Co, Cr, Cu, Pb, Ni and Zn in surface soils of South Africa. S. Afr. J. Sci. 2005, 101, 509. [Google Scholar]
- Maxwell, O.; Adewoyin Olusegun, O.; Joel Emmanuel, S.; Okolie Sociis, T.A.; Efemena, A.O.; Akinwumi, A.; Arijaje Theophilus, E. Potential Health Risks of Heavy Metal Contents in Bottled Water from Lagos State and Its Environs, Nigeria. IOP Conf. Ser. Earth Environ. Sci. 2018, 173, 2–16. [Google Scholar] [CrossRef]
- Thygesen, M.; Schullehner, J.; Hansen, B.; Sigsgaard, T.; Voutchkova, D.D.; Kristiansen, S.M.; Pedersen, C.B.; Dalsgaard, S. Trace elements in drinking water and the incidence of attention-deficit hyperactivity disorder. J. Trace Elem. Med. Biol. 2021, 68, 126828. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005; 1220p. [Google Scholar]
- Dippong, T.; Hoaghia, M.-A.; Mihali, C.; Cical, E.; Calugaru, M. Human health risk assessment of some bottled waters from Romania. Environ. Pollut. 2020, 267, 115409. [Google Scholar] [CrossRef]
- Aris, A.Z.; Kam, R.C.Y.; Lim, A.P.; Praveena, S.M. Concentration of ions in selected bottled water samples sold in Malaysia. Appl. Water Sci. 2012, 3, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Chiarenzelli, J.; Pominville, C. Bottled water selection and health considerations from multi-element analysis of products sold in New York State. J. Water Health 2008, 6, 505–512. [Google Scholar] [CrossRef]
- Ondieki, J.K.; Akunga, D.; Warutere, P.N.; Kenyanya, O. Bacteriological and physico-chemical quality of household drinking water in Kisii Town, Kisii County, Kenya. Heliyon 2021, 7, e06937. [Google Scholar] [CrossRef]
- Wolf, J.; Prüss-Ustün, A.; Cumming, O.; Bartram, J.; Bonjour, S.; Cairncross, S.; Clasen, T.; Colford, J.M., Jr.; Curtis, V.; De France, J.; et al. Systematic review: Assessing the impact of drinking water and sanitation on diarrhoeal disease in low- and middle-income settings: Systematic review and meta-regression. Trop. Med. Int. Health 2014, 19, 928–942. [Google Scholar] [CrossRef]
- Sofi, M.H.; Gudi, R.; Karumuthil-Melethil, S.; Perez, N.; Johnson, B.M.; Vas, C. pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence. Diabetes 2014, 63, 632–644. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Drinking-Water Quality First Addendum to Third Edition; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- WHO. Emerging Issues in Water and Infectious Disease; World Health Organization: Geneva, Switzerland, 2003; Available online: http://www.who.int/water_sanitation_health/emerging/emerging.pdf (accessed on 14 October 2022).
- Zhitkovich, A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011, 24, 1617–1629. [Google Scholar] [CrossRef]
- Olowoyo, J.O.; Mugivhisa, L.L.; Busa, N.G. Trace Metals in Soil and Plants around a Cement Factory in Pretoria, South Africa. Pol. J. Environ. Stud. 2015, 24, 2087–2093. [Google Scholar] [CrossRef]
- Roje, V.; Šutalo, P. Trace and major elements in Croatian bottled waters. J. Geochem. Explor. 2019, 201, 79–87. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X. Chromium Pollution of Soil and Water in Jinzhou. Chin. J. Prev. Med. 1987, 21, 262–264. [Google Scholar]
- Redmon, J.H.; Levine, K.E.; Aceituno, A.M.; Litzenberger, K.; Gibson, J.M. Lead in drinking water at North Carolina childcare centers: Piloting a citizen science-based testing strategy. Environ. Res. 2020, 183, 109126. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Yang, Y.; Lee, Y. Pb and Cd uptake in rice roots. Physiol. Plant. 2002, 116, 368–372. [Google Scholar] [CrossRef]
- Zahran, S.; Mushinski, D.; McElmurry, S.P.; Keyes, C. Water lead exposure risk in Flint, Michigan after switchback in water source: Implications for lead service line replacement policy. Environ. Res. 2019, 181, 108928. [Google Scholar] [CrossRef]
- Lim, J.E.; Ahmad, M.; Lee, S.S.; Shope, C.L.; Hashimoto, Y.; Kim, K.; Usman AR, A.; Yang, J.E.; Ok, Y.S. Effects of Lime-Based Waste Materials on Immobilization and Phytoavailability of Cadmium and Lead in Contaminated Soil. Clean—Soil Air Water 2013, 41, 1235–1241. [Google Scholar] [CrossRef]
- Custodio, M.; Walter, C.; Richard, P.; Raúl, M.; Salomé, O.; Jocelyn, Q. Human Risk from Exposure to Heavy Metals and Arsenic in Water from Rivers with Mining Influence in the Central Andes of Peru. Water 2020, 12, 1946. [Google Scholar] [CrossRef]
- Ghobadi, A.; Amin, J. Chromium, Nickel and Manganese in the Groundwater Resources of Asadabad Plain, Iran. Arch. Hyg. Sci. 2017, 6, 81–87. [Google Scholar] [CrossRef]
- Oladele, A.H.; Digun-Aweto, O.; Sunday, A.Y. Relationship between Cadmium, Nickel and Chromium Contents in Oreochromis niloticus, Macrobrachium vollenhovenii, Sediments and Water of Lake Asejire, Nigeria. World J. Fish Mar. Sci. 2019, 11, 15–22. [Google Scholar]
Sample | TDS (mg/L) | EC (mS/m) | SO4 (mg/L) | NO3 (mg/L) | PO4 (mg/L) | pH |
---|---|---|---|---|---|---|
1 | 24.67 | 47 | <0.05 | 0.24 | <0.10 | 6.38 |
2 | 171.67 | 347.67 | 0.06 | <0.20 | <0.10 | 7.26 |
3 | 15.33 | 30.33 | <0.05 | 0.22 | <0.10 | 4.67 |
4 | 93.33 | 180.33 | <0.05 | <0.20 | <0.10 | 6.68 |
5 | 26 | 50 | <0.05 | 0.33 | <0.10 | 5.33 |
6 | 71 | 145.67 | <0.05 | <0.20 | <0.10 | 4.77 |
7 | 8.67 | 16.67 | <0.05 | <0.20 | <0.10 | 5.93 |
8 | 2 | 3 | <0.05 | 0.34 | <0.10 | 5.59 |
9 | 68.67 | 137 | <0.05 | <0.20 | <0.10 | 4.75 |
10 | 6.67 | 12.67 | <0.05 | 0.31 | <0.10 | 6.37 |
11 | 49.33 | 99.67 | <0.05 | 0.34 | <0.10 | 6.95 |
12 | 76.33 | 152.67 | <0.05 | 0.1 | <0.10 | 7.5 |
*MAL (WHO, 2006) | 300 | 400 | 500 | 50 | 0.05 | 6.5 |
Sample ID | Trace Elements | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ti | V | Cr | Mn | Fe | Ni | Cu | Zn | As | Mo | Cd | Pb | |
1 | 8.42 ± 1.12 | 1.45 ± 1.11 | 147.07 ± 1.23 | 72.21 ± 1.11 | 1245.35 ± 2.98 | 79.20 ± 1.55 | 149.93 ± 0.98 | 47.75 ± 2.22 | 1.25 ± 0.11 | 5.11 ± 0.09 | 0.18 ± 0.02 | 20.70 ± 1.10 |
2 | 4.94 ± 2.31 | 0.74 ± 0.89 | 142.53 ± 2.32 | 51.30 ± 0.76 | 884.56 ± 0.88 | 74.79 ± 9.83 | 137.97 ± 1.45 | 40.74 ± 1.34 | 1.93 ± 0.87 | 5.31 ± 0.10 | 0.18 ± 0.03 | 16.10 ± 0.98 |
3 | 4.50 ± 1.11 | 0.97 ± 0.05 | 154.38 ± 1.11 | 129.22 ± 2.02 | 1053.21 ± 2.42 | 79.98 ± 0.55 | 182.86 ± 3.22 | 46.39 ± 5.34 | 1.31 ± 0.12 | 5.18 ± 0.21 | 0.16 ± 0.01 | 14.11 ± 0.88 |
4 | 13.16 ± 0.87 | 6.61 ± 1.02 | 151.38 ± 4.36 | 128.17 ± 1.31 | 1346.91 ± 3.77 | 80.90 ± 2.21 | 137.87 ± 0.77 | 2978.31 ± 9.76 | 1.02 ± 0.06 | 5.08 ± 0.12 | 0.16 ± 0.01 | 12.23 ± 1.22 |
5 | 5.68 ± 0.24 | 0.73 ± 0.06 | 149.31 ± 0.89 | 102.71 ± 2.43 | 1048.77 ± 0.88 | 79.82 ± 0.87 | 171.96 ± 1.99 | 51.20 ± 1.09 | 1.35 ± 0.01 | 4.98 ± 0.04 | 0.17 ± 0.02 | 9.43 ± 0.98 |
6 | 6.80± 1.91 | 1.08 ± 0.23 | 147.43 ± 1.43 | 231.80 ± 0.83 | 1153.08 ± 2.54 | 80.14 ± 3.11 | 200.68 ± 2.65 | 55.35 ± 7.11 | 0.92 ± 0.03 | 5.17 ± 0.01 | 0.18 ± 0.09 | 123.15 ± 1.12 |
7 | 6.51 ± 0.88 | 1.33 ± 0.21 | 161.61 ± 2.11 | 63.61 ± 1.43 | 927.88 ± 0.98 | 83.70 ± 0.88 | 177.37 ± 7.11 | 40.92 ± 2.09 | 1.18 ± 0.23 | 5.27 ± 0.22 | 0.17 ± 0.10 | 9.21 ± 0.11 |
8 | 14.81 ± 0.65 | 2.19 ± 0.65 | 153.91 ± 4.34 | 16.95 ± 0.77 | 1144.88 ± 3.45 | 83.41 ± 0.11 | 21.33 ± 0.84 | 11.30 ± 0.65 | 0.65 ± 0.05 | 4.80 ± 0.89 | 0.16 ± 0.08 | 5.98 ± 0.43 |
9 | 6.61 ± 1.12 | 1.25 ± 0.43 | 156.38 ± 1.87 | 268.91 ± 2.65 | 1241.53 ± 2.35 | 83.42 ± 2.45 | 184.91 ± 3.20 | 48.37 ± 0.11 | 1.52 ± 0.11 | 5.51 ± 0.32 | 0.18 ± 0.04 | 12.73 ± 0.61 |
10 | 4.85 ± 0.98 | 0.94 ± 0.11 | 156.03 ± 9.08 | 102.01 ± 0.77 | 1087.36 ± 7.11 | 81.93 ± 3.01 | 228.11 ± 7.54 | 62.12 ± 0.34 | 1.47 ± 0.06 | 5.38 ± 1.22 | 0.17 ± 0.07 | 25.58 ± 2.03 |
11 | 5.25 ± 1.03 | 1.87 ± 0.43 | 164.70 ± 4.03 | 63.09 ± 3.67 | 942.34 ± 5.45 | 86.35 ± 9.02 | 206.79 ± 3.25 | 49.86 ± 0.54 | 1.68 ± 0.09 | 5.61 ± 0.89 | 0.15 ± 0.01 | 78.56 ± 1.98 |
12 | 9.97 ± 2.11 | 5.03 ± 0.98 | 190.26 ± 2.09 | 93.49 ± 2.98 | 895.74 ± 0.77 | 89.08 ± 0.65 | 407.32 ± 1.01 | 136.37 ± 0.33 | 1.96 ± 0.02 | 5.45 ± 1.01 | 0.67 ± 0.09 | 57.68 ± 0.31 |
Chronic Daily Intake (mg/kg) | Hazard Quotient (HQ) | |||
---|---|---|---|---|
Metals | Minimum | Maximum | Minimum | Maximum |
Ti | 3.1 × 10−2 | 9.8 × 10−5 | 1 × 10−2 | 3.2 × 10−5 |
V | 5.1 × 10−6 | 4.6 × 10−5 | 7.3 × 10−4 | 6.6 × 10−3 |
Cr | 9.9 × 10−4 | 1.3 × 10−3 | 0.33 | 0.43 |
Mn | 1.2 × 10−4 | 1.9 × 10−3 | 8.6 × 10−3 | 0.14 |
Fe | 6.1 × 10−3 | 9.3 × 10−3 | 8.7 × 10−3 | 1.3 × 10−2 |
Ni | 5.2 × 10−4 | 6.2 × 10−4 | 2.6 × 10−2 | 3.1 × 10−2 |
Cu | 1.5 × 10 −4 | 2.8 × 10−3 | 3.8 × 10−3 | 7 × 10−2 |
Zn | 7.8 × 10−5 | 2 × 10−2 | 2.6 × 10−4 | 6.6 × 10−2 |
As | 4.5 × 10−6 | 1.4 × 10−5 | 1.5 × 10−2 | 4.6 × 10−2 |
Mo | 3.3 × 10−5 | 3.9 × 10−5 | 6.6 × 10−3 | 7.8 × 10−3 |
Cd | 1 × 10−6 | 4.6 × 10−6 | 9.2 × 10−4 | 8.8 × 10−3 |
Pb | 4.1 × 10−5 | 8.5 × 10−4 | 1.2 × 10−2 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olowoyo, J.O.; Chiliza, U.; Selala, C.; Macheka, L. Health Risk Assessment of Trace Metals in Bottled Water Purchased from Various Retail Stores in Pretoria, South Africa. Int. J. Environ. Res. Public Health 2022, 19, 15131. https://doi.org/10.3390/ijerph192215131
Olowoyo JO, Chiliza U, Selala C, Macheka L. Health Risk Assessment of Trace Metals in Bottled Water Purchased from Various Retail Stores in Pretoria, South Africa. International Journal of Environmental Research and Public Health. 2022; 19(22):15131. https://doi.org/10.3390/ijerph192215131
Chicago/Turabian StyleOlowoyo, Joshua Oluwole, Unathi Chiliza, Callies Selala, and Linda Macheka. 2022. "Health Risk Assessment of Trace Metals in Bottled Water Purchased from Various Retail Stores in Pretoria, South Africa" International Journal of Environmental Research and Public Health 19, no. 22: 15131. https://doi.org/10.3390/ijerph192215131
APA StyleOlowoyo, J. O., Chiliza, U., Selala, C., & Macheka, L. (2022). Health Risk Assessment of Trace Metals in Bottled Water Purchased from Various Retail Stores in Pretoria, South Africa. International Journal of Environmental Research and Public Health, 19(22), 15131. https://doi.org/10.3390/ijerph192215131