The Effects of Vasodilation Induced by Brachial Plexus Block on the Development of Postoperative Thrombosis of the Arteriovenous Access in Patients with End-Stage Renal Disease: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Patient Monitoring and Indications for Brachial Plexus Blocks
2.3. Brachial Plexus Block
2.4. Measurement of Vessel Diameters
2.5. Indications for Arteriovenous Access
2.6. Measurement of Sensory and Motor Blockade
2.7. Intraoperative Anesthetic Management
2.8. Postoperative Follow-Up
2.9. Outcome Variables
2.10. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Changes in Vessel Diameters after Placement of Brachial Plexus Block
3.3. Factors Contributing to Changes in Inflow Artery and Outflow Vein Diameters of Arteriovenous Access after Placement of Brachial Plexus Block
3.4. Effects of Changes in Inflow and Outflow Vessel Diameters of Arteriovenous Access and Factors Contributing to the Vessel Diameters on the Development of Complete Occlusive Access Thrombosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.S.; Kim, Y.; Shin, S.J.; Lee, H.S.; Kim, S.G.; Cho, S.; Na, K.R.; Kim, J.K.; Kim, S.J.; Kim, Y.O.; et al. Current state of dialysis access management in Korea. J. Vasc. Access 2019, 20, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Kanda, H.; Hirasaki, Y.; Iida, T.; Kanao-Kanda, M.; Toyama, Y.; Chiba, T.; Kunisawa, T. Perioperative Management of Patients with End-Stage Renal Disease. J. Cardiothorac. Vasc. Anesth. 2017, 31, 2251–2267. [Google Scholar] [CrossRef] [PubMed]
- Konner, K.; Nonnast-Daniel, B.; Ritz, E. The arteriovenous fistula. J. Am. Soc. Nephrol. 2003, 14, 1669–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malinzak, E.B.; Gan, T.J. Regional anesthesia for vascular access surgery. Anesth. Analg. 2009, 109, 976–980. [Google Scholar] [CrossRef] [PubMed]
- Mouquet, C.; Bitker, M.O.; Bailliart, O.; Rottembourg, J.; Clergue, F.; Montejo, L.S.; Martineaud, J.P.; Viars, P. Anesthesia for creation of a forearm fistula in patients with endstage renal failure. Anesthesiology 1989, 70, 909–914. [Google Scholar] [CrossRef]
- Shemesh, D.; Olsha, O.; Orkin, D.; Raveh, D.; Goldin, I.; Reichenstein, Y.; Zigelman, C. Sympathectomy-like effects of brachial plexus block in arteriovenous access surgery. Ultrasound Med. Biol. 2006, 32, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Aitken, E.; Jackson, A.; Kearns, R.; Steven, M.; Kinsella, J.; Clancy, M.; Macfarlane, A. Effect of regional versus local anaesthesia on outcome after arteriovenous fistula creation: A randomised controlled trial. Lancet 2016, 388, 1067–1074. [Google Scholar] [CrossRef]
- Mian, A.; Chaudhry, I.; Huang, R.; Rizk, E.; Tubbs, R.S.; Loukas, M. Brachial plexus anesthesia: A review of the relevant anatomy, complications, and anatomical variations. Clin. Anat. 2014, 27, 210–221. [Google Scholar] [CrossRef]
- Shenoy, S.; Allon, M.; Beathard, G.; Brouwer-Maier, D.; Dember, L.M.; Glickman, M.; Lee, C.; Litchfield, T.; Lok, C.; Huber, T.; et al. Clinical Trial End Points for Hemodialysis Vascular Access: Background, Rationale, and Definitions. Clin. J. Am. Soc. Nephrol. 2018, 13, 490–494. [Google Scholar] [CrossRef] [Green Version]
- Dember, L.M.; Beck, G.J.; Allon, M.; Delmez, J.A.; Dixon, B.S.; Greenberg, A.; Himmelfarb, J.; Vazquez, M.A.; Gassman, J.J.; Greene, T.; et al. Effect of clopidogrel on early failure of arteriovenous fistulas for hemodialysis: A randomized controlled trial. JAMA 2008, 299, 2164–2171. [Google Scholar] [CrossRef]
- Kim, J.H. Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 2019, 72, 558–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weissfeld, L.A. A multicollinearity diagnostic for models fit to censored data. Commun. Stat.-Theory Methods 1989, 18, 2073–2085. [Google Scholar] [CrossRef]
- Peduzzi, P.; Concato, J.; Feinstein, A.R.; Holford, T.R. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J. Clin. Epidemiol. 1995, 48, 1503–1510. [Google Scholar] [CrossRef]
- He, G.W.; Taggart, D.P. Spasm in Arterial Grafts in Coronary Artery Bypass Grafting Surgery. Ann. Thorac. Surg. 2016, 101, 1222–1229. [Google Scholar] [CrossRef] [Green Version]
- Lo Monte, A.I.; Damiano, G.; Mularo, A.; Palumbo, V.D.; Alessi, R.; Gioviale, M.C.; Spinelli, G.; Buscemi, G. Comparison between local and regional anesthesia in arteriovenous fistula creation. J. Vasc. Access 2011, 12, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Cerneviciute, R.; Sahebally, S.M.; Ahmed, K.; Murphy, M.; Mahmood, W.; Walsh, S.R. Regional Versus Local Anaesthesia for Haemodialysis Arteriovenous Fistula Formation: A Systematic Review and Meta-Analysis. Eur. J. Vasc. Endovasc. Surg. 2017, 53, 734–742. [Google Scholar] [CrossRef]
- Gao, C.; Weng, C.; He, C.; Xu, J.; Yu, L. Comparison of regional and local anesthesia for arteriovenous fistula creation in end-stage renal disease: A systematic review and meta-analysis. BMC Anesthesiol. 2020, 20, 219. [Google Scholar] [CrossRef]
- Wadstrom, J.; Gerdin, B. Modulatory effects of topically administered lidocaine and pentobarbital on traumatic vasospasm in the rabbit ear artery. Br. J. Plast. Surg. 1991, 44, 341–347. [Google Scholar] [CrossRef]
- Skehan, S.J.; Malone, D.E.; Buckley, N.; Matsumoto, S.; Rawlinson, J.; Ting, G.; Graham, D.; Alexander, J.; Somers, S.; Stevenson, G.W. Sedation and analgesia in adult patients: Evaluation of a staged-dose system based on body weight for use in abdominal interventional radiology. Radiology 2000, 216, 653–659. [Google Scholar] [CrossRef]
- Bailey, P.L.; Pace, N.L.; Ashburn, M.A.; Moll, J.W.; East, K.A.; Stanley, T.H. Frequent hypoxemia and apnea after sedation with midazolam and fentanyl. J. Am. Soc. Anesthesiol. 1990, 73, 826–830. [Google Scholar] [CrossRef]
- Tousoulis, D.; Papageorgiou, N.; Androulakis, E.; Siasos, G.; Latsios, G.; Tentolouris, K.; Stefanadis, C. Diabetes mellitus-associated vascular impairment: Novel circulating biomarkers and therapeutic approaches. J. Am. Coll. Cardiol. 2013, 62, 667–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzawa, Y.; Lerman, A. Endothelial dysfunction and coronary artery disease: Assessment, prognosis, and treatment. Coron. Artery Dis. 2014, 25, 713–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamed, S.; Brenner, B.; Aharon, A.; Daoud, D.; Roguin, A. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus. Cardiovasc. Diabetol. 2009, 8, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bombor, I.; Wissgott, C.; Andresen, R. Lumbar sympathicolysis in patients with severe peripheral artery disease: Hemodynamics of the lower limbs determined by near-infrared spectroscopy, color coded duplex sonography, and temperature measurement. Clin. Med. Insights Cardiol. 2014, 8, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, S.; Amiya, E.; Watanabe, M.; Takata, M.; Ozeki, A.; Watanabe, A.; Kawarasaki, S.; Nakao, T.; Hosoya, Y.; Omori, K.; et al. Simultaneous heart rate variability monitoring enhances the predictive value of flow-mediated dilation in ischemic heart disease. Circ. J. 2013, 77, 1018–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malliani, A.; Montano, N. Sympathetic overactivity in ischaemic heart disease. Clin. Sci. 2004, 106, 567–568. [Google Scholar] [CrossRef] [Green Version]
- Hingorani, A.P.; Ascher, E.; Gupta, P.; Alam, S.; Marks, N.; Schutzer, R.W.; Multyala, M.; Shiferson, A.; Yorkovich, W.; Jacob, T.; et al. Regional anesthesia: Preferred technique for venodilatation in the creation of upper extremity arteriovenous fistulae. Vascular 2006, 14, 23–26. [Google Scholar] [CrossRef]
- Palaniappan, S.; Subbiah, V.; Gopalan, V.R.; Kumar, P.V.; Vinothan, R.J.S. Observational study of the efficacy of supraclavicular brachial plexus block for arteriovenous fistula creation. Indian J. Anaesth. 2018, 62, 616–620. [Google Scholar] [CrossRef]
- Renaud, C.J.; Leong, C.R.; Bin, H.W.; Wong, J.C. Effect of brachial plexus block-driven vascular access planning on primary distal arteriovenous fistula recruitment and outcomes. J. Vasc. Surg. 2015, 62, 1266–1272. [Google Scholar] [CrossRef] [Green Version]
- Laskowski, I.A.; Muhs, B.; Rockman, C.R.; Adelman, M.A.; Ranson, M.; Cayne, N.S.; Leivent, J.A.; Maldonado, T.S. Regional nerve block allows for optimization of planning in the creation of arteriovenous access for hemodialysis by improving superficial venous dilatation. Ann. Vasc. Surg. 2007, 21, 730–733. [Google Scholar] [CrossRef]
- Huber, T.S.; Carter, J.W.; Carter, R.L.; Seeger, J.M. Patency of autogenous and polytetrafluoroethylene upper extremity arteriovenous hemodialysis accesses: A systematic review. J. Vasc. Surg. 2003, 38, 1005–1011. [Google Scholar] [CrossRef] [Green Version]
- Perera, G.B.; Mueller, M.P.; Kubaska, S.M.; Wilson, S.E.; Lawrence, P.F.; Fujitani, R.M. Superiority of autogenous arteriovenous hemodialysis access: Maintenance of function with fewer secondary interventions. Ann. Vasc. Surg. 2004, 18, 66–73. [Google Scholar] [CrossRef] [PubMed]
Patency Group (n = 81) | Occlusion Group (n = 14) | Mean or Median Difference (95% CI) | p Value | |
---|---|---|---|---|
Age (yr.) | 66 (53, 75) | 59 (49, 71) | 3 (−4, 10) | 0.446 |
Sex (M/F) | 47 (58.0)/34 (42.0) | 8 (57.1)/6 (42.9) | Not applicable | 0.951 |
Height (cm) | 161.4 ± 9.3 | 164.1 ± 2.8 | −2.8 (−8.2, 2.7) | 0.314 |
Weight (kg) | 59.8 ± 11.7 | 60.1 ± 11.2 | −0.4 (−7.0, 6.3) | 0.916 |
Body mass index (kg/m2) | 22.9 ± 3.6 | 22.3 ± 3.2 | 0.6 (−1.4, 2.7) | 0.552 |
Smoking history | 12 (14.8) | 4 (28.6) | Not applicable | 0.245 |
Underlying disease | ||||
| 57 (70.4) | 10 (71.4) | Not applicable | 1.000 |
| 59 (72.9) | 12 (85.7) | Not applicable | 0.506 |
| 13 (16.1) | 2 (14.3) | Not applicable | 1.000 |
| 19 (23.5) | 2 (14.3) | Not applicable | 0.728 |
| 4 (5.0) | 2 (14.3) | Not applicable | 0.214 |
| 1 (1.2) | 0 (0.0) | Not applicable | 1.000 |
| 13 (16.1) | 1 (7.1) | Not applicable | 0.685 |
Side of surgery (right/left) | 12 (14.8)/69 (85.2) | 4 (28.6)/10 (71.4) | Not applicable | 0.245 |
Type of BPB | 0.833 | |||
| 67 (82.7) | 11 (78.6) | Not applicable | |
| 11 (13.6) | 2 (14.3) | Not applicable | |
| 3 (3.7) | 1 (7.1) | Not applicable | |
Block performance time (min) | 5 (4, 6) | 5 (3.8, 5.3) | 0 (−1, 1) | 0.446 |
Volume of 1.5% mepivacaine used for BPB (ml) | 25 (23, 31.5) | 28.5 (23.8, 32.8) | −1 (−5, 2) | 0.482 |
Surgical procedure | <0.001 | |||
| 40 (49.4) | 1 (7.1) | Not applicable | |
| 25 (30.9) | 6 (42.9) | Not applicable | |
| 8 (9.9) | 2 (14.3) | Not applicable | |
| 7 (8.6) | 1 (7.1) | Not applicable | |
| 1 (1.2) | 3 (21.4) | Not applicable | |
| 0 (0.0) | 1 (7.1) | Not applicable | |
AVF/AVG | 48 (59.3)/33 (40.7) | 3 (21.4)/11 (78.6) | Not applicable | 0.009 |
Change in original operation plan | 7 (8.6) | 0 (0.0) | Not applicable | 0.589 |
Duration of surgery (min) | 65 (58, 83) | 83 (62, 114) | −12 (−29, 1) | 0.071 |
Duration of anesthesia (min) | 94 (81.5, 108.5) | 113.5 (86.3, 142.8) | −15 (−33, 1) | 0.064 |
Follow-up duration (days) | 202 (81.5, 338) | 43 (24, 317.3) | 73.5 (12, 180) | 0.018 |
Overall (n = 95) | Patency Group (n = 81) | Occlusion Group (n = 14) | Median Difference (95% CI) (Patency Group vs. Occlusion Group) | p Value | |
---|---|---|---|---|---|
Radial artery | |||||
| 2.2 (1.8, 2.6) | 2.2 (2, 2.55) | 1.75 (1.5, 2.6) | 0.3 (−0.1, 0.7) | 0.136 |
| 2.3 (2, 2.7) * | 2.3 (2, 2.7) * | 2 (1.73, 2.53) | 0.2 (0, 0.6) | 0.077 |
| 0 (0, 0.2) | 0.1 (0, 0.2) | 0 (−0.13, 0.28) | 0 (−0.1, 0.2) | 0.685 |
Brachial artery | |||||
| 4.4 (3.9, 4.8) | 4.3 (3.9, 4.8) | 4.7 (3.85, 5.05) | −0.2 (−0.7, 0.2) | 0.394 |
| 4.5 (4, 5) * | 4.5 (4, 4.95) † | 4.75 (4.3, 5.4) | −0.3 (−0.7, 0.2) | 0.267 |
| 0.1 (−0.1, 0.3) | 0.1 (−0.1, 0.25) | 0.2 (−0.05, 0.4) | −0.1 (−0.2, 0.1) | 0.349 |
Axillary artery | |||||
| 5.5 (5, 6.4) | 5.6 (5, 6.4) | 5.15 (4.7, 6.48) | 0.4 (−0.2, 0.9) | 0.167 |
| 5.6 (5, 6.4) | 5.6 (5, 6.35) | 5.7 (4.6, 6.5) | 0.2 (−0.4, 0.7) | 0.603 |
| 0 (−0.3, 0.2) | 0 (−0.3, 0.2) | 0.15 (−0.1 0.3) | −0.1 (−0.3, 0.1) | 0.292 |
Forearm cephalic vein | |||||
| 1.5 (1.3, 1.9) | 1.6 (1.3, 1.95) | 1.45 (1.2, 1.8) | 0.1 (−0.1, 0.3) | 0.317 |
| 1.7 (1.4, 2.2) * | 1.7 (1.5, 2.2) * | 1.65 (1.3, 2.03) ‡ | 0.1 (−0.3, 0.3) | 0.624 |
| 0.1 (0, 0.3) | 0.1 (0, 0.35) | 0.2 (0, 0.33) | −0.1 (−0.2, 0.1) | 0.459 |
Upper arm cephalic vein | |||||
| 2.8 (2.4, 3.5) | 2.7 (2.4, 3.5) | 3.15 (2.3, 3.65) | −0.1 (−0.7, 0.4) | 0.647 |
| 3.4 (2.8, 4) * | 3.4 (2.8, 4) * | 3.05 (2.7, 4.35) † | 0.1 (−0.4, 0.6) | 0.694 |
| 0.5 (0.2, 0.8) | 0.5 (0.2, 1) | 0.4 (0.28, 0.73) | 0.1 (−0.1, 0.4) | 0.307 |
Axillary vein | |||||
| 6.3 (5.1, 7.1) | 6.3 (5.15, 7.2) | 6.05 (4.88, 6.83) | 0.2 (−0.4, 1) | 0.481 |
| 6.8 (5.8, 7.5) * | 6.8 (5.9, 7.6) * | 6.45 (5.38, 7.1) ‡ | 0.4 (−0.3, 1.1) | 0.213 |
| 0.4 (0.1, 1.1) | 0.4 (0.1, 1.1) | 0.45 (0.1, 1.03) | 0 (−0.4, 0.4) | 0.916 |
Inflow artery used for the arteriovenous access | |||||
| 4.3 (3.8, 4.8) | 4.2 (3.8, 4.8) | 4.55 (3.6, 4.93) | −0.1 (−0.6, 0.5) | 0.789 |
| 4.4 (3.8, 4.9) ‡ | 4.4 (3.8, 4.9) ‡ | 4.4 (3.93, 5.1) ‡ | −0.1 (−0.6, 0.4) | 0.632 |
| 0.1 (−0.1, 0.2) | 0.1 (−0.1, 0.2) | 0.15 (0, 0.4) | −0.1 (−0.2, 0.1) | 0.297 |
Outflow vein used for the arteriovenous access | |||||
| 3.5 (2.5, 5.3) | 3.4 (2.5, 5.3) | 4.3 (2.88, 5.98) | −0.5 (−1.6, 0.6) | 0.318 |
| 4.2 (3.2, 5.7) * | 4 (3.1, 5.7) * | 4.8 (3.35, 6.38) † | −0.4 (−1.4, 0.6) | 0.386 |
| 0.6 (0.3, 1) § | 0.6 (0.3, 1.05) § | 0.6 (0.3, 1.03) ‖ | 0 (−0.3, 0.4) | 0.870 |
Independent Variable | Partial Regression Coefficient (95% CI) | p Value |
---|---|---|
Age | 0.002 (−0.001, 0.006) | 0.223 |
Smoking history | 0.137 (−0.002, 0.276) | 0.054 |
Diabetes mellitus | −0.183 (−0.301, −0.065) | 0.003 |
Ischemic heart disease | 0.123 (−0.022, 0.268) | 0.096 |
Cerebrovascular accident | 0.081 (−0.044, 0.206) | 0.200 |
Independent Variable | Partial Regression Coefficient (95% CI) | p Value |
---|---|---|
Age | 0.008 (−0.002, 0.017) | 0.100 |
Smoking history | 0.018 (−0.345, 0.380) | 0.923 |
Diabetes mellitus | −0.285 (−0.592, 0.023) | 0.068 |
Ischemic heart disease | −0.402 (−0.781, −0.024) | 0.038 |
Cerebrovascular accident | −0.248 (−0.573, 0.077) | 0.133 |
Independent Variable | Hazard Ratio (95% CI) | p Value |
---|---|---|
Age | 1.001 (0.964, 1.040) | 0.956 |
Diabetes mellitus | 1.205 (0.362, 4.009) | 0.761 |
Ischemic heart disease | 0.869 (0.192, 3.934) | 0.856 |
Change in diameter of inflow artery | 3.563 (0.340, 37.378) | 0.289 |
Change in diameter of outflow vein | 0.833 (0.362, 1.916) | 0.667 |
Arteriovenous graft | 5.748 (1.584, 20.863) | 0.008 |
Diabetes Mellitus | Absent (n = 28) | Present (n = 67) |
| Not applicable | Not applicable |
| 423.1 (368.2, 477.9) | 404.5 (364.2, 444.9) |
| 53.9 (−0.9, 108.8) | 72.5 (32.1, 112.8) |
Ischemic Heart Disease | Absent (n = 80) | Present (n = 15) |
| Not applicable | Not applicable |
| 366.2 (335.8, 396.5) | 379.8 (325.4, 434.3) |
| 54.8 (24.5, 85.2) | 41.2 (−13.3, 95.6) |
Arteriovenous Access Type | AVF (n = 51) | AVG (n = 44) |
| Not applicable | Not applicable |
| 456.4 (432.0, 480.9) | 345.8 (281.9, 409.7) |
| 20.6 (−3.9, 45.0) | 131.2 (67.3, 195.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Park, K.; Cho, Y.; Lee, J. The Effects of Vasodilation Induced by Brachial Plexus Block on the Development of Postoperative Thrombosis of the Arteriovenous Access in Patients with End-Stage Renal Disease: A Retrospective Study. Int. J. Environ. Res. Public Health 2022, 19, 15158. https://doi.org/10.3390/ijerph192215158
Kim J, Park K, Cho Y, Lee J. The Effects of Vasodilation Induced by Brachial Plexus Block on the Development of Postoperative Thrombosis of the Arteriovenous Access in Patients with End-Stage Renal Disease: A Retrospective Study. International Journal of Environmental Research and Public Health. 2022; 19(22):15158. https://doi.org/10.3390/ijerph192215158
Chicago/Turabian StyleKim, Jonghae, Kihyuk Park, Youngjin Cho, and Jaehoon Lee. 2022. "The Effects of Vasodilation Induced by Brachial Plexus Block on the Development of Postoperative Thrombosis of the Arteriovenous Access in Patients with End-Stage Renal Disease: A Retrospective Study" International Journal of Environmental Research and Public Health 19, no. 22: 15158. https://doi.org/10.3390/ijerph192215158
APA StyleKim, J., Park, K., Cho, Y., & Lee, J. (2022). The Effects of Vasodilation Induced by Brachial Plexus Block on the Development of Postoperative Thrombosis of the Arteriovenous Access in Patients with End-Stage Renal Disease: A Retrospective Study. International Journal of Environmental Research and Public Health, 19(22), 15158. https://doi.org/10.3390/ijerph192215158