Measuring the Air Quality Using Low-Cost Air Sensors in a Parking Garage at University of Minnesota, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Sensor Technology
2.2.1. Description of MAAQSbox
2.2.2. External Particle Sensor
2.2.3. MAAQSBox Field Calibration
2.2.4. Measurements and Statistical Analysis
3. Results and Discussion
3.1. Parking Garage Air Quality and Traffic
3.2. Vehicle Emission Factors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMS | Air monitoring station |
CO2 | Carbon dioxide |
CO | Carbon monoxide |
CSG | Church Street Garage |
FSCA | Flow Sensing Cell Apparatus |
LCMAQM | Low-cost, mobile air quality monitoring |
LDSA | Lung deposited surface area |
MAAQSBox | Mobile Autonomous Air Quality Sensor box |
MLR | Multivariate linear regressions |
N | Number of hours of calibration for each sensor in the AMS. |
NO2 | Nitrogen dioxide |
NO | Nitric oxide |
O3 | Ozone |
R2 | Coefficient of determination |
RC | Range of the concentration during the calibration |
SE | Standard deviation of mean. |
UMN | University of Minnesota |
References
- Boundy, R.G. Transportation Energy Data Book, 37th ed.; Oak Ridge National Lab (ORNL): Oak Ridge, TN, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- U.S. Census Bureau QuickFacts: Minnesota. Available online: https://www.census.gov/quickfacts/fact/table/MN (accessed on 20 July 2021).
- Li, Y.; Xiang, R. Particulate Pollution in an Underground Car Park in Wuhan, China. Particuology 2013, 11, 94–98. [Google Scholar] [CrossRef]
- Yan, Y.; He, Q.; Song, Q.; Guo, L.; He, Q.; Wang, X. Exposure to Hazardous Air Pollutants in Underground Car Parks in Guangzhou, China. Air Qual. Atmos. Health 2016, 10, 555–563. [Google Scholar] [CrossRef]
- McCahill, C.T.; Garrick, N.; Atkinson-Palombo, C.; Polinski, A. Effects of Parking Provision on Automobile Use in Cities: Inferring Causality. Transp. Res. Rec. J. Transp. Res. Board 2016, 2543, 159–165. [Google Scholar] [CrossRef] [Green Version]
- McCahill, C.; Garrick, N. Automobile Use and Land Consumption: Empirical Evidence from 12 Cities. Urban Des. Int. 2012, 17, 221–227. [Google Scholar] [CrossRef]
- Cao, X.; Mokhtarian, P.L.; Handy, S.L. Examining the Impacts of Residential Self-Selection on Travel Behaviour: A Focus on Empirical Findings. Transp. Rev. 2009, 29, 359–395. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Traveler Response to Transportation System Changes Handbook: Chapter 18, Parking Management and Supply, 3rd ed.; Transportation Research Board: Washington, DC, USA, 2004. [Google Scholar] [CrossRef]
- Kim, S.R.; Dominici, F.; Buckley, T.J. Concentrations of Vehicle-Related Air Pollutants in an Urban Parking Garage. Environ. Res. 2007, 105, 291–299. [Google Scholar] [CrossRef]
- Zielinska, B.; Fujita, E.; Ollison, W.; Campbell, D.; Sagebiel, J.; Merritt, P.; Smith, L. Relationships of Attached Garage and Home Exposures to Fuel Type and Emission Levels of Garage Sources. Air Qual. Atmos. Health 2011, 5, 89–100. [Google Scholar] [CrossRef]
- Vuković, G.; Aničić Urošević, M.; Razumenić, I.; Kuzmanoski, M.; Pergal, M.; Škrivanj, S.; Popović, A. Air Quality in Urban Parking Garages (PM10, Major and Trace Elements, PAHs): Instrumental Measurements vs. Active Moss Biomonitoring. Atmos. Environ. 2014, 85, 31–40. [Google Scholar] [CrossRef]
- Debia, M.; Trachy-Bourget, M.-C.; Beaudry, C.; Neesham-Grenon, E.; Perron, S.; Lapointe, C. Characterization of Indoor Diesel Exhaust Emissions from the Parking Garage of a School. Environ. Sci. Pollut. Res. 2016, 24, 4655–4665. [Google Scholar] [CrossRef] [Green Version]
- Samal, C.G.; Gupta, D.; Pathania, R.; Mohan, S.; Suresh, R. Air Pollution in Micro-Environments: A Case Study of India Habitat Centre Enclosed Vehicular Parking, New Delhi. Indoor Built Environ. 2012, 22, 710–718. [Google Scholar] [CrossRef]
- Obaidullah, M.; Dyakov, I.; Peeters, L.; Bram, S.; De Ruyck, J. Investigation of particulate matter pollutants in parking garages. In Proceedings of the 1st International Conference on Sustainable Development, Sustainable Chemical Industry, Pollution, Hazards and Environment (SDSCIPHE’12), Iasi, Romania, 14 June 2012; pp. 105–110. [Google Scholar]
- Pope, C.A.; Muhlestein, J.B.; May, H.T.; Renlund, D.G.; Anderson, J.L.; Horne, B.D. Ischemic Heart Disease Events Triggered by Short-Term Exposure to Fine Particulate Air Pollution. Circulation 2006, 114, 2443–2448. [Google Scholar] [CrossRef] [Green Version]
- Marć, M.; Śmiełowska, M.; Zabiegała, B. Concentrations of Monoaromatic Hydrocarbons in the Air of the Underground Car Park and Individual Garages Attached to Residential Buildings. Sci. Total Environ. 2016, 573, 767–777. [Google Scholar] [CrossRef]
- Costa, L.G.; Cole, T.B.; Coburn, J.; Chang, Y.-C.; Dao, K.; Roqué, P.J. Neurotoxicity of Traffic-Related Air Pollution. NeuroToxicology 2017, 59, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Laden, F.; Neas, L.M.; Dockery, D.W.; Schwartz, J. Association of Fine Particulate Matter from Different Sources with Daily Mortality in Six U.S. Cities. Environ. Health Perspect. 2000, 108, 941–947. [Google Scholar] [CrossRef]
- Seaton, A.; Godden, D.; MacNee, W.; Donaldson, K. Particulate Air Pollution and Acute Health Effects. Lancet 1995, 345, 176–178. [Google Scholar] [CrossRef]
- Ostro, B.; Lipsett, M.; Reynolds, P.; Goldberg, D.; Hertz, A.; Garcia, C.; Henderson, K.D.; Bernstein, L. Long-Term Exposure to Constituents of Fine Particulate Air Pollution and Mortality: Results from the California Teachers Study. Environ. Health Perspect. 2010, 118, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Raub, J.A.; Mathieu-Nolf, M.; Hampson, N.B.; Thom, S.R. Carbon Monoxide Poisoning—A Public Health Perspective. Toxicology 2000, 145, 1–14. [Google Scholar] [CrossRef]
- Levy, R.J. Carbon Monoxide Pollution and Neurodevelopment: A Public Health Concern. Neurotoxicol. Teratol. 2015, 49, 31–40. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, R.; Lin, Z.; Cai, J.; Yang, Y.; Yang, D.; Norback, D.; Kan, H. Ambient Carbon Monoxide Associated with Alleviated Respiratory Inflammation in Healthy Young Adults. Environ. Pollut. 2016, 208, 294–298. [Google Scholar] [CrossRef]
- Chen, T.-M.; Gokhale, J.; Shofer, S.; Kuschner, W.G. Outdoor Air Pollution: Nitrogen Dioxide, Sulfur Dioxide, and Carbon Monoxide Health Effects. Am. J. Med. Sci. 2007, 333, 249–256. [Google Scholar] [CrossRef]
- Barnett, A.G.; Williams, G.M.; Schwartz, J.; Neller, A.H.; Best, T.L.; Petroeschevsky, A.L.; Simpson, R.W. Air Pollution and Child Respiratory Health. Am. J. Respir. Crit. Care Med. 2005, 171, 1272–1278. [Google Scholar] [CrossRef] [Green Version]
- Touloumi, G.; Katsouyanni, K.; Zmirou, D.; Schwartz, J.; Spix, C.; Ponce de Leon, A.; Tobias, A.; Quennel, P.; Rabczenko, D.; Bacharova, L.; et al. Short-Term Effects of Ambient Oxidant Exposure on Mortality: A Combined Analysis within the APHEA Project. Am. J. Epidemiol. 1997, 146, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Rice, S.A. Human health risk assessment of CO2: Survivors of acute high-level exposure and populations sensitive to prolonged low-level exposure. Environments 2014, 3, 7–15. [Google Scholar]
- Alberts, W.M. Indoor air pollution: No, No2, CO, and CO2. J. Allergy Clin. Immunol. 1994, 94, 289–295. [Google Scholar] [CrossRef]
- Gonzalez; Andres; Boies, A.; Swason, J.; Kittelson, D. Field calibration of low-cost air pollution sensors. Atmos. Meas. Tech. Discus. 2019, 1–17. [Google Scholar] [CrossRef]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Maag, B.; Zhou, Z.; Thiele, L. A survey on sensor calibration in air pollution monitoring deployments. IEEE Internet Things J. 2018, 5, 4857–4870. [Google Scholar] [CrossRef] [Green Version]
- Concas, F.; Mineraud, J.; Lagerspetz, E.; Varjonen, S.; Liu, X.; Puolamäki, K.; Nurmi, P.; Tarkoma, S. Low-cost outdoor air quality monitoring and sensor calibration: A survey and critical analysis. ACM Trans. Sens. Netw. (TOSN) 2021, 17, 1–44. [Google Scholar] [CrossRef]
- Gonzalez, A.; Boies, A.; Swanson, J.; Kittelson, D. Measuring the Effect of Ventilation on Cooking in 366 Indoor Air Quality by Low-Cost Air Sensors. Int. J. Environ. Ecol. Eng. 2019, 13, 568–576. [Google Scholar] [CrossRef]
- Gonzalez, A.; Boies, A.; Swanson, J.; Kittelson, D. Measuring the Effect of Fireworks on Air Quality in Minneapolis, Minnesota. SN Appl. Sci. 2022, 4, 142. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field Calibration of a Cluster of Low-Cost Available Sensors for Air Quality Monitoring. Part A: Ozone and Nitrogen Dioxide. Sens. Actuators B Chem. 2015, 215, 249–257. [Google Scholar] [CrossRef]
- Baron, R.; Saffell, J. Amperometric gas sensors as a low cost emerging technology platform for air quality monitoring applications: A review. ACS Sens. 2017, 2, 1553–1566. [Google Scholar] [CrossRef]
- Yoctopuce. 2018. Available online: http://www.yoctopuce.com/EN/products/usb-environmental-sensors/yocto-co2 (accessed on 18 October 2018).
- Naneos. Partector. 2018. Available online: http://www.naneos.ch/partector.html (accessed on 24 October 2018).
- Jiang, R.-T.; Acevedo-Bolton, V.; Cheng, K.-C.; Klepeis, N.E.; Ott, W.R.; Hildemann, L.M. Determination of Response of Real-Time SidePak AM510 Monitor to Secondhand Smoke, Other Common Indoor Aerosols, and Outdoor Aerosol. J. Environ. Monit. 2011, 13, 1695. [Google Scholar] [CrossRef]
- Kim, J.Y.; Prouty, L.A.; Fang, S.C.; Rodrigues, E.G.; Magari, S.R.; Modest, G.A.; Christiani, D.C. Association between fine particulate matter and oxidative DNA damage may be modified in individuals with hypertension. J. Occup Environ. Med. 2009, 51, 1158–1166. [Google Scholar] [CrossRef] [Green Version]
- TSI. SidePak Personal Aerosol Monitor Model AM510. Available online: https://tsi.com/getmedia/51f3ccb6-780e-4386-b8fb-60d688d37a18/SidePak_AIM510_US_1980456-web?ext=.pdf (accessed on 10 September 2022).
- Andrews, G.; Ounzain, A.; Li, H.; Bell, M.; Tate, J.; Ropkins, K. The Use of a Water/Lube Oil Heat Exchanger and Enhanced Cooling Water Heating to Increase Water and Lube Oil Heating Rates in Passenger Cars for Reduced Fuel Consumption and CO2 Emissions During Cold Start; SAE Technical Paper: Warrendale, PA, USA, 2007. [Google Scholar] [CrossRef]
- Andrews, G.; Zhu, G.; Li, H.; Simpson, A.; Wylie, J.A.; Bell, M.; Tate, J. The Effect of Ambient Temperature on Cold Start Urban Traffic Emissions for a Real World SI Car; SAE Technical Paper: Warrendale, PA, USA, 2004. [Google Scholar] [CrossRef] [Green Version]
- CO2 Earth. 2020. Available online: https://www.co2.earth/annual-co2 (accessed on 22 September 2020).
- Jung, J.; Jeong, I.; Bao, W. A Study on the Improvement of Indoor Environment in the Underground Parking Lot of Apartments in Jeonju City. J. Korean Inst. Rural Archit. 2020, 22, 1–12. [Google Scholar] [CrossRef]
- Hwang, S.H.; Park, W.M. Indoor air quality assessment with respect to culturable airborne bacteria, total volatile organic compounds, formaldehyde, PM10, CO2, NO2, and O3 in underground subway stations and parking lots. Air Qual. Atmos. Health 2019, 12, 435–441. [Google Scholar] [CrossRef]
- Faramarzi, A.; Lee, J.; Stephens, B.; Heidarinejad, M. Assessing ventilation control strategies in underground parking garages. In Building Simulation; Tsinghua University Press: Beijing, China, 2021; Volume 14, Number 3; pp. 701–720. [Google Scholar] [CrossRef]
- Liu, B.; Zimmerman, N. Fleet-based vehicle emission factors using low-cost sensors: Case study in parking garages. Transp. Res. Part D Transp. Environ. 2021, 91, 102635. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Yu, Z.; Ding, H.; Ma, Z. The influence of PM2.5 on lung injury and cytokines in mice. Exp. Ther. Med. 2019, 18, 2503–2511. [Google Scholar] [CrossRef] [Green Version]
- Rukaibi, F.A.; Mutairi, N.A.; Rashed, A.A. Concentration of Air Pollutants in an Urban Parking Garage in Kuwait. World Rev. Sci. Technol. Sustain. Dev. 2018, 14, 241. [Google Scholar] [CrossRef]
- Demir, A. Investigation of Air Quality in the Underground and Aboveground Multi-Storey Car Parks in Terms of Exhaust Emissions. Procedia Soc. Behav. Sci. 2015, 195, 2601–2611. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H.; Pandis, S.N.; Noone, K.J. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Phys. Today 1998, 51, 88–90. [Google Scholar] [CrossRef]
- Schafer, A.; Heywood, J.B.; Jacoby, H.D.; Waitz, I.A. Transportation in a Climate-Constrained World; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Heberle, S.M.; Lorini, C.; Rosa, M.S.G.; Barros, N. Evaluation of Bus Driver Exposure to Nitrogen Dioxide Levels during Working Hours. Atmos. Environ. 2019, 216, 116906. [Google Scholar] [CrossRef]
- Birmili, W.; Allen, A.G.; Bary, F.; Harrison, R.M. Trace Metal Concentrations and Water Solubility in Size-Fractionated Atmospheric Particles and Influence of Road Traffic. Environ. Sci. Technol. 2006, 40, 1144–1153. [Google Scholar] [CrossRef]
- Glorennec, P.; Bonvallot, N.; Mandin, C.; Goupil, G.; Pernelet-Joly, V.; Millet, M.; Filleul, L.; Le Moullec, Y.; Alary, R. Is a quantitative risk assessment of air quality in underground parking garages possible? Indoor Air 2008, 18, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Wennberg, P.O.; Cohen, R.C.; Stimpfle, R.M.; Koplow, J.P.; Anderson, J.G.; Salawitch, R.J.; Fahey, D.W.; Woodbridge, E.L.; Keim, E.R.; Gao, R.S.; et al. Removal of Stratospheric O 3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO. Science 1994, 266, 398–404. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, X.; Zhao, J. Assessment of PM1 Number Concentration with Respect to Traffic Flow and Thermal Environment in a Residential Underground Garage. Glob. Nest J. 2018, 20, 304–315. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, H.; Ma, S.; Jin, G.; Gao, J.; Ding, W. On-Site Assessments on Variations of PM2.5, PM10, CO2 and TVOC Concentrations in Naturally Ventilated Underground Parking Garages with Traffic Volume. Environ. Pollut. 2019, 247, 626–637. [Google Scholar] [CrossRef]
- Kuuluvainen, H.; Rönkkö, T.; Järvinen, A.; Saari, S.; Karjalainen, P.; Lähde, T.; Pirjola, L.; Niemi, J.V.; Hillamo, R.; Keskinen, J. Lung Deposited Surface Area Size Distributions of Particulate Matter in Different Urban Areas. Atmos. Environ. 2016, 136, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Gietl, J.K.; Lawrence, R.; Thorpe, A.J.; Harrison, R.M. Identification of Brake Wear Particles and Derivation of a Quantitative Tracer for Brake Dust at a Major Road. Atmos. Environ. 2010, 44, 141–146. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Chen, Y.; Borken-Kleefeld, J. Real-Driving Emissions from Cars and Light Commercial Vehicles – Results from 13 Years Remote Sensing at Zurich/CH. Atmos. Environ. 2014, 88, 157–164. [Google Scholar] [CrossRef]
- Pokharel, S.S.; Bishop, G.A.; Stedman, D.H. An On-Road Motor Vehicle Emissions Inventory for Denver: An Efficient Alternative to Modeling. Atmos. Environ. 2002, 36, 5177–5184. [Google Scholar] [CrossRef]
- Gilmore, E.A.; Patwardhan, A. Passenger Vehicles that Minimize the Costs of Ownership and Environmental Damages in the Indian Market. Appl. Energy 2016, 184, 863–872. [Google Scholar] [CrossRef]
Sensor | N | R2 | SE | RC |
---|---|---|---|---|
CO | 515 h | 0.95 | 0.04 ppm | 0.25 ppm–1.1 ppm |
NO | 509 h | 0.79 | 3.1 ppb | 1.3 ppb–46.4 ppb |
NO2 | 413 h | 0.63 | 3.2 ppb | 1 ppb–28 ppb |
O3 | 407 h | 0.93 | 2.8 ppb | 0 ppb–54 ppb |
CO ppm | CO2 ppm | NO ppb | NO2 ppb | NOx ppb | O3 ppb | LDSA µm2cm−3 | PM2.5 µg m−3 | Total Traffic In | Total Traffic Out | |
---|---|---|---|---|---|---|---|---|---|---|
CO ppm | 1.00 | |||||||||
CO2 ppm | 0.82 | 1.00 | ||||||||
NO ppb | 0.96 | 0.81 | 1.00 | |||||||
NO2 ppb | 0.47 | 0.21 | 0.41 | 1.00 | ||||||
NOx | 0.96 | 0.81 | 1.00 | 0.43 | 1.00 | |||||
O3 ppb | −0.72 | −0.68 | −0.66 | −0.57 | −0.67 | 1.00 | ||||
LDSA | 0.75 | 0.60 | 0.75 | 0.50 | 0.75 | −0.50 | 1.00 | |||
PM2.5 | 0.27 | 0.36 | 0.12 | 0.02 | 0.11 | 0.14 | 0.48 | 1.00 | ||
Total Traffic In | 0.15 | 0.35 | 0.11 | 0.10 | 0.11 | −0.22 | 0.14 | 0.09 | 1.00 | |
Total Traffic Out | 0.72 | 0.59 | 0.66 | 0.36 | 0.66 | −0.46 | 0.54 | 0.18 | 0.15 | 1.00 |
CO2 | LDSA | CO | CO AMS | NO | NO AMS | NO2 | NO2 AMS | O3 | O3 AMS | PM2.5 | PM2.5 AMS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | μm2/cm3 | ppm | ppm | ppb | ppb | ppb | ppb | ppb | ppb | mg/m3 | mg/m3 | |
maximum | 1267 | 98.5 | 11.7 | 0.7 | 518.4 | 26.6 | 24.5 | 20.0 | 35.4 | 52.0 | 35.5 | 22.0 |
minimum | 389 | 5.8 | 0.2 | 0.3 | 12.3 | 0.1 | 8.4 | 1.0 | 7.2 | 1.0 | 4.2 | 0.0 |
average | 564 | 22.0 | 2.5 | 0.4 | 80.1 | 3.9 | 15.4 | 7.7 | 25.9 | 26.3 | 14.9 | 6.1 |
stdev | 188 | 13.2 | 3.0 | 0.1 | 111.7 | 5.7 | 3.6 | 4.5 | 5.1 | 11.6 | 7.1 | 3.4 |
count | 128 | 168 | 168 | 168 | 127 | 168 | 144 | 168 | 144 | 168 | 168 | 168 |
CO | All | Lower 95.0% | Upper 95.0% | Weekdays | W, Th, Tu, W | Uncert ± |
CO/CO2 slope | 0.014 | 0.013 | 0.015 | 0.014 | 0.013 | |
CO/CO2 g/kg | 8.8 | 8.1 | 9.5 | 8.7 | 8.2 | 1.9 |
CO g/kgf | 28.1 | 25.9 | 30.3 | 27.6 | 26.2 | 6.0 |
g/km | 1.7 | 1.5 | 1.8 | 1.6 | 1.5 | 0.4 |
g/mi | 2.6 | 2.4 | 2.9 | 2.6 | 2.5 | 0.6 |
2017 std g/mi | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | |
NOx | All | Lower 95.0% | Upper 95.0% | Weekdays | Tu, W | Uncert ± |
NOx/CO2 slope | 0.68 | 0.61 | 0.75 | 0.66 | 0.80 | |
NOx/CO2 g/kg | 0.71 | 0.64 | 0.78 | 0.69 | 0.83 | 0.16 |
g/kgf | 2.3 | 2.1 | 2.5 | 2.2 | 2.7 | 0.50 |
g/km | 0.13 | 0.12 | 0.15 | 0.13 | 0.16 | 0.03 |
g/mi | 0.21 | 0.19 | 0.23 | 0.21 | 0.25 | 0.05 |
2017 std | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, A.; Boies, A.; Swanson, J.; Kittelson, D. Measuring the Air Quality Using Low-Cost Air Sensors in a Parking Garage at University of Minnesota, USA. Int. J. Environ. Res. Public Health 2022, 19, 15223. https://doi.org/10.3390/ijerph192215223
Gonzalez A, Boies A, Swanson J, Kittelson D. Measuring the Air Quality Using Low-Cost Air Sensors in a Parking Garage at University of Minnesota, USA. International Journal of Environmental Research and Public Health. 2022; 19(22):15223. https://doi.org/10.3390/ijerph192215223
Chicago/Turabian StyleGonzalez, Andres, Adam Boies, Jacob Swanson, and David Kittelson. 2022. "Measuring the Air Quality Using Low-Cost Air Sensors in a Parking Garage at University of Minnesota, USA" International Journal of Environmental Research and Public Health 19, no. 22: 15223. https://doi.org/10.3390/ijerph192215223
APA StyleGonzalez, A., Boies, A., Swanson, J., & Kittelson, D. (2022). Measuring the Air Quality Using Low-Cost Air Sensors in a Parking Garage at University of Minnesota, USA. International Journal of Environmental Research and Public Health, 19(22), 15223. https://doi.org/10.3390/ijerph192215223