Eight Months of Serological Follow-Up of Anti-SARS-CoV-2 Antibodies in France: A Study among an Adult Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Timeline
2.2. Study Design and Participants
2.3. Outcomes
2.4. Serological Analysis
2.5. Statistical Analysis
2.6. Ethics
3. Results
3.1. Sociodemographic Data Description of the Study Population
3.2. SARS-CoV-2 Infection History of the Study Population
3.3. Seroprevalence of IgG Antibodies against the SARS-CoV-2 S Protein
3.4. Description of ELISA-S Serological Results According to the Immune Status of the Participants
3.5. Description of the Participants Who Lost Their Antibodies over Time
3.6. Comparisons of IgG Antibody Levels against the SARS-CoV-2 S Protein According to Participants’ Immune Status
3.7. Description of the Seroneutralization Results According to the Immune Status of the Participants and Correlation with ELISA Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, L.-L.; Wang, Y.-M.; Wu, Z.-Q.; Xiang, Z.-C.; Guo, L.; Xu, T.; Jiang, Y.-Z.; Xiong, Y.; Li, Y.-J.; Li, X.-W.; et al. Identification of a Novel Coronavirus Causing Severe Pneumonia in Human: A Descriptive Study. Chin. Med. J. 2020, 133, 1015–1024. [Google Scholar] [CrossRef]
- Ministère des Solidarités et de la Santé. Le Calendrier de la Campagne Vaccinale Contre la COVID-19. Mise à Jour le 26 Novembre 2021. Available online: https://solidarites-sante.gouv.fr/archives/archives-presse/archives-communiques-de-presse/article/vaccination-contre-la-covid-en-france-au-26-novembre-2021-pres-de-104-413-200 (accessed on 25 October 2022).
- Guo, L.; Ren, L.; Yang, S.; Xiao, M.; Chang, D.; Yang, F.; Dela Cruz, C.S.; Wang, Y.; Wu, C.; Xiao, Y.; et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin. Infect. Dis. 2020, 71, 778–785. [Google Scholar] [CrossRef] [Green Version]
- Wajnberg, A.; Amanat, F.; Firpo, A.; Altman, D.R.; Bailey, M.J.; Mansour, M.; McMahon, M.; Meade, P.; Mendu, D.R.; Muellers, K.; et al. Robust Neutralizing Antibodies to SARS-CoV-2 Infection Persist for Months. Science 2020, 370, 1227–1230. [Google Scholar] [CrossRef]
- Earle, K.A.; Ambrosino, D.M.; Fiore-Gartland, A.; Goldblatt, D.; Gilbert, P.B.; Siber, G.R.; Dull, P.; Plotkin, S.A. Evidence for Antibody as a Protective Correlate for COVID-19 Vaccines. Vaccine 2021, 39, 4423–4428. [Google Scholar] [CrossRef]
- Castro Dopico, X.; Ols, S.; Loré, K.; Karlsson Hedestam, G.B. Immunity to SARS-CoV-2 Induced by Infection or Vaccination. J. Intern. Med. 2021, 291, 32–50. [Google Scholar] [CrossRef]
- Lumley, S.F.; Wei, J.; O’Donnell, D.; Stoesser, N.E.; Matthews, P.C.; Howarth, A.; Hatch, S.B.; Marsden, B.D.; Cox, S.; James, T.; et al. The Duration, Dynamics, and Determinants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibody Responses in Individual Healthcare Workers. Clin. Infect. Dis. 2021, 73, e699–e709. [Google Scholar] [CrossRef]
- Figueiredo-Campos, P.; Blankenhaus, B.; Mota, C.; Gomes, A.; Serrano, M.; Ariotti, S.; Costa, C.; Nunes-Cabaço, H.; Mendes, A.M.; Gaspar, P.; et al. Seroprevalence of Anti-SARS-CoV-2 Antibodies in COVID-19 Patients and Healthy Volunteers up to 6 Months Post Disease Onset. Eur. J. Immunol. 2020, 50, 2025–2040. [Google Scholar] [CrossRef]
- Gudbjartsson, D.F.; Norddahl, G.L.; Melsted, P.; Gunnarsdottir, K.; Holm, H.; Eythorsson, E.; Arnthorsson, A.O.; Helgason, D.; Bjarnadottir, K.; Ingvarsson, R.F.; et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N. Engl. J. Med. 2020, 383, 1724–1734. [Google Scholar] [CrossRef]
- Iyer, A.S.; Jones, F.K.; Nodoushani, A.; Kelly, M.; Becker, M.; Slater, D.; Mills, R.; Teng, E.; Kamruzzaman, M.; Garcia-Beltran, W.F.; et al. Persistence and Decay of Human Antibody Responses to the Receptor Binding Domain of SARS-CoV-2 Spike Protein in COVID-19 Patients. Sci. Immunol. 2020, 5, eabe0367. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, H.; Ye, B.; Zhao, M.; Zhan, J.; Dong, S.; Guo, Y.; Zhao, Y.; Li, M.; Liu, S.; et al. One-Year Sustained Cellular and Humoral Immunities in Coronavirus Disease 2019 (COVID-19) Convalescents. Clin. Infect. Dis. 2022, 75, e1072–e1081. [Google Scholar] [CrossRef]
- Garcia, L.; Woudenberg, T.; Rosado, J.; Dyer, A.H.; Donnadieu, F.; Planas, D.; Bruel, T.; Schwartz, O.; Prazuck, T.; Velay, A.; et al. Kinetics of the SARS-CoV-2 Antibody Avidity Response Following Infection and Vaccination. Viruses 2022, 14, 1491. [Google Scholar] [CrossRef]
- Gallais, F.; Gantner, P.; Bruel, T.; Velay, A.; Planas, D.; Wendling, M.-J.; Bayer, S.; Solis, M.; Laugel, E.; Reix, N.; et al. Evolution of Antibody Responses up to 13 Months after SARS-CoV-2 Infection and Risk of Reinfection. eBioMedicine 2021, 71, 103561. [Google Scholar] [CrossRef]
- Canto e Castro, L.; Gomes, A.; Serrano, M.; Pereira, A.H.G.; Ribeiro, R.; Napoleão, P.; Domingues, I.; Silva, C.; Fanczal, J.; Afonso, Â.; et al. Longitudinal SARS-CoV-2 Seroprevalence in Portugal and Antibody Maintenance 12 Months after Infection. Eur. J. Immunol. 2021, 52, 149–160. [Google Scholar] [CrossRef]
- Goel, R.R.; Painter, M.M.; Apostolidis, S.A.; Mathew, D.; Meng, W.; Rosenfeld, A.M.; Lundgreen, K.A.; Reynaldi, A.; Khoury, D.S.; Pattekar, A.; et al. MRNA Vaccines Induce Durable Immune Memory to SARS-CoV-2 and Variants of Concern. Science 2021, 374, abm0829. [Google Scholar] [CrossRef]
- Cromer, D.; Steain, M.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Kent, S.J.; Triccas, J.A.; Khoury, D.S.; Davenport, M.P. Neutralising Antibody Titres as Predictors of Protection against SARS-CoV-2 Variants and the Impact of Boosting: A Meta-Analysis. Lancet Microbe 2022, 3, e52–e61. [Google Scholar] [CrossRef]
- Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning Immune Humoral Response to BNT162b2 COVID-19 Vaccine over 6 Months. N. Engl. J. Med. 2021, 385, e84. [Google Scholar] [CrossRef]
- Decarreaux, D.; Sevila, J.; Masse, S.; Capai, L.; Fourié, T.; Saba Villarroel, P.M.; Amroun, A.; Nurtop, E.; Vareille, M.; Pouquet, M.; et al. A Cross-Sectional Study of Exposure Factors Associated with Seropositivity for SARS-CoV-2 Antibodies during the Second Epidemic Wave among a Sample of the University of Corsica (France). Int. J. Environ. Res. Public Health 2022, 19, 1953. [Google Scholar] [CrossRef]
- Gallian, P.; Pastorino, B.; Morel, P.; Chiaroni, J.; Ninove, L.; de Lamballerie, X. Lower Prevalence of Antibodies Neutralizing SARS-CoV-2 in Group O French Blood Donors. Antivir. Res. 2020, 181, 104880. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2006; Available online: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (accessed on 22 November 2021).
- Stratégie de Vaccination Contre le SARS-CoV-2—Vaccination des Personnes Ayant un Antécédent de COVID-19. Available online: https://www.has-sante.fr/jcms/p_3237271/fr/strategie-de-vaccination-contre-le-sars-cov-2-vaccination-des-personnes-ayant-un-antecedent-de-covid-19 (accessed on 17 March 2022).
- Ren, L.; Fan, G.; Wu, W.; Guo, L.; Wang, Y.; Li, X.; Wang, C.; Gu, X.; Li, C.; Wang, Y.; et al. Antibody Responses and Clinical Outcomes in Adults Hospitalized With Severe Coronavirus Disease 2019 (COVID-19): A Post Hoc Analysis of LOTUS China Trial. Clin. Infect. Dis. 2021, 72, e545–e551. [Google Scholar] [CrossRef]
- Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.J.A.; Hemmings, O.; O’Bryne, A.; Kouphou, N.; Galao, R.P.; et al. Longitudinal Evaluation and Decline of Antibody Responses in SARS-CoV-2 Infection. Nat. Microbiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef]
- He, Z.; Ren, L.; Yang, J.; Guo, L.; Feng, L.; Ma, C.; Wang, X.; Leng, Z.; Tong, X.; Zhou, W.; et al. Seroprevalence and Humoral Immune Durability of Anti-SARS-CoV-2 Antibodies in Wuhan, China: A Longitudinal, Population-Level, Cross-Sectional Study. Lancet 2021, 397, 1075–1084. [Google Scholar] [CrossRef]
- Long, Q.-X.; Tang, X.-J.; Shi, Q.-L.; Li, Q.; Deng, H.-J.; Yuan, J.; Hu, J.-L.; Xu, W.; Zhang, Y.; Lv, F.-J.; et al. Clinical and Immunological Assessment of Asymptomatic SARS-CoV-2 Infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef]
- Ibarrondo, F.J.; Fulcher, J.A.; Goodman-Meza, D.; Elliott, J.; Hofmann, C.; Hausner, M.A.; Ferbas, K.G.; Tobin, N.H.; Aldrovandi, G.M.; Yang, O.O. Rapid Decay of Anti–SARS-CoV-2 Antibodies in Persons with Mild COVID-19. N. Engl. J. Med. 2020, 383, 1085–1087. [Google Scholar] [CrossRef]
- Chahla, R.E.; Tomas-Grau, R.H.; Cazorla, S.I.; Ploper, D.; Vera Pingitore, E.; López, M.A.; Aznar, P.; Alcorta, M.E.; Vélez, E.M.D.M.; Stagnetto, A.; et al. Long-Term Analysis of Antibodies Elicited by SPUTNIK V: A Prospective Cohort Study in Tucumán, Argentina. Lancet Reg. Health Am. 2022, 6, 100123. [Google Scholar] [CrossRef]
- Ward, H.; Whitaker, M.; Flower, B.; Tang, S.N.; Atchison, C.; Darzi, A.; Donnelly, C.A.; Cann, A.; Diggle, P.J.; Ashby, D.; et al. Population Antibody Responses Following COVID-19 Vaccination in 212,102 Individuals. Nat. Commun. 2022, 13, 907. [Google Scholar] [CrossRef]
- Moncunill, G.; Aguilar, R.; Ribes, M.; Ortega, N.; Rubio, R.; Salmerón, G.; Molina, M.J.; Vidal, M.; Barrios, D.; Mitchell, R.A.; et al. Determinants of Early Antibody Responses to COVID-19 MRNA Vaccines in a Cohort of Exposed and Naïve Healthcare Workers. eBioMedicine 2022, 75, 103805. [Google Scholar] [CrossRef]
- Krammer, F.; Srivastava, K.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermúdez-González, M.C.; Bielak, D.A.; Carreño, J.M.; Chernet, R.L.; et al. Antibody Responses in Seropositive Persons after a Single Dose of SARS-CoV-2 MRNA Vaccine. N. Engl. J. Med. 2021, 384, 1372–1374. [Google Scholar] [CrossRef]
- Perkmann, T.; Perkmann-Nagele, N.; Koller, T.; Mucher, P.; Radakovics, A.; Marculescu, R.; Wolzt, M.; Wagner, O.F.; Binder, C.J.; Haslacher, H. Anti-Spike Protein Assays to Determine SARS-CoV-2 Antibody Levels: A Head-to-Head Comparison of Five Quantitative Assays. Microbiol. Spectr. 2021, 9, e00247-21. [Google Scholar] [CrossRef]
- Chodick, G.; Tene, L.; Rotem, R.S.; Patalon, T.; Gazit, S.; Ben-Tov, A.; Weil, C.; Goldshtein, I.; Twig, G.; Cohen, D.; et al. The Effectiveness of the TWO-DOSE BNT162b2 Vaccine: Analysis of Real-World Data. Clin. Infect. Dis. 2021, 74, ciab438. [Google Scholar] [CrossRef]
- Dagan, N.; Barda, N.; Kepten, E.; Miron, O.; Perchik, S.; Katz, M.A.; Hernán, M.A.; Lipsitch, M.; Reis, B.; Balicer, R.D. BNT162b2 MRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N. Engl. J. Med. 2021, 384, 1412–1423. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the MRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2020, 384, 403–416. [Google Scholar] [CrossRef]
- Anderson, M.; Stec, M.; Rewane, A.; Landay, A.; Cloherty, G.; Moy, J. SARS-CoV-2 Antibody Responses in Infection-Naive or Previously Infected Individuals After 1 and 2 Doses of the BNT162b2 Vaccine. JAMA Netw. Open 2021, 4, e2119741. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.N.; Devlin, J.C.; Buus, T.B.; Koide, A.; Shwetar, J.; Cornelius, A.; Samanovic, M.I.; Herrera, A.; Mimitou, E.P.; Zhang, C.; et al. SARS-CoV-2 MRNA Vaccine Elicits a Potent Adaptive Immune Response in the Absence of IFN-Mediated Inflammation Observed in COVID-19. medRxiv 2021. [Google Scholar] [CrossRef]
- Robbiani, D.F.; Gaebler, C.; Muecksch, F.; Lorenzi, J.C.C.; Wang, Z.; Cho, A.; Agudelo, M.; Barnes, C.O.; Gazumyan, A.; Finkin, S.; et al. Convergent Antibody Responses to SARS-CoV-2 in Convalescent Individuals. Nature 2020, 584, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.; Wang, E.; Jiang, R.; Li, M.; Xiong, D.; Sun, B.; Zhang, X. Longitudinal Profile of Neutralizing and Binding Antibodies in Vaccinated and Convalescent COVID-19 Cohorts by Chemiluminescent Immunoassays. Immun. Inflamm. Dis. 2022, 10, e612. [Google Scholar] [CrossRef]
- Wajnberg, A.; Mansour, M.; Leven, E.; Bouvier, N.M.; Patel, G.; Firpo-Betancourt, A.; Mendu, R.; Jhang, J.; Arinsburg, S.; Gitman, M.; et al. Humoral Response and PCR Positivity in Patients with COVID-19 in the New York City Region, USA: An Observational Study. Lancet Microbe 2020, 1, e283–e289. [Google Scholar] [CrossRef]
Characteristic | Overall n = 295 1 |
---|---|
Median age (min; max) | 37 (17; 64) |
Age group | |
<20 years | 14 (4.7%) |
20–29 years | 92 (31.2%) |
30–39 years | 70 (23.7%) |
40–49 years | 64 (21.7%) |
>50 years | 55 (18.6%) |
Gender | |
Female | 199 (67.5%) |
Chronic diseases * | 97 (32.9%) |
NA ** | 1 |
Characteristic | Phase 1 | Phase 2 | Phase 3 | p * |
---|---|---|---|---|
(23 November 2020 to 31 January 2021), | (1 March 2021 to 9 May 2021), | (14 June 2021 to 31 July 2021), | ||
n = 295 | n = 295 | n = 295 | ||
Evolution of COVID-19 vaccine coverage at each phase | <0.001 | |||
0 doses | 295 (100.0%) | 277 (93.9%) | 109 (36.9%) | |
1 dose | 0 (0%) | 13 (4.4%) | 47 (15.9%) | |
2 doses | 0 (0%) | 5 (1.7%) | 139 (47.2%) | |
COVID-19 vaccination and/or confirmed history of COVID-19 | <0.001 | |||
Unvaccinated with no known history of infection | 280 (95.0%) | 237 (80.3%) | 83 (28.2%) | |
Unvaccinated with known history of infection | 15 (5.0%) | 40 (13.6%) | 26 (8.8%) | |
Vaccinated with no known history of infection | 0 (0%) | 18 (6.1%) | 163 (55.2%) | |
Vaccinated with known history of infection | 0 (0%) | 0 (0%) | 23 (7.8%) | |
Serological status (ELISA-S) | <0.001 | |||
Positive | 34 (11.5%) | 31 (10.5%) | 201 (68.1%) | |
Negative | 261 (88.5%) | 264 (89.5%) | 94 (31.9%) |
Overall (N = 295) | Phase 1 (23 November 2020 to 31 January 2021) | Phase 2 (1 March 2021 to 9 May 2021) | Phase 3 (14 June 2021 to 31 July 2021) | |||
---|---|---|---|---|---|---|
Positive ELISA-S Serological Result n/N % [95% CI] | Negative ELISA-S Serological Result n/N % [95% CI] | Positive ELISA-S Serological Result n/N % [95% CI] | Negative ELISA-S Serological Result n/N % [95% CI] | Positive ELISA-S Serological Result n/N % [95% CI] | Negative ELISA-S Serological Result n/N % [95% CI] | |
Total (All Groups Combined) | 34/295 11.5% [8.2–15.9%] | 261/295 88.5% [84.1–91.8%] | 31/295 10.5% [7.4–14.7%] | 264/295 89.5% [85.3–92.6%] | 202/295 68.5% [62.8–73.7%] | 93/295 31.5% [26.3–37.2] |
Unvaccinated with no known history of infection | 22/280 7.9% [5.1–11.8%] | 258/280 92.1% [88.2–94.9%] | 1/237 0.4% [0.02–2.7%] | 236/237 99.6% [97.3–100%] | 4/83 4.8% [1.6–12.5%] | 79/83 95.2% [87.5–98.4] |
Unvaccinated with known history of infection | 12/15 80.0% [51.4–94.7%] | 3/15 20.0% [5.3–48.6%] | 19/40 47.5% [31.8–63.7%] | 21/40 52.5% [36.3–68.2%] | 18/26 69.2% [48.1–84.9%] | 8/26 30.8% [15.1–51.9] |
Vaccinated with no known history of infection | ~ | ~ | 11/18 61.1% [36.1–81.7%] | 7/18 38.9% [18.3–63.9] | 157/163 96.3% [91.8–98.5%] | 6/163 3.7% [1.5–8.2] |
Vaccinated with known history of infection | ~ | ~ | ~ | ~ | 23/23 100.0% [82.2–100] | 0/23 0.0% [0–17.8] |
Total (All Groups Combined) | Phase 1 (23 November 2020 to 31 January 2021) (n = 34) | Phase 2 (1 March 2021 to 9 May 2021) (n = 31) | Phase 3 (14 June 2021 to 31 July 2021) (n = 201) | |||
Mean (BAU/mL) [95% CI] (Min–Max) | Effective (n) | Mean (BAU/mL) [95% CI] (Min–Max) | Effective (n) | Mean (BAU/mL) [95% CI] (Min–Max) | Effective (n) | |
86.6 [62.9–110.3] (26.5; 235.9) | 24 | 716.1 [76.7–1355.6] (26.3; 6585.6) | 29 | 3069.3 [2660.0–3478.6] (27.6; 7680.0) | 181 | |
Unvaccinated with a known history of infection | 86.6 [62.9–110.3] (26.5; 235.9) | 24 | 88.2 [63.6–112.8] (26.3; 169.5) | 19 | 327.8 [–30.7–686.3] (27.6; 3712.0) | 21 |
Vaccinated with no known history of infection | ~ | ~ | 1909.3 [103.5–3715.1] (28.2; 6585.6) | 10 | 3402.9 [2945.4–3860.4] (42.9; 7680.0) | 138 |
Vaccinated with a known history of infection | ~ | ~ | ~ | ~ | 3593.8 [2232.1–4955.4] (37.6; 7296.0) | 22 |
NA * | 10 | 2 | 20 |
Phase 1 (23 November 2020 to 31 January 2021) (n = 34) | Phase 2 (1 March 2021 to 9 May 2021) (n = 31) | Phase 3 (14 June 2021 to 31 July 2021) (n = 201) | ||||
---|---|---|---|---|---|---|
Total (All Groups Combined) | Positive Seroneutralization Result (n/N) % [95% CI] | Negative Seroneutralization Result (n/N) % [95% CI] | Positive Seroneutralization Result (n/N) % [95% CI] | Negative Seroneutralization Result (n/N) % [95% CI] | Positive Seroneutralization Result (n/N) % [95% CI] | Negative Seroneutralization Result (n/N) % [95% CI] |
10/34 29.4% [15.7–47.7] | 24/34 70.6% [52.3–84.3] | 22/26 84.6% [64.3–95.0] | 4/26 15.4% [5.05–35.7] | 175/197 88.8% [83.4–92.7] | 22/197 11.2% [7.28–16.6] | |
Unvaccinated with a known history of infection | 10/34 29.4% [15.7–47.7] | 24/34 70.6% [52.3–84.3] | 15/18 83.3% [57.7–95.6] | 3/18 16.7% [4.41–42.3] | 13/20 65.0% [40.9–83.7] | 7/20 35.0% [16.3–59.1] |
Vaccinated with no known history of infection | ~ | ~ | 7/8 87.5% [46.7–99.3] | 1/8 12.5% [0.66–53.3] | 141/154 91.6% [85.7–95.2] | 13/154 8.44% [4.76–14.3] |
Vaccinated with a known history of infection | ~ | ~ | ~ | ~ | 21/23 91.3% [70.5–98.5] | 2/23 8.70% [1.52–29.5] |
NA * | 0 | 0 | 5 | 5 | 4 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Decarreaux, D.; Sevila, J.; Masse, S.; Capai, L.; Fourié, T.; Villarroel, P.M.S.; Amroun, A.; Nurtop, E.; Vareille, M.; Blanchon, T.; et al. Eight Months of Serological Follow-Up of Anti-SARS-CoV-2 Antibodies in France: A Study among an Adult Population. Int. J. Environ. Res. Public Health 2022, 19, 15257. https://doi.org/10.3390/ijerph192215257
Decarreaux D, Sevila J, Masse S, Capai L, Fourié T, Villarroel PMS, Amroun A, Nurtop E, Vareille M, Blanchon T, et al. Eight Months of Serological Follow-Up of Anti-SARS-CoV-2 Antibodies in France: A Study among an Adult Population. International Journal of Environmental Research and Public Health. 2022; 19(22):15257. https://doi.org/10.3390/ijerph192215257
Chicago/Turabian StyleDecarreaux, Dorine, Julie Sevila, Shirley Masse, Lisandru Capai, Toscane Fourié, Paola Mariela Saba Villarroel, Abdennour Amroun, Elif Nurtop, Matthieu Vareille, Thierry Blanchon, and et al. 2022. "Eight Months of Serological Follow-Up of Anti-SARS-CoV-2 Antibodies in France: A Study among an Adult Population" International Journal of Environmental Research and Public Health 19, no. 22: 15257. https://doi.org/10.3390/ijerph192215257
APA StyleDecarreaux, D., Sevila, J., Masse, S., Capai, L., Fourié, T., Villarroel, P. M. S., Amroun, A., Nurtop, E., Vareille, M., Blanchon, T., de Lamballerie, X., Charrel, R., & Falchi, A. (2022). Eight Months of Serological Follow-Up of Anti-SARS-CoV-2 Antibodies in France: A Study among an Adult Population. International Journal of Environmental Research and Public Health, 19(22), 15257. https://doi.org/10.3390/ijerph192215257