Factors Influencing eHealth Literacy among Spanish Primary Healthcare Users: Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Procedures
2.3. Outcome Measures
2.4. Statistical Analysis
2.5. Ethics Approval
3. Results
3.1. Description of the Sample
3.2. eHealth Literacy Levels
3.3. eHealth Literacy Levels according to the Sociodemographic Characteristics
3.4. Predictive Factors of the Level of eHealth Literacy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Busse, T.S.; Nitsche, J.; Kernebeck, S.; Jux, C.; Weitz, J.; Ehlers, J.P.; Bork, U. Approaches to Improvement of Digital Health Literacy (eHL) in the Context of Person-Centered Care. Int. J. Environ. Res. Public Health 2022, 19, 8309. [Google Scholar] [CrossRef]
- Juvinyà-Canal, D.; Bertran-Noguer, C.; Suñer-Soler, R. Alfabetización para la salud, más que información. Gac. Sanit. 2018, 32, 8–10. [Google Scholar] [CrossRef]
- Lwin, M.O.; Panchapakesan, C.; Sheldenkar, A.; Calvert, G.A.; Lim, L.K.; Lu, J. Determinants of eHealth Literacy among Adults in China. J. Health Commun. 2020, 25, 385–393. [Google Scholar] [CrossRef]
- World Health Organization. World Health Organization Western Pacific Region [Cited 20 of May de 2022] Using e-Health and Information Technology to Improve Health [Aprox. 1 Pantalla]. Available online: https://www.who.int/westernpacific/activities/using-e-health-and-information-technology-to-improve-health (accessed on 20 May 2022).
- Tsukahara, S.; Yamaguchi, S.; Igarashi, F.; Uruma, R.; Ikuina, N.; Iwakura, K.; Koizumi, K.; Sato, Y. Association of eHealth Literacy With Lifestyle Behaviors in University Students: Questionnaire-Based Cross-Sectional Study. J. Med. Internet Res. 2020, 22, e18155. [Google Scholar] [CrossRef]
- Kayser, L.; Karnoe, A.; Furstrand, D.; Batterham, R.; Christensen, K.B.; Elsworth, G.; Osborne, R.H. A Multidimensional Tool Based on the eHealth Literacy Framework: Development and Initial Validity Testing of the eHealth Literacy Questionnaire (eHLQ). J. Med. Internet Res. 2018, 20, e36. [Google Scholar] [CrossRef] [Green Version]
- Baccolini, V.; Rosso, A.; Di Paolo, C.; Isonne, C.; Salerno, C.; Migliara, G.; Prencipe, G.P.; Massimi, A.; Marzuillo, C.; De Vito, C.; et al. What is the Prevalence of Low Health Literacy in European Union Member States? A Systematic Review and Meta-analysis. J. Gen. Intern. Med. 2021, 36, 753–761. [Google Scholar] [CrossRef]
- World Health Organization. World Health Organization [Cited 20 de Mayo de 2022] Improving Health Literacy [Aprox. 1 Pantalla]. Available online: https://www.who.int/activities/improving-health-literacy (accessed on 20 May 2022).
- Nutbeam, D.; Lloyd, J.E. Understanding and Responding to Health Literacy as a Social Determinant of Health. Annu. Rev. Public Health 2021, 42, 159–173. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; Von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Mejorar la comunicación de estudios observacionales en epidemiología (STROBE): Explicación y elaboración. Gac. Sanit. 2009, 23, 158.e1–158.e28. [Google Scholar] [CrossRef]
- García-García, D.; Pérez-Rivas, F.J. Health Literacy and Its Sociodemographic Predictors: A Cross-Sectional Study of a Population in Madrid (Spain). IJERPH 2022, 19, 11815. [Google Scholar] [CrossRef]
- Cheng, C.; Elsworth, G.; Osborne, R.H. Validity Evidence Based on Relations to Other Variables of the eHealth Literacy Questionnaire (eHLQ): Bayesian Approach to Test for Known-Groups Validity. J. Med. Internet Res. 2021, 23, e30243. [Google Scholar] [CrossRef]
- Cheng, C.; Elsworth, G.R.; Osborne, R.H. Validity Evidence of the eHealth Literacy Questionnaire (eHLQ) Part 2: Mixed Methods Approach to Evaluate Test Content, Response Process, and Internal Structure in the Australian Community Health Setting. J. Med. Internet Res. 2022, 24, e32777. [Google Scholar] [CrossRef]
- Osborne, R.H.; Batterham, R.W.; Elsworth, G.R.; Hawkins, M.; Buchbinder, R. The grounded psychometric development and initial validation of the Health Literacy Questionnaire (HLQ). BMC Public Health 2013, 13, e658. [Google Scholar] [CrossRef] [Green Version]
- Herrera, S.; Salazar, A.; Nazar, G. Barriers and Supports in eHealth Implementation among People with Chronic Cardiovascular Ailments: Integrative Review. Int. J. Environ. Res. Public Health 2022, 19, 8296. [Google Scholar] [CrossRef]
- Cui, G.-H.; Li, S.-J.; Yin, Y.-T.; Chen, L.-J.; Li, J.-Q.; Liang, F.-Y.; Liu, X.-Y.; Chen, L. The relationship among social capital, eHealth literacy and health behaviours in Chinese elderly people: A cross-sectional study. BMC Public Health 2021, 21, e45. [Google Scholar] [CrossRef]
- Cheng, C.; Elsworth, G.R.; Osborne, R.H. Co-designing eHealth and Equity Solutions: Application of the Ophelia (Optimizing Health Literacy and Access) Process. Front. Public Health 2020, 8, 604401. [Google Scholar] [CrossRef]
- Zrubka, Z.; Hajdu, O.; Rencz, F.; Baji, P.; Gulácsi, L.; Péntek, M. Psychometric properties of the Hungarian version of the eHealth Literacy Scale. Eur. J. Health Econ. 2019, 20, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Makowsky, M.J.; Davachi, S.; Jones, C.A. eHealth Literacy in a Sample of South Asian Adults in Edmonton, Alberta, Canada: Subanalysis of a 2014 Community-Based Survey. JMIR Form. Res. 2022, 6, e29955. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, R.; Xia, L.; Yang, B.X.; Liu, S.; Kang, L.J.; Chen, J.; Luo, D.; Ge, H.R.; Xie, Y.D.; et al. eHealth Literacy of Chinese Residents During the Coronavirus Disease 2019 Pandemic: A Cross-sectional Survey. CIN Comput. Inform. Nurs. 2022, in press. [Google Scholar] [CrossRef]
- Tran, H.T.T.; Nguyen, M.H.; Pham, T.T.M.; Kim, G.B.; Nguyen, H.T.; Nguyen, N.-M.; Dam, H.T.B.; Duong, T.H.; Nguyen, Y.H.; Do, T.T.; et al. Predictors of eHealth Literacy and Its Associations with Preventive Behaviors, Fear of COVID-19, Anxiety, and Depression among Undergraduate Nursing Students: A Cross-Sectional Survey. Int. J. Environ. Res. Public Health 2022, 19, 3766. [Google Scholar] [CrossRef]
- Lee, J.; Tak, S.H. Factors associated with eHealth literacy focusing on digital literacy components: A cross-sectional study of middle-aged adults in South Korea. Digit. Health 2022, 8, 20552076221102765. [Google Scholar] [CrossRef]
- Mengestie, N.D.; Yilma, T.M.; Beshir, M.A.; Paulos, G.K. eHealth Literacy of Medical and Health Science Students and Factors Affecting eHealth Literacy in an Ethiopian University: A Cross-Sectional Study. Appl. Clin. Informatics 2021, 12, 301–309. [Google Scholar] [CrossRef]
- Holt, K.A.; Overgaard, D.; Engel, L.V.; Kayser, L. Health literacy, digital literacy and eHealth literacy in Danish nursing students at entry and graduate level: A cross sectional study. BMC Nurs. 2020, 19, e22. [Google Scholar] [CrossRef]
Variable | 1. Using Technology to Process Health Information | 2. Understanding of Health Concepts and Language | 3. Ability to Actively Engage with Digital Services | 4. Feel Safe and in Control | 5. Motivated to Engage with Digital Services | 6. Access to Digital Services That Work | 7. Digital Services That Suit Individual Needs |
---|---|---|---|---|---|---|---|
Age group | |||||||
<65 years | |||||||
Mean (SD) | 2.58 (0.62) | 2.75 (0.51) | 2.78 (0.73) | 2.96 (0.61) | 2.57 (0.62) | 2.48 (0.53) | 2.59 (0.71) |
n = 81 | |||||||
≥65 years | |||||||
Mean (SD) | 1.72 (0.73) | 2.49 (0.59) | 1.71 (0.72) | 2.76 (0.65) | 2.19 (0.71) | 2.21 (0.63) | 1.91 (0.71) |
n = 85 | |||||||
t-test (F; p) | 6.523; 0.000 | 2.767; 0.003 | 0.541; 0.000 | 0.065; 0.038 | 2.161; 0.000 | 0.722; 0.004 | 0.014; 0.000 |
Effect Size (95% CI) | −1.26 (−1.61, −0.94) | −0.47 (−0.79, −0.16) | −1.47 (−1.83, −1.14) | −0.32 (−0.63, −0.01) | −0.57 (−0.89, −0.26) | −0.46 (−0.78, −0.16) | −0.95 (−1.29, −0.64) |
Sex | |||||||
Male | |||||||
Mean (SD) | 2.20 (0.79) | 2.58 (0.51) | 2.35 (0.91) | 2.84 (0.58) | 2.50 (0.66) | 2.40 (0.56) | 2.37 (0.78) |
n = 75 | |||||||
Female | |||||||
Mean (SD) | 2.09 (0.81) | 2.64 (0.61) | 2.15 (0.89) | 2.87 (0.68) | 2.28 (0.71) | 2.29 (0.62) | 2.14 (0.78) |
n = 91 | |||||||
t-test (F; p) | 0.033; 0.379 | 0.361; 0.519 | 0.060; 0.157 | 0.495; 0.759 | 0.555; 0.040 | 0.567; 0.219 | 0.000; 0.059 |
Effect Size (95% CI) | −0.14 (−0.45, 0.17) | 0.11 (−0.20, 0.41) | −0.22 (−0.53, 0.08) | 0.05 (−0.26, 0.36) | −0.32 (−0.63, −0.01) | −0.18 (−0.50, 0.12) | −0.29 (−0.61, 0.01) |
Occupation | |||||||
Employed | |||||||
Mean (SD) | 2.61 (0.59) | 2.77 (0.48) | 2.84 (0.71) | 3.02 (0.59) | 2.61 (0.62) | 2.50 (0.53) | 2.64 (0.70) |
n = 61 | |||||||
Unemployed | |||||||
Mean (SD) | 1.86 (0.78) | 2.52 (0.59) | 1.87 (0.81) | 2.76 (0.64) | 2.24 (0.70) | 2.24 (0.62) | 2.01 (0.73) |
n = 103 | |||||||
t-test (F; p) | 13.998; 0.000 | 3.226; 0.005 | 4.816; 0.000 | 0.033; 0.010 | 2.959; 0.001 | 1.030; 0.006 | 0.116; 0.000 |
Effect Size (95% CI) | −1.04 (−1.40, −0.72) | −0.45 (−0.78, −0.13) | −1.25 (−1.61, −0.92) | −0.42 (−0.74, −0.10) | −0.55 (−0.88, −0.23) | −0.44 (−0.77, −0.12) | −0.87 (−1.22, −0.55) |
Education | |||||||
Incomplete secondary education | |||||||
Mean (SD) | 1.62 (0.69) | 2.45 (0.61) | 1.64 (0.77) | 2.75 (0.71) | 2.08 (0.68) | 2.17 (0.69) | 1.85 (0.74) |
n = 66 | |||||||
Completed secondary education or higher | |||||||
Mean (SD) | 2.49 (0.67) | 2.72 (0.51) | 2.63 (0.76) | 2.93 (0.57) | 2.57 (0.63) | 2.45 (0.50) | 2.51 (0.71) |
n = 100 | |||||||
t-test (F; p) | 0.467; 0.000 | 2.695; 0.002 | 0.006; 0.000 | 2.649; 0.081 | 0.945; 0.000 | 5.494; 0.006 | 0.039; 0.000 |
Effect Size (95% CI) | 1.28 (0.95, 1.64) | 0.49 (0.18, 0.81) | 1.29 (0.96, 1.65) | 0.28 (−0.03, 0.60) | 0.75 (0.44, 1.08) | 0.48 (0.17, 0.80) | 0.91 (0.59, 1.25) |
Perceived health status | |||||||
Very bad, bad, fair | |||||||
Mean (SD) | 1.86 (0.75) | 2.52 (0.57) | 1.95 (0.85) | 2.73 (0.69) | 2.11 (0.70) | 2.12 (0.55) | 1.99 (0.67) |
n = 65 | |||||||
Good, very good | |||||||
Mean (SD) | 2.32 (0.78) | 2.67 (0.55) | 2.42 (0.89) | 2.94 (0.59) | 2.55 (0.63) | 2.48 (0.59) | 2.41 (0.81) |
n = 101 | |||||||
t-test (F; p) | 0.063; 0.000 | 0.042; 0.096 | 0.355; 0.001 | 2.471; 0.042 | 1.365; 0.000 | 0.468; 0.000 | 6.093; 0.000 |
Effect Size (95% CI) | 0.60 (0.28, 0.92) | 0.27 (−0.04, 0.59) | 0.53 (0.22, 0.86) | 0.33 (0.02, 0.65) | 0.67 (0.35, 1.00) | 0.62 (0.31, 0.95) | 0.55 (0.24, 0.88) |
Birth country | |||||||
Spain | |||||||
Mean (SD) | 2.10 (0.81) | 2.61 (0.58) | 2.20 (0.92) | 2.85 (0.66) | 2.36 (0.71) | 2.33 (0.61) | 2.23 (0.80) |
n = 151 | |||||||
Foreign country | |||||||
Mean (SD) | 2.56 (0.56) | 2.69 (0.29) | 2.55 (0.65) | 2.93 (0.33) | 2.55 (0.49) | 2.44 (0.43) | 2.43 (0.59) |
n = 15 | |||||||
t-test (F; p) | 5.722; 0.009 | 4.038; 0.335 | 5.731; 0.073 | 4.384; 0.409 | 5.397; 0.191 | 1.135; 0.482 | 2.110; 0.330 |
Effect Size (95% CI) | 0.58 (0.05, 1.12) | 0.14 (−0.39, 0.68) | 0.39 (−0.14, 0.93) | 0.12 (−0.41, 0.66) | 0.27 (−0.26, 0.81) | 0.18 (−0.35, 0.72) | 0.25 (−0.28, 0.79) |
Marital status | |||||||
Single, separated, widowed | |||||||
Mean (SD) | 2.07 (0.82) | 2.55 (0.62) | 2.20 (0.94) | 2.75 (0.67) | 2.27 (0.71) | 2.22 (0.58) | 2.21 (0.85) |
n = 78 | |||||||
Married | |||||||
Mean (SD) | 2.21 (0.79) | 2.68 (0.51) | 2.27 (0.87) | 2.95 (0.59) | 2.47 (0.67) | 2.45 (0.60) | 2.27 (0.73) |
n = 88 | |||||||
t-test (F; p) | 0.550; 0.271 | 2.383; 0.138 | 1.565; 0.658 | 0.513; 0.043 | 0.098; 0.056 | 0.178; 0.013 | 2.309; 0.624 |
Effect Size (95% CI) | 0.17 (−0.13, 0.48) | 0.23 (−0.08, 0.54) | 0.08 (−0.23, 0.39) | 0.32 (0.01, 0.63) | 0.29 (−0.02, 0.60) | 0.39 (0.08, 0.70) | 0.08 (−0.23, 0.38) |
Predictors | Beta | p Value | |
---|---|---|---|
Dimension 1 Using technology to process health information R 0.641/R2 0.410/adjusted R2 0.396/F 10.674 | |||
Constant | 2.244 (2.015, 2.474) | 0.000 | |
Age group: <65 years | 0.585 (0.348, 0.821) | 0.000 | |
Secondary education: incomplete | −0.496 (−0.736, −0.255) | 0.000 | |
Marital status: single/separated/widower | −0.217 (−0.411, −0.022) | 0.029 | |
Perceived health status: very bad/bad/fair | −0.213 (−0.416, −0.011) | 0.039 | |
Dimension 2 Understanding of health concepts and language R 0.233/R2 0.054/adjusted R2 0.048/F 9.303 | |||
Constant | 2.719 (2.609, 2.829) | 0.000 | |
Secondary education: incomplete | −0.268 (−0.441, −0.094) | 0.003 | |
Dimension 3 Ability to actively engage with digital services R 0.647/R2 0.419/adjusted R2 0.411/F 57.948 | |||
Constant | 2.074 (1.843, 2.305) | 0.000 | |
Age group: <65 years | 0.783 (0.523, 1.042) | 0.000 | |
Secondary education: incomplete | −0.538 (−0.802, −0.273) | 0.000 | |
Dimension 4 Feel safe and in control R 0.257/R2 0.066/adjusted R2 0.055/F 5.702 | |||
Constant | 2.851 (2.705, 2.996) | 0.000 | |
Occupation: employed | 0.278 (0.082, 0.475) | 0.006 | |
Marital status: single/separated/widower | −0.205 (−0.396, −0.015) | 0.035 | |
Dimension 5 Motivated to engage with digital services R 0.448/R2 0.201/adjusted R2 0.186/F 13.400 | |||
Constant | 2.776 (2.609, 2.942) | 0.000 | |
Secondary education: incomplete | −0.427 (−0.629, −0.226) | 0.000 | |
Perceived health status: very bad/bad/fair | −0.333 (−0.535, −0.130) | 0.001 | |
Marital status: single/separated/widower | −0.207 (−0.399, −0.014) | 0.036 | |
Dimension 6 Access to digital services that work R 0.395/R2 0.156/adjusted R2 0.140/F 9.867 | |||
Constant | 2.464 (2.302, 2.626) | 0.000 | |
Age group: <65 years | 0.239 (0.063, 0.415) | 0.008 | |
Perceived health status: very bad/bad/fair | −0.307 (−0.486, −0.128) | 0.001 | |
Marital status: single/separated/widower | −0.264 (−0.437, −0.091) | 0.003 | |
Dimension 7 Digital services that suit individual needs R 0.529/R2 0.280/adjusted R2 0.262/F 15.485 | |||
Constant | 2.125 (1.859, 2.390) | 0.000 | |
Age group: <65 years | 0.482 (0.228, 0.735) | 0.000 | |
Sex: Male | 0.233 (0.023, 0.443) | 0.030 | |
Secondary education: incomplete | −0.312 (−0.573, −0.050) | 0.020 | |
Perceived health status: very bad/bad/fair | −0.228 (−0.447, −0.009) | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-García, D.; Ajejas Bazán, M.J.; Pérez-Rivas, F.J. Factors Influencing eHealth Literacy among Spanish Primary Healthcare Users: Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 15497. https://doi.org/10.3390/ijerph192315497
García-García D, Ajejas Bazán MJ, Pérez-Rivas FJ. Factors Influencing eHealth Literacy among Spanish Primary Healthcare Users: Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2022; 19(23):15497. https://doi.org/10.3390/ijerph192315497
Chicago/Turabian StyleGarcía-García, David, María Julia Ajejas Bazán, and Francisco Javier Pérez-Rivas. 2022. "Factors Influencing eHealth Literacy among Spanish Primary Healthcare Users: Cross-Sectional Study" International Journal of Environmental Research and Public Health 19, no. 23: 15497. https://doi.org/10.3390/ijerph192315497
APA StyleGarcía-García, D., Ajejas Bazán, M. J., & Pérez-Rivas, F. J. (2022). Factors Influencing eHealth Literacy among Spanish Primary Healthcare Users: Cross-Sectional Study. International Journal of Environmental Research and Public Health, 19(23), 15497. https://doi.org/10.3390/ijerph192315497