Health Risk Assessment of Inhalation Exposure to Airborne Particle-Bound Nitrated Polycyclic Aromatic Hydrocarbons in Urban and Suburban Areas of South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Extraction and Analysis
2.3. Quality Control and Assurance
2.4. Exposure Assessment
2.5. Health Risk Assessment
2.6. Statistical Analysis
3. Results and Discussion
3.1. Nitro-PAHs in PM2.5 and TSP
3.2. Health Risk Assessment
3.2.1. Exposure Assessment
3.2.2. Cancer Risk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Song, S.J.; Li, P.H.; Liu, J.; Zhang, J.; Wang, L.; Ji, Y.Q.; Liu, J.P.; Guo, L.Q.; Han, J.B. Fine particle-bound PAHs derivatives at mountain background site (Mount Tai) of the North China: Concentration, source diagnosis and health risk assessment. J. Environ. Sci. 2021, 109, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.P.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, J.; Liao, H.; Yang, Y.; Yue, X. Meteorological influences on PM2.5 and O3 trends and associated health burden since China’s clean air actions. Sci. Total Environ. 2020, 744, 140837. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.X.; Li, B.; Liu, Y.P.; Sun, X.Z.; Fu, D.L.; Sun, S.J. Characterization, sources and risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in Harbin, a cold city in Northern China. J. Clean. Prod. 2020, 264, 121673. [Google Scholar] [CrossRef]
- Verma, P.K.; Sah, D.; Satish, R.; Rastogi, N.; Kumari, K.M.; Lakhani, A. Atmospheric chemistry and cancer risk assessment of Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs over a semi-arid site in the Indo-Gangetic plain. J. Environ. Manag. 2022, 317, 115456. [Google Scholar] [CrossRef] [PubMed]
- Gbeddy, G.; Egodawatta, P.; Goonetilleke, A.; Akortia, E.; Glover, E.T. Influence of photolysis on source characterization and health risk of polycyclic aromatic hydrocarbons (PAHs), and carbonyl-, nitro-, hydroxy- PAHs in urban road dust. Environ. Pollut. 2021, 269, 116103. [Google Scholar] [CrossRef]
- Gbeddy, G.; Goonetilleke, A.; Ayoko, G.A.; Egodawatta, P. Transformation and degradation of polycyclic aromatic hydrocarbons (PAHs) in urban road surfaces: Influential factors, implications and recommendations. Environ. Pollut. 2020, 257, 113510. [Google Scholar] [CrossRef]
- Zimmermann, K.; Jariyasopit, N.; Simonich, S.L.M.; Tao, S.; Atkinson, R.; Arey, J. Formation of nitro-PAHs from the heterogeneous reaction of ambient particle-bound PAHs with N2O5/NO3/NO2. Environ. Sci. Technol. 2013, 47, 8434–8442. [Google Scholar] [CrossRef] [Green Version]
- Wolff, R.K.; Griffith, W.C.; Henderson, R.F.; Hahn, F.F.; Harkema, J.R.; Rebar, A.H.; Eidson, A.F.; McClellan, R.O. Effects of repeated inhalation exposures to 1-nitropyrene, benzo[a]pyrene, Ga2O3 particles, and SO2 alone and in combinations on particle clearance, bronchoalveolar lavage fluid composition, and histopathology. J. Toxicol. Environ. Health 1989, 27, 123–138. [Google Scholar] [CrossRef]
- Li, Y.; Song, N.; Yu, Y.; Yang, Z.; Shen, Z. Characteristics of PAHs in street dust of Beijing and the annual wash-off load using an improved load calculation method. Sci. Total Environ. 2017, 581, 328–336. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Hua, P.; Zhao, Z.; Wu, L.; Fan, G.; Bai, Y.; Kaeseberg, T.; Krebs, P. The influence of land use on source apportionment and risk assessment of polycyclic aromatic hydrocarbons in road-deposited sediment. Environ. Pollut. 2017, 229, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Z.; Gao, R.; Xu, F.; Zhou, Q.; Jiang, G.B.; Wang, T.; Chen, J.M.; Hu, J.T.; Wang, W.X. Role of water molecule in the gas-phase formation process of nitrated polycyclic aromatic hydrocarbons in the atmosphere: A computational study. Environ. Sci. Technol. 2014, 48, 5051–5057. [Google Scholar] [CrossRef]
- Barrado, A.I.; García, S.; Barrado, E.; María Pérez, R. PM2.5-bound PAHs and hydroxy-PAHs in atmospheric aerosol samples: Correlations with season and with physical and chemical factors. Atmos. Environ. 2012, 49, 224–232. [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Meusel, H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment—A review. Sci. Total Environ. 2017, 581, 237–257. [Google Scholar] [CrossRef]
- Collins, J.; Brown, J.; Alexeeff, G.; Salmon, A. Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul. Toxicol. Pharmacol. 1998, 28, 45–54. [Google Scholar] [CrossRef]
- Kalisa, E.; Nagato, E.; Bizuru, E.; Lee, K.; Tang, N.; Pointing, S.; Hayakawa, K.; Archer, S.; Lacap-Bugler, D. Pollution characteristics and risk assessment of ambient PM2.5-bound PAHs and NPAHs in typical Japanese and New Zealand cities and rural sites. Atmos. Pollut. Res. 2019, 10, 1396–1403. [Google Scholar] [CrossRef]
- Huang, W.; Huang, B.; Bi, X.; Lin, Q.; Liu, M.; Ren, Z.; Zhang, G.; Wang, X.; Sheng, G.; Fu, J. Emission of PAHs, NPAHs and OPAHs from the residential honeycomb coal briquettes combustion. Energy Fuel 2014, 28, 636–642. [Google Scholar] [CrossRef]
- Shen, G.F.; Tao, S.; Wei, S.Y.; Chen, Y.C.; Zhang, Y.Y.; Shen, H.Z.; Huang, Y.; Zhu, D.; Yuan, C.Y.; Wang, H.C.; et al. Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy-polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in Rural Shanxi, China. Environ. Sci. Technol. 2013, 47, 2998–3005. [Google Scholar] [CrossRef] [Green Version]
- Keyte, I.J.; Harrison, R.M.; Lammel, G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons—A review. Chem. Soc. Rev. 2013, 42, 9333–9391. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Ma, L.X.; Sun, S.J.; Thapa, S.; Lu, L.; Wang, K.; Qi, H. Polycyclic aromatic hydrocarbons and their nitro-derivatives in urban road dust across China: Spatial variation, source apportionment, and health risk. Sci. Total Environ. 2020, 747, 141194. [Google Scholar] [CrossRef]
- Zhao, J.B.; Zhang, J.; Sun, L.N.; Liu, Y.; Lin, Y.C.; Li, Y.N.; Wang, T.; Mao, H.J. Characterization of PM2.5-bound nitrated and oxygenated polycyclic aromatic hydrocarbons in ambient air of Langfang during periods with and without traffic restriction. Atmos. Res. 2018, 213, 302–308. [Google Scholar] [CrossRef]
- Karavalakis, G.; Boutsika, V.; Stournas, S.; Bakeas, E. Biodiesel emissions profile in modern diesel vehicles. Part 2: Effect of biodiesel origin on carbonyl, PAH, nitro-PAH and oxy-PAH emissions. Sci. Total Environ. 2011, 409, 738–747. [Google Scholar] [CrossRef]
- Albinet, A.; Leoz-Garziandia, E.; Budzinski, H.; Villenave, E.; Jaffrezo, J.L. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys—Part 1: Concentrations, sources and gas/particle partitioning. Atmos. Environ. 2008, 42, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Pham, C.T.; Kameda, T.; Toriba, A.; Hayakawa, K. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates emitted by motorcycles. Environ. Pollut. 2013, 183, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, N.; Takemoto, N.; Kindaichi, T. Nitro-PAHs and PAHs in atmospheric particulate matters and sea sediments in Hiroshima Bay area, Japan. Water Air Soil Pollut. 2010, 207, 271–363. [Google Scholar] [CrossRef]
- Zielinska, B.; Sagebiel, J.; McDonald, J.D.; Whitney, K.; Lawson, D.R. Emission rates and comparative chemical composition from selected in-use diesel and gasoline fueled vehicles. J. Air Waste Manag. Assoc. 2004, 54, 1138–1150. [Google Scholar] [CrossRef]
- Huang, B.; Liu, M.; Bi, X.; Chaemfra, C.; Ren, Z.; Wang, X.; Sheng, G.; Fu, J. Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China. Atmos. Pollut. Res. 2014, 5, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Tomaz, S.; Shahpoury, P.; Jaffrezo, J.L.; Lammel, G.; Perraudin, E.; Villenave, E.; Albinet, A. One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): Seasonal variations, gas/particle partitioning and cancer risk estimation. Sci. Total Environ. 2016, 565, 1071–1083. [Google Scholar] [CrossRef]
- Zhang, J.M.; Yang, L.X.; Mellouki, A.; Chen, J.M.; Chen, X.F.; Gao, Y.; Jiang, P.; Li, Y.Y.; Yu, H.; Wang, W.X. Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: Molecular composition, sources, and ageing. Atmos. Environ. 2018, 173, 256–264. [Google Scholar] [CrossRef]
- Alam, M.S.; Keyte, I.J.; Yin, J.; Stark, C.; Jones, A.M.; Harrison, R.M. Diurnal variability of polycyclic aromatic compound (PAC) concentrations: Relationship with meteorological conditions and inferred sources. Atmos. Environ. 2015, 122, 427–436. [Google Scholar] [CrossRef]
- Li, Y.; Bai, X.; Ren, Y.; Gao, R.; Ji, Y.; Wang, Y.; Li, H. PAHs and nitro-PAHs in urban Beijing from 2017 to 2018: Characteristics, sources, transformation mechanism and risk assessment. J. Hazard. Mater. 2022, 436, 129143. [Google Scholar] [CrossRef]
- Wei, C.; Han, Y.M.; Bandowe, B.A.M.; Cao, J.J.; Huang, R.J.; Ni, H.; Tian, J.; Wilcke, W. Occurrence, gas/particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons and their oxygen and nitrogen containing derivatives in Xi’an, central China. Sci. Total Environ. 2015, 505, 814–822. [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Meusel, H.; Huang, R.-J.; Ho, K.F.; Cao, J.J.; Hoffmann, T.; Wilcke, W. PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment. Sci. Total Environ. 2014, 473, 77–87. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Chen, J.C.; Zhao, Y.X.; Wang, L.; Teng, Y.Q.; Cai, M.H.; Zhao, Y.H.; Nikolaev, A.; Li, Y.F. Determination of 123 polycyclic aromatic hydrocarbons and their derivatives in atmospheric samples. Chemosphere 2022, 296, 134025. [Google Scholar] [CrossRef]
- Xia, Z.; Duan, X.; Tao, S.; Qiu, W.; Liu, D.; Wang, Y.; Wei, S.; Wang, B.; Jiang, Q.; Lu, B.; et al. Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Environ. Pollut. 2013, 173, 150–156. [Google Scholar] [CrossRef]
- Du, W.; Chen, Y.C.; Zhu, X.; Zhong, Q.R.; Zhuo, S.J.; Liu, W.J.; Huang, Y.; Shen, G.F.; Tao, S. Wintertime air pollution and health risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in rural China. Atmos. Environ. 2018, 191, 1–8. [Google Scholar] [CrossRef]
- Zou, Y.; Deng, X.J.; Wang, B.G.; Li, F.X.; Tan, H.B.; Deng, T.; Mai, B.R.; Liu, X.T. An analysis of the impacts of VOCs and NOx on the ozone formation in Guangzhou. Atmos. Chem. Phys. 2014, 14, 18849–18877. [Google Scholar]
- Wang, N.; Lyu, X.P.; Deng, X.J.; Huang, X.; Jiang, F.; Ding, A.J. Aggravating O3 pollution due to NOx emission control in eastern China. Sci. Total Environ. 2019, 677, 732–744. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Xu, L. Comparative study of PM10/PM2.5-bound PAHs in downtown Beijing, China: Concentrations, sources, and health risks. J. Clean. Prod. 2018, 177, 674–683. [Google Scholar] [CrossRef]
- Bamford, H.A.; Baker, J.E. Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region. Atmos. Environ. 2003, 37, 2077–2091. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Fang, J.; Wang, C.; Cai, Z. Simultaneous determination of eighteen nitro-polyaromatic hydrocarbons in PM2.5 by atmospheric pressure gas chromatography–tandem mass spectrometry. Chemosphere 2018, 198, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Amarillo, A.C.; Carreras, H. Quantifying the influence of meteorological variables on particle-bound PAHs in urban environments. Atmos. Pollut. Res. 2016, 7, 597–602. [Google Scholar] [CrossRef]
- Wang, H.L.; Qiao, L.P.; Lou, S.R.; Zhou, M.; Ding, A.J.; Huang, H.Y.; Chen, J.M.; Wang, Q.; Tao, S.K.; Chen, C.H.; et al. Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai, China. J. Clean. Prod. 2016, 112, 1302–1311. [Google Scholar] [CrossRef]
- Hong, Y.W.; Xu, X.B.; Liao, D.; Ji, X.T.; Hong, Z.Y.; Chen, Y.T.; Xu, L.L.; Li, M.R.; Wang, H.; Zhang, H.; et al. Air pollution increases human health risks of PM2.5-bound PAHs and nitro-PAHs in the Yangtze River Delta, China. Sci. Total Environ. 2021, 770, 145402. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Volume I: Human Health Evaluation Manual. In Risk Assessment Guidance for Superfund; Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 2004. [Google Scholar]
Nitro-PAHs | Summer | Winter | ||||||
---|---|---|---|---|---|---|---|---|
Indoor | Outdoor | Indoor | Outdoor | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Haizhu District | ||||||||
PM2.5 | ||||||||
9-NT a | 0.0612 | 0.0303 | 0.0918 | 0.0198 | 0.0683 | 0.0209 | 0.125 | 0.0203 |
2-NF b | 0.0144 | 0.00670 | 0.0189 | 0.0084 | 0.0388 | 0.0090 | 0.0402 | 0.0162 |
1-NP c | 0.0094 | 0.00410 | 0.00470 | 0.00320 | 0.0444 | 0.0104 | 0.0302 | 0.00650 |
TSP | ||||||||
9-NT a | 0.734 | 0.144 | 1.09 | 0.243 | 0.548 | 0.105 | 0.645 | 0.191 |
2-NF b | 0.0151 | 0.00410 | 0.00870 | 0.00450 | 0.047 | 0.013 | 0.0564 | 0.0140 |
1-NP c | 0.0291 | 0.0101 | 0.0141 | 0.00170 | 0.400 | 0.109 | 0.640 | 0.252 |
Huadu District | ||||||||
PM2.5 | ||||||||
9-NT a | 0.0894 | 0.0503 | 0.349 | 0.244 | 0.140 | 0.0293 | 0.192 | 0.0317 |
2-NF b | 0.0166 | 0.00680 | 0.046 | 0.0171 | 0.0130 | 0.00540 | 0.0236 | 0.0155 |
1-NP c | 0.0226 | 0.0067 | 0.0510 | 0.0178 | 0.0241 | 0.00990 | 0.0188 | 0.00410 |
TSP | ||||||||
9-NT a | 0.518 | 0.223 | 0.795 | 0.139 | 0.384 | 0.0889 | 0.618 | 0.186 |
2-NF b | 0.0789 | 0.0223 | 0.0463 | 0.0171 | 0.0116 | 0.0109 | 0.0106 | 0.00290 |
1-NP c | 0.0451 | 0.0133 | 0.0510 | 0.0178 | 0.0667 | 0.0289 | 0.0837 | 0.0495 |
Nitro-PAHs | Summer | Winter | ||||||
---|---|---|---|---|---|---|---|---|
Indoor | Outdoor | Indoor | Outdoor | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Haizhu District | ||||||||
PM2.5 | ||||||||
9-NT a | 0.0845 | 0.0514 | 0.0928 | 0.0544 | 0.0861 | 0.0484 | 0.0933 | 0.0624 |
2-NF b | 0.0151 | 0.0092 | 0.0305 | 0.0156 | 0.0431 | 0.0232 | 0.0400 | 0.0316 |
1-NP c | 0.0122 | 0.0078 | 0.0056 | 0.0032 | 0.0497 | 0.0238 | 0.0239 | 0.0072 |
TSP | ||||||||
9-NT a | 0.8462 | 0.3703 | 1.1768 | 0.7458 | 0.3720 | 0.2283 | 0.7865 | 0.5098 |
2-NF b | 0.0164 | 0.0023 | 0.0083 | 0.0042 | 0.0480 | 0.0357 | 0.0548 | 0.0197 |
1-NP c | 0.0351 | 0.0154 | 0.0132 | 0.0065 | 0.5713 | 0.6148 | 0.4495 | 0.1500 |
Huadu District | ||||||||
PM2.5 | ||||||||
9-NT a | 0.0442 | 0.0290 | 0.1709 | 0.16844 | 0.0638 | 0.0301 | 0.0374 | 0.0194 |
2-NF b | 0.0842 | 0.0225 | 0.0274 | 0.0295 | 0.0170 | 0.0095 | 0.0289 | 0.0291 |
1-NP c | 0.0527 | 0.0161 | 0.0050 | 0.0016 | 0.0049 | 0.0031 | 0.0222 | 0.0187 |
TSP | ||||||||
9-NT a | 0.6600 | 0.4440 | 0.8938 | 0.3440 | 0.5141 | 0.1653 | 0.9334 | 0.1686 |
2-NF b | 0.0819 | 0.02744 | 0.0432 | 0.0320 | 0.0141 | 0.0152 | 0.0145 | 0.0115 |
1-NP c | 0.0428 | 0.01211 | 0.0451 | 0.0233 | 0.0676 | 0.0259 | 0.0883 | 0.0578 |
District | PM2.5 | TSP | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
2019 | |||||
Summer | |||||
Males | Haizhu | 0.581 | 0.0608 | 3.65 | 0.570 |
Huadu | 2.80 | 1.10 | 4.14 | 0.513 | |
Females | Haizhu | 0.504 | 0.0527 | 3.17 | 0.495 |
Huadu | 2.43 | 0.950 | 3.59 | 0.445 | |
Children | Haizhu | 0.216 | 0.0226 | 1.35 | 0.212 |
Huadu | 1.04 | 0.406 | 1.53 | 0.190 | |
Winter | |||||
Males | Haizhu | 1.62 | 0.226 | 19.4 | 5.72 |
Huadu | 1.30 | 0.162 | 4.13 | 1.36 | |
Females | Haizhu | 1.40 | 0.196 | 16.9 | 4.96 |
Huadu | 1.13 | 0.140 | 3.58 | 1.18 | |
Children | Haizhu | 0.599 | 0.0838 | 7.21 | 2.12 |
Huadu | 0.484 | 0.0600 | 1.53 | 0.504 | |
2020 | |||||
Summer | |||||
Males | Haizhu | 0.663 | 0.273 | 3.91 | 2.07 |
Huadu | 1.09 | 0.598 | 4.28 | 1.57 | |
Females | Haizhu | 0.575 | 0.236 | 3.39 | 1.79 |
Huadu | 0.944 | 0.519 | 3.71 | 1.36 | |
Children | Haizhu | 0.246 | 0.101 | 1.45 | 0.767 |
Huadu | 0.404 | 0.222 | 1.59 | 0.581 | |
Winter | |||||
Males | Haizhu | 1.41 | 0.518 | 15.7 | 5.30 |
Huadu | 0.938 | 0.652 | 5.15 | 1.74 | |
Females | Haizhu | 1.22 | 0.449 | 13.6 | 4.59 |
Huadu | 0.813 | 0.566 | 4.47 | 1.50 | |
Children | Haizhu | 0.522 | 0.192 | 5.81 | 1.97 |
Huadu | 0.348 | 0.242 | 1.91 | 0.644 |
District | PM2.5 | TSP | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
2019 | |||||
Summer | |||||
Males | Haizhu | 1.83 | 0.191 | 11.5 | 1.79 |
Huadu | 8.79 | 3.44 | 13.0 | 1.61 | |
Females | Haizhu | 1.58 | 0.166 | 9.95 | 1.55 |
Huadu | 7.62 | 2.98 | 11.3 | 1.40 | |
Children | Haizhu | 0.677 | 0.0708 | 4.25 | 0.664 |
Huadu | 3.26 | 1.28 | 4.82 | 0.598 | |
Winter | |||||
Males | Haizhu | 5.07 | 0.709 | 61.0 | 18.0 |
Huadu | 4.09 | 0.508 | 13.0 | 4.27 | |
Females | Haizhu | 4.40 | 0.615 | 52.9 | 15.6 |
Huadu | 3.55 | 0.440 | 11.2 | 3.70 | |
Children | Haizhu | 1.88 | 0.263 | 22.6 | 6.66 |
Huadu | 1.52 | 0.188 | 4.81 | 1.58 | |
2020 | |||||
Summer | |||||
Males | Haizhu | 2.08 | 0.856 | 12.3 | 6.49 |
Huadu | 3.42 | 1.88 | 13.4 | 4.92 | |
Females | Haizhu | 1.80 | 0.742 | 10.7 | 5.63 |
Huadu | 2.96 | 1.630 | 11.7 | 4.27 | |
Children | Haizhu | 0.772 | 0.317 | 4.56 | 2.41 |
Huadu | 1.27 | 0.697 | 4.99 | 1.83 | |
Winter | |||||
Males | Haizhu | 4.42 | 1.63 | 49.2 | 16.6 |
Huadu | 2.94 | 2.05 | 16.2 | 5.45 | |
Females | Haizhu | 3.83 | 1.41 | 42.7 | 14.4 |
Huadu | 2.55 | 1.78 | 14.0 | 4.73 | |
Children | Haizhu | 1.64 | 0.604 | 18.2 | 6.17 |
Huadu | 1.09 | 0.760 | 6.00 | 2.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Deng, F.; Chen, W.-S.; Zhong, Y.-J.; Cai, X.-L.; Ma, W.-M.; Hu, J.; Feng, S.-R. Health Risk Assessment of Inhalation Exposure to Airborne Particle-Bound Nitrated Polycyclic Aromatic Hydrocarbons in Urban and Suburban Areas of South China. Int. J. Environ. Res. Public Health 2022, 19, 15536. https://doi.org/10.3390/ijerph192315536
Gao P, Deng F, Chen W-S, Zhong Y-J, Cai X-L, Ma W-M, Hu J, Feng S-R. Health Risk Assessment of Inhalation Exposure to Airborne Particle-Bound Nitrated Polycyclic Aromatic Hydrocarbons in Urban and Suburban Areas of South China. International Journal of Environmental Research and Public Health. 2022; 19(23):15536. https://doi.org/10.3390/ijerph192315536
Chicago/Turabian StyleGao, Peng, Feng Deng, Wei-Shan Chen, Yi-Jia Zhong, Xiao-Lu Cai, Wen-Min Ma, Jian Hu, and Shu-Ran Feng. 2022. "Health Risk Assessment of Inhalation Exposure to Airborne Particle-Bound Nitrated Polycyclic Aromatic Hydrocarbons in Urban and Suburban Areas of South China" International Journal of Environmental Research and Public Health 19, no. 23: 15536. https://doi.org/10.3390/ijerph192315536
APA StyleGao, P., Deng, F., Chen, W. -S., Zhong, Y. -J., Cai, X. -L., Ma, W. -M., Hu, J., & Feng, S. -R. (2022). Health Risk Assessment of Inhalation Exposure to Airborne Particle-Bound Nitrated Polycyclic Aromatic Hydrocarbons in Urban and Suburban Areas of South China. International Journal of Environmental Research and Public Health, 19(23), 15536. https://doi.org/10.3390/ijerph192315536